复杂管道的水锤计算
隔膜气囊式水锤消除器性能参数计算公式
隔膜气囊式水锤消除器性能参数计算公式一、隔膜气囊式水锤消除器结构图1、法兰2、外壳3、伸缩内胎4、有孔内管5、内六角螺钉二、隔膜气囊式水锤消除器性能参数计算公式(1)总容量:L 单位:升L=π×[(D-20)²- (DN+20)²]×(L1-100)÷(4×1000000)其中:π=3.14D:水锤消除器外壳管径单位:毫米DN:水锤消除器公称通径单位:毫米L1:水锤消除器总长度(减去两端连接法兰厚度)单位:毫米(2)水流脉冲值(大概值):Ps 单位:Kgt/cm³Ps=γ×14其中:γ:流速γ=21.23×Q÷DN² 单位米/秒Q:流量单位升/minDN:水锤消除器公称通径单位:毫米(3)最大冲击压Pb与常压P的关系:Pb/P=(Ps+P)/P其中:Ps:水流脉冲值(大概值)单位:Kgt/cm³(4)水击现象所产生的容量计算:A=(4×1000×λ)÷Q(0.0164L1-t)η其中:λ:容许水击压力(Pm)与常压的比值λ=Pm/P=1.5Q:流量单位升/minL1:水锤消除器总长度(减去两端连接法兰厚度)单位:毫米t:水异类开闭时间 t=0.2秒η:正系数η=0.5以隔膜气囊式水锤消除器DN150为例:(1)总容量:L=3.14×[(D-20)²- (DN+20)²]×(L1-100)÷(4×1000000)=3.14×[(325-20)²- (150+20)²]×(640-100)÷(4×1000000)=27.183(升)其它的性能参数可根据所安装的管道的流量值进行计算,流量与流速成正比关系,流速愈大时则流量愈大。
水电站的水锤与调节保证计算
水管进口
L 压
力 管
水轮机 Hg 主阀
道
水锤前稳定工况(恒定流):
平均流速: V 0
电站静水头: H g
管内水压力: P 0
讨论阀门关闭时的水锤
第一节 水锤现象及传播速度
Hg
Hg
二、水锤及其传播过程 ❖ 0~L/a: 升压波
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
❖ 应满足的前提条件:水管的材料、管壁厚度、直径 沿管长不变。
❖ 水击连锁方程用相对值来表示为:
tAtD t2(vtAvtD t)
tD tA t 2(v tD v tA t)
二、水锤的连锁方程
D
Lat
❖ 若已知断面A在时刻 t 的压力为HtA,流速为VtA ,两个通 解消去 f 后,得:
H tAH gc g(V tAV 0)2F(ta x)
❖ 同理可写出时刻Δt=L/a后D点的压力和流速的关系:
H tD t H g c g (V tD t V 0 ) 2 F (t tx aL )
D0 —管 道 内 径m, E —管 道 的 材 料 弹 性 (材不料同, 取 值 不 同 ) t —管 壁 厚 度m,
四、研究水锤的目的
(一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管空蚀,水轮机运行
时产生振动;出现严重的抬机现象 (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算的目的
水锤和机组转速变化的计算,一般称为调节保证 计算。
水锤泵计算公式
水锤泵计算公式
水锤泵计算公式是根据水锤现象以及流体力学原理推导得出的。
水锤现象是指在流体中运动的突然停止或改变方向时,流体产生的压力冲击波导致系统内部产生振荡和压力变化的现象。
在水锤泵系统中,假设管道长度为L,对应的传递时间是t,水锤泵的流量Q,开关阀门的关闭时间为Tc,管道内径为d,管道内壁摩擦阻力系数为f,根据水锤泵系统的计算公式可以得出:
1.水锤泵系统的流速:
v = Q / (π * d^2 / 4)
2.水锤泵系统的传递时间:
