七年级上册第1讲有理数的初步认识

合集下载

人教版七年级数学上册第1章第2节有理数(共38张PPT)

人教版七年级数学上册第1章第2节有理数(共38张PPT)
分析:零既不是正数,也不是负数;正整数、零、
负整数统称为整数;非负数是正数和零,反之,正数 和零统称为非负数;能被2整除的数是偶数.
答案:(1)× (2)√ (3)√(4)×(5)√ (6)×
链接中考
• 1.(2011.贵阳)如果“盈利10‰”记为+10‰,那
么“亏损6‰”记为(C )
• A. -16‰ B. -6‰ C.+6‰ D.+4‰ • 2.(2011.湖北宜昌)如果用+0.02克表示一个乒乓球
• 2.下列说法正确的是( C )
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
则早晨6时温度为___4__℃,若早晨4时气温比中午11时低13℃, 则早晨4时温度为___—__2__℃。
1、如果全班某次数学测试的平均成绩为83分,某同学考
了85分,记作+2分,得90分应记作_+_7__分__,得80分应 记作_—___3_分_ 。
2、若将28计为0,则可以将27计为-1,试猜想若将27计
参考答案:左图中的正负数表示,A地高于海平 面4 600米,B地低于海平面100米.
右图中的正负数分别表示,存入 2 300元,支出 1 800元.
课堂练习
1.如果+5分钟表示提前5分钟到校,那么-10
分钟表示迟到10分钟.( )
2.零是自然数.
()
3.小学学过的数都是正数.( )
4.正数前面添上“-”号的数都是负数.( )

人教版七年级数学上册第1章第2节有理数(共38张PPT)

人教版七年级数学上册第1章第2节有理数(共38张PPT)
• 最大的自然数. • 2.自然数与整数的关系:自然数(都是)整数,但
整数(不都是)自然数. • 3.分数的概念:把(单位“1)”平均分成若干份,表
示这样的一份或几份的数,叫做(分数 ).
一、相反意义的量
在日常生活中我们会遇到这样一些量:
前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
则早晨6时温度为___4__℃,若早晨4时气温比中午11时低13℃, 则早晨4时温度为___—__2__℃。
1、如果全班某次数学测试的平均成绩为83分,某同学考
了85分,记作+2分,得90分应记作_+_7__分__,得80分应 记作_—___3_分_ 。
2、若将28计为0,则可以将27计为-1,试猜想若将27计
• 2.下列说法正确的是( C )
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
负分数:如,
1 2
,-3.5,…
整数与分数统称为有理数
按数系扩张的自然顺序
有理数还可以这样分类: (按认识有理数的先后顺序) 正整数
有理数
正有理数

负有理数
正分数 负整数 负分数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的.
2.0既不是正数也不是负数,而是整数.
(3)在某次乒乓球质量检测中,一只乒乓球超出 标准质量0. 02克记作+0.02,那么-0.03克表示什么?

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数(1)、大于0的数叫做正数。

(2)、在正数前面加上负号“-”的数叫做负数。

(3)、数0既不是正数,也不是负数,0是正数与负数的分界。

(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,如:-(-2)=4,这个时候的a=-2。

π不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数(3)自然数?0和正整数; a >0 ?a 是正数;a <0 ?a 是负数;a≥0?a 是正数或 0?是非负数;a≤0?a 是负数或0?a 是非正数.3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点;②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…(2)、数轴的三要素:原点、正方向、单位长度。

(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

4、相反数(1)、只有符号不同的两个数叫做互为相反数。

①注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;②非零数的相反数的商为-1;③相反数的绝对值相等。

人教版七年级上册数学知识点归纳:第一章有理数

人教版七年级上册数学知识点归纳:第一章有理数

人教版七年级上册数学知识点归纳第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

第1讲 有理数的概念

第1讲 有理数的概念

--------有理数的概念(★)1. 使学生体会具有相反意义的量,并能用有理数表示,掌握有理数的分类;2. 能用数轴上的点表示有理数,理解相反数和绝对值的意义;3. 会求有理数的相反数和绝对值,会利用绝对值的意义解决实际问题。

【课前导入】小明在书上看到,冬日的一天,某地的最高气温为15℃,最低气温达到-12℃,平均气温是0 ℃,这里面的数是什么数?【答案】15是正数 ,-12是负数,0既不是正数也不是负数.随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0. 负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0. 0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.【知识结构】【知识点一:有理数的概念和分类】 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.【例1】 ⑴如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 . ⑷向南走200-米,表示 .【解析】 ⑴5000-元;⑵低于海平面600米的高度;⑶22.7C ︒,20C ︒,21.4C ︒,17C ︒,15.3C ︒;⑷向北走200米.【例2】 珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为 【解析】 0米;海拔高度也称绝对高度,就是某地与海平面的高度差,通常以平均海平面做标准来计算,是表示地面某个地点高出海平面的垂直距离。

人教版七年级数学上册:1.2.1《有理数》说课稿

人教版七年级数学上册:1.2.1《有理数》说课稿

人教版七年级数学上册:1.2.1《有理数》说课稿一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,本节课的内容主要包括有理数的定义、分类及有理数的大小比较。

这部分内容是整个初中数学的基础,对于学生掌握数学知识体系,培养学生的逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了整数和分数的知识,对于数学概念和运算规律有一定的理解。

但学生在学习有理数时,可能会对有理数的分类和大小比较感到困惑。

因此,在教学过程中,要注重引导学生理解和掌握有理数的概念,并通过实例让学生体会有理数在实际生活中的应用。

三. 说教学目标1.知识与技能目标:使学生理解有理数的定义,掌握有理数的分类及大小比较方法。

2.过程与方法目标:通过自主学习、合作探讨,培养学生分析问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。

四. 说教学重难点1.教学重点:有理数的定义、分类及大小比较。

2.教学难点:有理数的大小比较,特别是符号规律的掌握。

五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨、教师讲解相结合的方法。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具。