t = L / v
3.水锤泵系统的惯性力:
F = (Q * v) / g
4.水锤泵系统的水锤压力:
P = F / (π * d / 2)^2
5.水锤泵系统的水锤冲击压力:
Pc = P * (1 + f)
6.水锤泵系统的关闭时间:
Tc = t + (2 * d * f) / v
这些公式可以帮助工程师和设计师计算水锤泵系统中各种参数的数值,以便合理设计和优化系统结构,避免水锤现象对系统造成的损坏和压力波动。
在实际应用中,可以根据具体情况适当拓展和修正这些公式,考虑更多因素的影响,如管道材料的弹性系数、阻流器的阻尼效果等。
对于水力系统中的水锤问题,还可以利用数值模拟方法,通过计算流体动力学软件模拟流体的运动和压力变化,进一步优化系统设计和运行参数,使得系统更加稳定和可靠。
南水北调配套工程有压输水管道水锤计算及防护措施
Science and Technology &Innovation ┃科技与创新2017年第19期·13·文章编号:2095-6835(2017)19-0013-03南水北调配套工程有压输水管道水锤计算及防护措施韩李明(河北省水利水电勘测设计研究院,天津300250)摘要:河北省南水北调配套工程水厂以上输水管道工程中大量采用了管道、暗涵等作为输水方式,输水距离从几百米到上百千米不等,水锤分析难度大、防护措施复杂。
以配套工程某设计单元为例,基于Bentley -Hammer 软件建立了长距离有压输水管道水锤计算模型,将管道末端的阀门关闭时长作为控制条件进行水锤数值模拟。
计算结果表明,通过合理地延长阀门关闭的时长能够有效地减小水锤压力。
结合计算分析结果,提出了通过优化管道纵断布置和合理布置进排气设施来减少水锤压力的防护措施,并对管道的运行调度作了相应的要求,为南水北调配套工程其他管线工程提供了相应的参考。
关键词:长距离输水;有压管道;水锤计算;防护措施中图分类号:TV68文献标识码:ADOI :10.15913/ki.kjycx.2017.19.0131工程概况河北省南水北调配套工程引水水源为南水北调中线河北段,供水范围包括京津以南的邯郸、邢台、石家庄、保定、廊坊、衡水、沧州7个设区市、92个县(市、区)、26个工业园区。
配套工程建设分为4条大型输水干渠和7个地市水厂以上输水管道工程,主要建设内容包括:新建改造石津干渠、廊涿干渠、保沧干渠、邢清干渠4条大型输水干渠,新建邯郸、邢台、石家庄、保定、廊坊、沧州、衡水7个设区市境内从干渠到各供水目标的输水管道,输水形式除石津干渠利用部分原有渠道外全部为管道、暗涵。
配套工程某设计单元输水管道工程采用有压重力输水,进口设计水位为73.5m ,沿线共设5个供水目标,设计供水能力为3.76m 3/s ,各目标供水流量为0.61m 3/s 、2.18m 3/s 、0.305m 3/s 、0.305m 3/s 和0.36m 3/s 。
矿井排水中水锤现象分析计算及解决办法
矿井排水中水锤现象分析计算及解决办法【摘要】水锤现象在矿井排水中十分常见,如果不及时防治,会对排水管路造成很严重的破坏,致使管道变形、破裂、泄水,给矿井安全带来隐患和威胁。
文章分析了水锤的成因及计算方法,提出了几点解决方案。
【关键词】停泵水锤;成因;特点;危害;计算;防治1.水锤的成因及危害液体流经管路时具有动能,当液体突然停止时,它的运动量必须被消除,能量变成由停止点开始的高压波,它以接近于声速的速度沿着管路系统来回传递。
排水管内液体膨胀并撞击管路,有时震裂管路,伴随着很大的声音,在很短的时间内,流体原来的能量消耗在摩擦和涡流上,但是管路系统却经常在这一时间受到破坏。
水锤是如何产生的?在操作中开关闸阀,启停水泵都会造成水流速度发生急剧变化而产生水力冲击,形成水锤,另外运行中的水泵动力突然中断停泵也会造成水锤现象,尤其在泵组排水能力大、地形起伏高差大、输水管线长或用户要求较高的工作压力的情况下,一旦操作失误或电网跳闸等,就会造成水泵机组突然断电而停泵,这时产生的水锤称为停泵水锤。