六. 说教学过程1.导入新课:通过生活中的实际例子,引导学生思考和探讨有理数的概念。

2.自主学习:让学生自主阅读教材,理解有理数的定义和分类。

3.合作探讨:学生分组讨论,总结有理数大小比较的方法。

4.教师讲解:讲解有理数大小比较的符号规律,并通过实例进行分析。

5.练习巩固:布置练习题,让学生独立完成,检验学习效果。

6.课堂小结:总结本节课所学内容,强调重点和难点。

7.课后作业:布置课后作业,巩固所学知识。

七. 说板书设计板书设计如下:1.定义:分数和整数统称为有理数。

2.分类:正有理数、负有理数和零。

3.大小比较:a.正数 > 零 > 负数b.两个正数,绝对值大的较大;c.两个负数,绝对值大的较小。

北京市第四中学七年级数学上册《第一章 有理数》知识讲解 (新版)新人教版

北京市第四中学七年级数学上册《第一章 有理数》知识讲解 (新版)新人教版

《有理数》【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法,有效数字及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有表示某种状态00C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π. (2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作a.(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) .(5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]= 3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律: a+b=b+a; ②乘法交换律:ab=ba;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法1. 科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字.如:0.000 27有两个有效数字:2,7.注意:万=410,亿=108【典型例题】类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【高清课堂:有理数专题复习 357133 概念的理解与应用】【变式】(1)321-的倒数是 ;321-的相反数是 ;321-的绝对值是 . -(-8)的相反数是 ;21-的相反数的倒数是_____ (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min.(4) 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd ____ . (5) 近似数0.4062精确到 位,有 个有效数字;近似数 5.47×105精确到 位,有 个有效数字;近似数3.5万精确到 位,有 个有效数字.(6) 3.4030×105保留两个有效数字是 ,精确到千位是 .【答案】(1)35-; 213; 213;-8;2 (2)降价5.8元,70.2 元;(3)33.7510⨯;(4)3; (5)万分,4;千,3;千,2 (6)3.4×105,3.40×1052. 如果(x-2)2+|y-3|=0,那么(2x-y)2005的值为( ).A .1B .-1C .22006D .32005【思路点拨】利用非负数的性质,求出y ,x 的值再代入计算.【答案】A【解析】 因为(x-2)2,|y-3|都是非负数,且(x-2)2+|y-3|=0, 所以由非负数的性质先求出x=2,y =3的值,代入得: (2x-y)2005=12005=1.【总结升华】偶次方与绝对值都具有非负性.3.在下列两数之间填上适当的不等号: 20052006________20062007. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】 <【解析】法一:作差法 由于20052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯,所以2005200620062007< 法二:倒数比较法:因为2006112007112005200520062006=+>+= 所以2005200620062007< 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.举一反三:【变式】比较大小:(1)199-________0.001; (2)23-________-0.68 【答案】(1)< (2)>类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】4.(1)⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭211143623324 (2)()(.)()-÷⨯-÷-5153151244 ()()()⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭23541324121522 (4).⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1377751112534812863 (5)()⎛⎫----÷- ⎪⎝⎭+--⨯1003221511221132 【答案与解析】(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=- (3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=- (4)原式12561[1(2)1]()233253=+-++-⨯⨯-= (5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等.举一反三:【变式】计算:(1) 11(2)(2)22-⨯÷⨯-; (2)231111312112132442434(0.2)⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 【答案】(1)111(2)(2)(1)(2)(1)2(2)4222-⨯÷⨯-=-÷⨯-=-⨯⨯-= (2)原式3124575512416543415⎛⎫⎛⎫=⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭ 14575524242412540434⎛⎫=-+⨯+⨯-⨯+ ⎪⎝⎭ 12705633012540=-++-+1391211204040=-+= 类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.(3)转化思想:计算:31 35()147⎛⎫-÷- ⎪⎝⎭【答案与解析】(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.所以正确选项为:D(2)因为| x|=5,所以x为-5或5因为|y|=3,所以y为3或-3.当x=5,y=3时,x-y=5-3=2当x=5,y=-3时,x-y=5-(-3)=8当x=-5,y=3时,x-y=-5-3=-8当x=-5,y=-3时,x-y=-5-(-3)=-2故(x-y)的值为±2或±8(3)原式=331 35(7)3577246 14142⎛⎫--⨯-=⨯+⨯=⎪⎝⎭【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”. 举一反三:【变式】若a是有理数,|a|-a能不能是负数?为什么?【答案】当a>0时,|a|-a=a-a=0;当a=0时,|a|-a=0-0=0;当a<0时,|a|-a=-a-a=-2a>0.所以,对于任何有理数a,|a|-a都不会是负数.类型四、规律探索6. (2009·山东聊城)将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】1 200 -【解析】认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1 200 -.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.。