在所发生的水锤中,以停泵水锤造成的危害为最大,一般可以达到正常压力的一到四倍甚至更大,致使管路破裂而大量泄水,淹没泵房和设备。
2.停泵水锤的计算原理停泵水锤的计算有多种方法:图解法、数解法和电算法。
其基本原理是按照弹性水柱理论,建立水锤过程的运动方程和连续方程,这两个方程是双曲线族偏微分方程。
运动方程式为:连续方程式为:式中:H ——管中某点的水头V——管内流速a——水锤波传播速度x——管路中某点坐标g——重力加速度t——时间f——管路摩阻系数D——管径通过简化求解得到水锤分析计算的最重要的基础方程:H-H0=F(t-x/a)+F(t+x/a)(3)V-V0=g/a×F(t-x/a)-g/a×F(t+x/a)(4)式中:F(t-x/a)——直接波F(t+x/a)——反射波在波动学中,直接波和反射波的传播在坐标轴(H,V)中的表现形式为射线,即特征线。
10、水锤计算
第九章水电站的水锤及调节保证计算第一节概述 (1)一、水电站的不稳定工况 (1)二、调节保证计算的任务 (2)第二节水锤现象及其传播速度 (2)一、水锤现象 (2)第三节水锤基本方程及边界条件 (3)一、水锤基本方程 (3)第四节简单管水锤的解析计算 (6)一、直接水锤和间接水锤 (7)二、计算水管末端各相水锤压力的公式 (7)第五节复杂管道水锤计算 (15)一、串联管水锤的简化计算 (15)二、分岔管的水锤压力计算 (16)三、蜗壳、尾水管水锤压力计算 (17)第六节机组转速变化计算 (18)第七节调节保证计算标准和改善调节保证的措施 (19)本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
水锤计算方法
第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。
在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。
此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。
由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。
丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。
反之增加负荷时机组转速降低。
(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。
导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
无压引水系统中产生的水位波动计算在第八章已介绍。
二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。
调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。
水锤现象及过程
《水力学》这门课程告诉我们,当压力管道末端的流量发生变化时,管道内将出现非恒定流现象,其特点是随着流速的改变压强有较显著的变化,这种现象称为水锤(亦称水击)。
图14-1为一压力管道的示意图。管道末端有一节流阀A;阀门全开时管道中的恒定流速为Vo,若忽略水头损失,管末水头为Ho ,管道直径为do,水的密度为ρo。
当阀门突然关闭(关闭时间=0)后,阀门处的流速为零,管道中的水体由于惯性作用,仍以流速Vo流向阀门,首先使靠近阀门dx长的一段水体受到压缩,如图14-1(a),在该段长度内,流速减为零,水头增至Ho +△H,水的密度增至ρo+△ρ,管径增至do +△d。由于dx上游水体未受到阀门关闭的影响,仍以流速Vo流向下游,使靠近dx上游的另一段水体又受到压缩,其结果使流速、压强、水的密度和管径变化与dx段相同。这样,整个压力管道中的水体便逐步被压缩。水头变化△H称水锤压强,其前峰的传播速度c称水锤波速。
B点的反射波以速度c向下游传播,反射波所到之处,消除了升压波的影响,使管道中水的压强、密度和管径都恢复到初始状态,但流速方向与初始状态相反,见图14-1(b)。
当t=2L/c时,管道中的压强虽恢复正常,但其中的水体仍以流速Vo向上游流动,由于阀门是关闭的,要求流速为零,故此向上游的流速Vo必然在阀门处引起一个压降△H,可以看出,水库反射波在阀门处再一次发生反射,其数值和符号均不变,即降压波仍反射为降压波,故A点的射波仍以速度Vo向上游传播,所到之处,管道内压强降为Ho-△H,管径减为do-△d,水的密度变为Po-△P,流速变为零,如图14-1(c)所示。
当t=3L/c时,阀门的反射波到达B点,B点右边管道中的压强比左边水库低△H,压强仍不能平衡,水库中的水体必然以流速Vo挤人水管,使水管的压强逐步恢复正常,如图14-1 (d)。可见,水库将阀门反射回来的降压波又反射成升压波,以速度c传播回去,其值仍为△H,这是符合水库的“异号等值”反射规律的。
第十四章 水电站的水锤
第十四章水电站的水锤第一节水锤现象和研究水锤的目的一、水锤现象《水力学》这门课程告诉我们,当压力管道末端的流量发生变化时,管道内将出现非恒定流现象,其特点是随着流速的改变压强有较显著的变化,这种现象称为水锤(亦称水击)。
图14-1为一压力管道的示意图。
管道末端有一节流阀A;阀门全开时管道中的恒定流速为Vo,若忽略水头损失,管末水头为Ho ,管道直径为do,水的密度为ρo。
当阀门突然关闭(关闭时间=0)后,阀门处的流速为零,管道中的水体由于惯性作用,仍以流速Vo 流向阀门,首先使靠近阀门dx长的一段水体受到压缩,如图14-1(a),在该段长度内,流速减为零,水头增至Ho +△H,水的密度增至ρo+△ρ,管径增至do +△d。
由于dx上游水体未受到阀门关闭的影响,仍以流速Vo流向下游,使靠近dx上游的另一段水体又受到压缩,其结果使流速、压强、水的密度和管径变化与dx段相同。
这样,整个压力管道中的水体便逐步被压缩。
水头变化△H称水锤压强,其前峰的传播速度c称水锤波速。
当时间t=L/c(L为管长)时,水锤波传到B点。
B点的左边为水库,压强不变,右边的压强比左边高△H,不能平衡,管道中的水体被挤向水库,其流速为Vo,使管道进口的压强恢复到初始状态Ho ,水的密度和管径也恢复到初始状态ρo和do.可以看出,水锤波在B点发生了反射,反射波的绝对值与入射波相同,均为△H,但符号相反,即由升压波反射为降压波,故B点的反射规律为异号等值反射,这是水库对水锤波反射的特点。
B点的反射波以速度c向下游传播,反射波所到之处,消除了升压波的影响,使管道中水的压强、密度和管径都恢复到初始状态,但流速方向与初始状态相反,见图14-1(b)。
当t=2L/c时,管道中的压强虽恢复正常,但其中的水体仍以流速Vo向上游流动,由于阀门是关闭的,要求流速为零,故此向上游的流速Vo必然在阀门处引起一个压降△H,可以看出,水库反射波在阀门处再一次发生反射,其数值和符号均不变,即降压波仍反射为降压波,故A点的反射规律为同号等值反射,这是阀门完全关闭状态下的反射特点。
第三节水锤计算的解析法
第三节水锤计算的解析法-CAL-FENGHAI.-(YICAI)-Company One1第三节水锤计算的解析法一、直接水锤和间接水锤(一)直接水锤若水轮机开度的调节时间≤ 2L/c,则在水库反射波到达水管末端之前开度变化已经结束,水管末端只受因开度变化直接引起的水锤波的影响,这种现象习惯上称为直接水锤。