人教版数学七年级上册第一章

人教版数学七年级上册第一章

人教版数学七年级上册第一章
人教版数学七年级上册第一章是《有理数》。

本章主要介绍了有理数的概念、性质和运算。

具体内容包括:
1. 有理数的定义:有理数是可以表示为两个整数的比的数,即形如a/b 的数,其中a、b是整数,且b≠0。

2. 有理数的性质:有理数具有相反数、绝对值、加法和减法等基本性质。

3. 有理数的加减法:介绍了有理数的加法和减法运算法则,包括同号相加、异号相减、绝对值相减等。

4. 有理数的乘法:介绍了有理数的乘法运算法则,包括同号相乘、异号相乘等。

5. 有理数的除法:介绍了有理数的除法运算法则,包括同号相除、异号相除等。

6. 有理数的应用:通过实际问题,介绍了有理数在实际生活中的应用,如计算物品的价格、长度等。

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

2017 √


4
3
√√

-4.9



0

-12 √



探究新知
知识点 2 有理数的分类 你能根据有理数的定义对有理数分类吗?
探究新知
有理数
整数 分数
正整数 零 负整数 正分数
负分数
探究新知
质疑探索 学了有理数的分类后,有没有一些数不是有理数呢? 探究总结
有限小数和无限循环小数都是分数,所以也是有理数. 无限不循环小数(如π)不是分数,就不是有理数.
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
第一章 有理数
1.2 有理数及其大小比较 1.2.1 有理数的概念
学习目标
1. 了解有理数的定义. 2. 会判断一个数是整数还是分数,是正数还是负数. 3. 知道有理数的两种分类方法.
探究新知
知识点 1 有理数的概念 某天毛毛看报纸,见到下面一段内容:冬季的一天,某地 的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而 同一天北京的气温为-3℃~7℃. 问题1:这里面出现的数是什么数? 6,7是正数; -10,-3是负数; 0既不是正数也不是负数.

人教版七年级数学上专题讲座第1讲 有理数五大概念

人教版七年级数学上专题讲座第1讲  有理数五大概念

第一章 有理数 第1讲 有理数五大概念【板块一】正数和负数题型一 正数和负数的意义----表示相反意义的量 【例1】用正负数表示下列各题中具有相反意义的量:(1)足球比赛中,若输2个球记作-2,那么赢3个球记作 ; (2)若规定向东走3米记作+3米,那么向西走5米记作 米; (3)银行若存入3000元记作+3000元,那么从中取出2000元记作 ; (4)负债100元也可以说成是拥有 ; 题型二 判断数的正负【例2】下列各数:0.6,-3,+2,10%,0,-8,-1.2,+23,π,31-,.3.0。

(1)正数有 ; (2)负数有 .【例3】想一想:如果字母a 表示一个有理数,那么“-a ”是正数还是负数呢?题型三 根据数的正负性求值或范围【例4】若a -1表示正数,2a -6表示负数,求整数a 表示的数。

针对练习11.若规定海平面的高度为0米,且规定高出海平面的高度为正,一潜水艇在水面下40米处航行,一条鲨鱼在潜水艇上方10米处游动,用正负数分别表示潜水艇和鲨鱼的高度分别为 , ,鲨鱼比潜水艇高出 米。

2.通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度,已知甲、乙、丙三地的海拔高度分别为+100米、-10米和-80米,下列说法中不正确的是( )A .甲地高出海平面100米B .丙地最低C .乙地比甲地低90米D .乙地比丙地高70米 3.下列各数:+5.9,312-,-7,0,512,8中,正数的个数是( )A .1个B .2个C .3个D .4个 4.大于-4且小于3的所有整数有( )A .3个B .4个C .5个D .6个【板块二】有理数题型一 有理数的概念及分类【例5】将下列数按一定标准分类,再把它们填写在相应集合圈内:0.618,+3.14,2018,10%,0,-8,-1.2,+5,-π,32-分数集负数集整数集题型二 探究数字规律【例6】观察下面一列数:-1,2,-3,4,-5,6,-7,……将这列数排成下列形式: (1)按照上述规律排下去,第9行最右边的数是 ; (2)求第10行从左向右数第10个数;(3)2018这个数十第 行从左往右的第 个数。

七年级数学上册 第一章有理数02

七年级数学上册 第一章有理数02

1.2 有理数 第1课时 有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0, 237, ,-3 , -7.4,5.2…议一议 你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明 我们把所有的这些数统称为有理数.试一试 你能对以上各种类型的数作出一张分类表吗?知识点一有理数 定义: 整数和分数统称有理数A 、 一个有理数不是整数就是分数。

B 、如果一数既不是整数也不是分数,那么它一定不是有理数。

C 、正整数、0、负整数统称整数。

正分数、负分数 统称分数。

1、正整数:既是正数,又是整数的数。

2、负整数:既是负数,又是整数的数3、正分数:既是正数,又是分数的数4、负分数:既是负数,又是分数的数5、非负整数:正整数和06、非正整数 负整数和0例1:在 -3.5, 237,0, π2,0.161616……,有理数共有( )A 、5个B 、4个C 、3个D 、2个 注:不是所有的小数都能化成分数,如无限不循环的小数就不能化成分数,有些数形似分数,但不是分数。