由于水管末端未受水库反射波的影响,故基本方程式(14-5)和式(14-6)中的函数f(t-x/c),用以上二式消去F(t+x/c)的直接水锤公式从式(14-13)可以看出,当开度关闭时,管内流速减小,括号内为负值,△H为正,发生正水锤,反之,当开启时,△H为负,发生负水锤。
直接水锤的压强界与流速变(V -Vo )和水管特性(反映在波速c 中)有关,而与开度的变化速度、变化规律和水管长度无关。
若管道中的初始流速Vo=5m/s,波速c=1000m/s,在丢弃全负荷时若发生直接水锤,△H将达510m,因此在水电站中直接水锤是应当绝对避免的。
(二)间接水锤若水轮机开度的调节时间>2L/c,则在开度变化终了之前水管进口的反射波已经到达水管末端,此反射波在水管末端将发生再反射,因此水管末端的水锤压强是由向上游传播的水锤波F和反回水管本端的水锤波f叠加的结果,这种水锤现象习惯上称为间接水锤。
显然,间接水锤的计算要比直接水锤复杂得多。
间接水锤是水电站中经常发生的水锤现象,也是我们要研究的主要对象。
二、水锤的连锁方程利用基本方程求解水锤问题,必须利用已知的初始条件和边界条件。
初始条件是水轮机开度未发生变化时的情况,此时管道中为恒定流,压强和流速都是已知的。
对于图14-1的简单管,边界条件是利用A、B两点。
B点的压强为常数,令ζ=△H/Ho,则=0,水锤波在B点发生异号等值反射。
A点的边界条件较为复杂,决定于节流机构的出流规律。
从《水力学》中我们知道水斗式水轮机喷嘴的边界条件可表达为式中v-管道中的相对流速,V=V/Vmax., V为管道中任意时刻的流速,Vmax为最大流速;τ-喷嘴的相对开度,, w为喷嘴任意时刻的过水面积,为最大面积;ζ-水锤相对压强,ζ=(H-Ho)/Ho,H为管末任意时刻的压力水头,Ho为初始水头。
消防水锤计算及安装及标准
3.4 缓冲气压腔容积 volume of cushioning air pressure chamber 根据吸纳器结构的不同,分别定义为: a)活塞式吸纳器:活塞于进口端位置时,活塞与壳体所围成的密封腔容积;
载:
利用软件计算普通钢管在不同流量的水锤(MPa)
5L/S
10 L/S 15 L/S 20 L/S 25 L/S 30 L/S
40 L/S
DN100
0.74
1.47
——
DN125
——
——
——
2.10
2.62
——
——
DN150
——
——
——
——
——
2.20
2.93
注:因取值管道壁厚不同等原因,水锤计算值略有差异,影响不大
三、水锤的消除及水锤消除器的安装:
1.按照消规 5.5.11 停泵水锤消除装置应装设在消防水泵出水总管
上,以及消防给水系统管网其他适当的位置.
这条的意思,不用一台泵设一套水锤?其他适当位置是什么地方?
8.3.3 消防水泵出水管上的止回阀宜采用水锤消除止回阀,当消防水
泵供水高度超过 24m 时,应采用水锤消除器。当消防水泵出水管上设
功能:水锤吸纳器能有效的防止水锤、缓冲水击波的瞬间压力, 从而保护水泵、管路不被破坏,给用户带来安全和宁静。
产品结构简单,安装维修方便。 性能稳定、动作灵敏,能有效地、快速地消除运行管道中的噪 音和振动。 在水泵管路各种工况下,均可有效地消除不规则的水击波震 荡。 耐压能力强,能承受高压水锤波的冲击。 采用全不锈钢制作,抗腐蚀,使用寿命长。
中南电力设计院水锤(水击)与汽锤的图解法
中国电力规划协会2005年热机专业技术交流会水锤(水击)与汽锤计算图解法中南电力设计院徐传海程锋2005.11.水锤(水击)与汽锤计算图解法【提要】在介绍水锤现象的基础上,提出水锤计算图解法及防止水锤破坏管道的措施,并将水锤计算图解法用于汽锤计算。
图解法简单实用。
用图解法计算汽锤时发现离关闭阀门较远管段的汽锤不平衡波压是时程分析法(临界长度法)的两倍,说明时程分析法的安全性较差;同时也发现用Pipenet 软件商推荐的延长管段替代锅炉法计算汽锤不尽合理,建议将锅炉视为一个容量较大的定压容器。
【关键字】水锤计算 汽锤计算 图解法1 前言我们知道,当管道中的阀门突然关闭时,管内流动的水会发生水锤(水击)现象,管内流动的蒸汽会发生汽锤现象,即水流速度或汽流速度发生突变使管内的水压或汽压先突升形成压缩波、后突降形成膨胀波(通称压强波),并重复下去,一直衰减至稳定的压力。
在阀门突然关闭的过程中,水压与汽压突然变化的微分式是相同的,其微分式如下: dP=ρcdv (1-1) 这里,dP —压强的微分,Pa ;ρ—介质的密度,kg/m 3;c —压强波在管内介质(水或蒸汽)中的传播速度,m/s ;dv —水流速度或蒸汽流动速度的微分,m/s 。
水锤和汽锤主要差别是前者水流速度远小于压强波在水管中的传播速度,可以忽略水流速度的影响,后者蒸汽流动速度通常只比压强波在蒸汽管道中的传播速度低一个数量级,理论上需要考虑蒸汽流动速度的影响。
因此,水锤和汽锤的计算有相同之处,下面先从水锤着手进行探索。
2 水锤2.1水锤现象描述下面以连接在水池上的排水管道为例分析水锤的全过程[1]。
假设水管的长度为l ,直径为d ,截面积为A ,管内水的正常流速为v ,忽略摩擦损失,但考虑水的可压缩性和管道的变形。
当水管末端的阀门突然关闭时(t=0),首先,紧贴阀门上游的一层流体,由于受阀门所阻,流速突变为零,而这层流体受后面流来的未变流速的流体的压缩,其压强突增了P h (称为水锤压强),静水头由高度H 突变为H+h ;管道受压变形,截面积扩大了δA 。
长距离输水管水锤计算实例 汤凯琳
长距离输水管水锤计算实例汤凯琳发表时间:2019-06-20T10:20:57.667Z 来源:《基层建设》2019年第8期作者:汤凯琳[导读] 摘要:通过工程实例对大口径,长距离输水管道水锤计算及水锤消除措施进行分析。
广西壮族自治区水利电力勘测设计研究院广西南宁 530000摘要:通过工程实例对大口径,长距离输水管道水锤计算及水锤消除措施进行分析。
关键词:长距离输水管道;水锤计算;阀门设置1、前言水锤:由于外界原因(如阀门突然关闭,水泵机组突然停车),使压力管道中水流速剧烈变化,从而在管路中产生一系列急骤的压力交替变化的水利撞击现象称为水锤现象。
水锤效应有极大的破坏性:当压力过高时造成管道破裂,压力过低(负压)时造成管道瘪塌,还会损坏阀门和固定件。
根据《城镇供水长距离输水管(渠)道工程技术规程》(CECS 193:2005)需对大型长距离输水管线工程进行水锤分析和防护设计。
水锤防护控制标准:①最大压力控制标准:根据《城镇供水长距离输水管(渠)道工程技术规程》(CECS 193:2005)6.1.4 条“水锤防护措施设计应保证输水管道最大水锤压力不超过1.3 ~1.5 倍最大工作压力”。
②最小压力控制标准:根据《城镇供水长距离输水管(渠)道工程技术规程》(CECS 193:2005),对管线负压值没有做出明确数值规定,但是在第6.3.2 条第3点提出:“在突然停泵过程中输水管道出现负压的部分,宜采取消除负压措施及其效果计算”。
下面以北海备用水源为例,简单分析城镇供水大口径长距离输水管水锤分析及计算。
2、工程概况北海备用水源工程,水源为北海市合浦县洪潮江水库滚水坝水域,水库死水位为21.13m,取水口底高程为19.75m,供水至北海市北郊水厂,管道直接接入水厂絮凝反应沉淀池。
该工程日供水量为16.5万m3/d,输水线路总长32.12km,输水管道采用2根管径为DN1200的球墨铸铁管。
输水线路整体呈两端高中间低,最低点高程约3m,沿线地势比较平缓。
第三节水锤计算的解析法