例2 -2019不属于( )A 、有理数B 、整数C 、非负整数D 、负数例3、非负整数集合指的是( )A 、正整数和分数;B 、正整数和分数;C 、0和正整数D 、0、正整数和分数定义:分数:一个物体,一个图形,一个计量单位,都可看作单位“1”。

把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。

百分数与分数的区别(1)意义不同,百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可带单位名称。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

七年级上册第1章有理数1-10有理数的除法新版华东师大版

七年级上册第1章有理数1-10有理数的除法新版华东师大版

都成 对出

感悟新知
知1-讲
特别解读 1. “乘积是1”是判断两个数互为倒数的关键. 2.“互为”表示倒数是两个数之间的一种关系,
单独一个数不能称其为倒数 . 3. 正数的倒数是正数,负数的倒数是负数,0
没有倒数 .
感悟新知
例1 [母题教材P52练习T1 ]求下列各数的倒数:
知1-练
(1)
-4;
知识点 3 分数的化简
知3-讲
1. 实质 分数的化简,即利用有理数除法法则,让分数的 分子除以分母的运算过程 .
感悟新知
知3-讲
2. 分数的符号法则 分数的分子、分母及分数本身的符号,
改变其中任意两个,分数的值不变 .
用字母表示:
---ab
=
-a b
=
a -b
=-
a b
(b

0)
.
3. 分数化简的结果为最简分数或整数 .
=
(-
1
1 4

(-
1
35)
×(-
4)
=

5 4
×85×
4
= - 8.
知4-练
感悟新知
(2)

5 17
×
(-
34)÷

(-
3
25)
解:

5 17
×
(-
34)÷

(-
3
25)
=-
5 17
×
(-
34)
×
19×
(-
157)
=

5 17
×
3 4
×
19×
17 5

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和

人教版七年级上册数学知识点归纳:第一章有理数

人教版七年级上册数学知识点归纳:第一章有理数

人教版七年级上册数学知识点归纳第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a>0 ⇔ a是正数;a<0 ⇔ a是负数;a≥0 ⇔ a是正数或0 ⇔ a是非负数;a≤0 ⇔ a是负数或0 ⇔ a是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

第1讲 有理数基本概念

第1讲  有理数基本概念

第一讲有理数基本概念
1.正数与负数
新课准备:
在我们的这个教室中就有许多数学的应用,我们在一个长约为12米,宽8米的教室里,多数同学都
是13岁,我们班人,占全年级人数的1
3
,我们的讲台宽0.8米,高1.2米…….
[问题1]:在老师刚才的描述中出现了你所熟悉的哪几类数字?你能将以前所学数字进行分类吗?
整数:{ }
分数:{ }
[问题2]:在实际生活中仅有你以前学的数够用吗?请看下面的例子,如何记录其中的数据呢?
⑴温度是零上10℃和零下5℃.⑵收入500元和支出237元.
⑶水位升高1.2米和下降0.7米.⑷买进100辆自行车和买出20辆自行车.新知识:
2.有理数
3.数轴
知识准备:
在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(画图)
新知识:
对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是──数轴.
第一步:画直线定原点
那么从原
归纳:一般地,设a是一个正数,则数轴上表示数a的点在原点与原点距离是a个单位,表示数-a的点在原点的左边,
例6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 有理数的初步认识教学目标1、认识并理解有理数的概念,掌握有理数的分类。

2、掌握数轴,体会数形结合的数学思想方法。

3、掌握绝对值的几何意义,并能实际运用。

知识点1、有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 也可以这样分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 2、规定了原点、正方向、单位长度的直线叫做数轴。

3、如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

4、一个数在数轴上对应点到原点的距离叫做这个数的绝对值,一个数a 的绝对值表示为a ; 一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数。

⎪⎩⎪⎨⎧-≥=0;0;<a a a a a经典例题例1、(认识有理数)把下列各数分别填入相应的括号内: 14.37415%203.101.832215.3,,,,,,,,,,--+-- 整数:{ }分数:{ }负整数:{ }正有理数:{ }举一反三1、最小正整数是:_______;最小自然数是:_______;最大负整数是:_______。

A 、气温升高3°与气温为﹣3°B 、胜二局与负三局C 、盈利3万元与支出3万元D 、甲乙两队篮球比赛比分分别为65:60与60:653、学校对初一学生进行引体向上测试,以7个为标准,超过的个数用正数表示,不足的个数用负数表示,其中8名男生的成绩如下表:(1)求这8名学生达到标准的百分率;(2)这8名学生共做了多少个引体向上?例2、(规律题)观察下面一组数,探索其规律。

,61,51,41,31,21,1--- (1) 请问:第9个数是什么?第2016个数是什么?(2) 如果这一列数无限地排列下去,与哪个数越来越近?举一反三1、观察下列一组数:23,45,67,89,1011,…,它们是按一定规律排列的,那么这一组数的第k 个数是________2、先阅读下列材料,然后解答问题:从A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作,一般地,从m 个元素中选取n 个元素组合,记作:,例:从7个元素中选5个元素,共有种不同的选法, 问题:从某学习小组10人中选取3人参加活动,不同的选法共有多少种?3、有一种二十四点的游戏的游戏,其游戏规则是这样的:任取4个1-13的自然数,将这四个数(每个数只许用一次)进行加、减、乘、除四种运算,使其结果为24.例如,对于1,2,3,4可做运算(1+2+3)×4=24.(1)现有4个有理数3 4 -6 10 ,运用上述规则写出两种不同方法的算式是其结果为24.(2)另有四个有理数3 -5 -6 -13 请列出运算式使其结果等于24.例3、(相反数)已知在数轴上点A表示的数是a,把A点向右移动4个单位,再移动3个单位,此时的点A表示的数和a互为相反数,求a的值。

举一反三1、如图,数轴的单位长度为1,在图上AC之间每两个相邻点之间的距离相等且CD的长度是CE 长度的3倍。

(1)若点H与点E所表示的数是相反数,那么点D表示的数是什么?(2)若点F和点D表示的数是相反数,那么点G表示的数是什么?2、按照要求在数轴上完成点的移动,并说明移动后点表示的数是什么.(1)点A在数轴上表示的数是-2,将A向右移动5个单位,那么A表示的新数是什么?(2)点B在数轴上表示的数是3,将B向右移动5个单位,再向左移动2个单位,点B表示的新数是什么?(3)点C在数轴上,将它向右移动4个单位,再向左移动2个单位,若新位置与原位置到原点的距离相等,那么点C原来表示的数是多少?例4、(绝对值)化简(4)--+的结果为_________________举一反三1、已知2015=x ,2014=y ,且00<,>y x ,求y x +的值。

2、计算:201712018131412131121-++-+-+-3、有关部门检测了编号为A ,B ,C ,D ,E 的5个排球的质量,将超过标准质量的质量数记为正,不足标准质量的质量数记为负,结果如下:A :+5,B :-3.5,C :+0.7,D :-2.5,E :-0.6其中哪个排球的质量最接近标准?作业1、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)2、已知a 的相反数是最小的自然数,b 是自然数中最小的奇数,m 是自然数中除零外最小的偶数,c 是分数,其分子和分母分别是b 和m,求a+b+c 的值?3、用同样规格的黑白两种颜色的正方形瓷砖,按图1-1-5的方式铺地板,则第③个图形中有黑色瓷砖______块,第n 个图形中有黑色瓷砖_________块.4、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A,B 两点的距离为多少?5、若4x -=,则x =__________;若30x -=,则x =__________基础题库1、把下列各数填入所属的括号内:-45,9,375-,0,334,-5.75,0.002,+96,47-,200%,227,2π (1)正数{ };(2)负数{ };(3)分数{ };(4)负分数{ };(5)正整数{ };(6)负整数{ };(7)非负数{ };(8)有理数{ }.2、数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( )A、7 B、3 C、3- D、2-3、已知,3,2,1===c b a 且c b a >>,那么c=___________A 、1个B 、2个C 、3个D 、4个5、下列说法中正确的个数有 ( )①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等A 、1个B 、2个C 、3个D 、4个6、下列说法正确的是( )A 、一个有理数的绝对值一定大于它本身B 、只有正数的绝对值等于它本身C 、负数的绝对值是它的相反数D 、一个数的绝对值是它的相反数,则这个数一定是负数7、绝对值小于π的整数有____________________________________8、2--的倒数是__________9、如果0121=-+-b a ,那么b a +=__________ 10、猜谜语:(1)2、4、6、8、10(打一成语)_____________________;(2)87(打一成语)__________________ 11、已知矿泉水每瓶3元,且3个矿泉水空瓶可以换一瓶矿泉水,现有几个学生带15元钱去买矿泉水喝,他们最多可以喝矿泉水的瓶数为( )A 、5B 、8C 、7D 、612、蜗牛从树根沿着树干往上爬,白天爬上4米,夜间滑下3米,则高10米的数,蜗牛爬到树顶需要( )天A 、10B 、9C 、8D 、713、如图,有A,B,C 三个圆圈,每个圆圈中所包含的数都写在下面的大括号内,请把这些数填入对应的三个圆圈内。

A={-2,-3,-8,6,7}, B={-3,-5,1,2,6}, C={-1,-3,-8,2,5}。

14、小明用棋子摆放图形来研究数的规律。

图①中棋子围成三角形,其颗数3、6、9、12、…称为三角形数。

类似地,图②中的棋子颗数4、8、12、16、…称为正方形数。

下列数中既是三角形数又是正方形数的是( )A 、2010B 、2012C 、2014D 、201615、小红家春天粉刷房间,雇用了5个工人,干了10天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m 2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工30元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择______付钱最合算(最省)培优题库1、若1xx =,则x 是_______(选填“正”或“负”)数;若1xx =-,则x 是_______(选填“正”或“负”)数。

2、下列说法正确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数3、已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.4、已知点A 在数轴上向左移动3个单位长度后,再向右移动5个单位长度得到点B ,已知点B 表示的数为4.5,求点A 表示的数。

5、已知数轴上有A,B两点,且A,B两点之间的距离为1,点A与原点O的距离是3,求所有满足条件的点B与原点O的距离之和。

6、对于任意有理数a,求:(1) |1-a|+5的最小值; (2) 4-|a|的最大值.7、若|3x-5|与|4-2y|互为相反数,求3y-2x的值8、已知数轴上点A在原点的左边,到原点的距离为8个单位长度,点B在原点的右边,从点A到点B,要经过32个单位长度.(1)求A、B两点表示的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C表示的数.9、在数轴上任取一条长度为2 01513个单位长度的线段,则此线段在数轴上最多能盖住的整数点个数为( )A、2 016B、2 015C、2 014D、2 01310、已知在纸面上有一数轴(如图所示)(1)操作一:折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与___表示的点重合;(2)操作二:折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:① 5表示的点与数___表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B 两点表示的数是多少.11、已知数轴上点A 和点B 分别表示互为相反数的两个数b a ,,且b a <,A,B 两点间的距离是44,求b a ,两数。

12、已知数轴上点A 表示7,点B,C 表示互为相反数的两个数,且点C 与点A 间的距离为2,求点B,C 表示的数。

13、如图是一个正方形纸盒的展开图,若在其中3个正方形A,B,C 内分别填入适当的数,使得它折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C 内的三个数依次是( )A 、1,﹣2,0B 、0,﹣2,1C 、﹣2,0,1D 、﹣2,1,014、黑板上有10个有理数,小明说''其中有6个正数'',小红说''其中有6个整数'', 小华说''其中正分数的个数与负分数的个数相等'',小林说''负数的个数不超过3个'', 请你根据四位同学的叙述判断这10个有理数中共有几个负整数。

相关文档
最新文档