第三节水锤计算的解析法一、直接水锤和间接水锤(一)直接水锤若水轮机开度的调节时间≤ 2L/c,则在水库反射波到达水管末端之前开度变化已经结束,水管末端只受因开度变化直接引起的水锤波的影响,这种现象习惯上称为直接水锤。
由于水管末端未受水库反射波的影响,故基本方程式(14-5)和式(14-6)中的函数f(t-x/c),用以上二式消去F(t+x/c)的直接水锤公式从式(14-13)可以看出,当开度关闭时,管内流速减小,括号内为负值,△H为正,发生正水锤,反之,当开启时,△H为负,发生负水锤。
直接水锤的压强界与流速变(V -Vo )和水管特性(反映在波速c中)有关,而与开度的变化速度、变化规律和水管长度无关。
若管道中的初始流速Vo=5m/s,波速c=1000m/s,在丢弃全负荷时若发生直接水锤,△H将达510m,因此在水电站中直接水锤是应当绝对避免的。
(二)间接水锤若水轮机开度的调节时间>2L/c,则在开度变化终了之前水管进口的反射波已经到达水管末端,此反射波在水管末端将发生再反射,因此水管末端的水锤压强是由向上游传播的水锤波F和反回水管本端的水锤波f叠加的结果,这种水锤现象习惯上称为间接水锤。
显然,间接水锤的计算要比直接水锤复杂得多。
间接水锤是水电站中经常发生的水锤现象,也是我们要研究的主要对象。
二、水锤的连锁方程利用基本方程求解水锤问题,必须利用已知的初始条件和边界条件。
初始条件是水轮机开度未发生变化时的情况,此时管道中为恒定流,压强和流速都是已知的。
对于图14-1的简单管,边界条件是利用A、B两点。
B点的压强为常数,令ζ=△H/Ho,则=0,水锤波在B点发生异号等值反射。
A点的边界条件较为复杂,决定于节流机构的出流规律。
从《水力学》中我们知道水斗式水轮机喷嘴的边界条件可表达为式中v-管道中的相对流速,V=V/Vmax., V为管道中任意时刻的流速,Vmax为最大流速;τ-喷嘴的相对开度,, w为喷嘴任意时刻的过水面积,为最大面积;ζ-水锤相对压强,ζ=(H-Ho)/Ho,H为管末任意时刻的压力水头,Ho为初始水头。
水锤分析计算和防护措施
浅析水锤分析计算和防护措施摘要:在水泵正常运行时,如果突然断电,在供水管道中将形成大于水泵正常工作压力数倍的水锤压力,造成水泵和供水管道破坏。
采用特征线法对取水泵站进行了水锤分析。
计算结果表明:水锤压力较大,影响水泵及管路的安全稳定运行。
本文主要对水锤产生的原因、危害及一些常见的防护措施进行了介绍。
关键词:水锤;水柱脱流;水锤防护一、水锤现象水锤现象在压力管路中,由于流体的流速剧烈变化而引起一系列急骤地压力交替升降的水力撞击现象,称为水锤(水击)现象,也称水力瞬变。
目前,国内外普遍将压力输水管路中所发生的各种水锤现象,通称为输水管路的水力过渡过程。
管路中发生水锤现象时,随着压力的交替升降,液体分子质点将相应地呈现密疏状态交替变化,这种变化以纵波形式沿管路往复传播,因此水锤现象是一种波动。
在有压管路中,由于流速的剧烈变化和水流的惯性而引起一系列急骤的压力变化和密度变化。
它们的综合作用结果,在物理现象上表现为快速传播的水锤波动。
水锤波动全过程包括压力波的产生、传播、反射、干涉以及消失的整个物理过程。
水锤的传播只限于连续的水流中,当管路中出现水柱分离时,水锤波的传播受到影响,将会引起更加复杂的物理过程。
引起水锤的主要原因有:1)启泵、停泵、启闭阀门或改变水泵转速、叶片角度调节流量时;尤其在迅速操作,水流速度发生急剧变化的情况下。
2)事故停泵,即运行中的水泵动力突然中断时,较多是由于配电系统故障、误操作、雷击等情况下的突然停泵。
图1-1 供水系统水锤过程线图二、水锤的危害长距离高扬程输水工程中,水锤事故的发生是较为普遍的现象,尤其是管线高差起伏较大、地形复杂的工程。
事故产生的实例也是多种多样的,例如,水电站内因关闭水轮机导叶时操作失误,而造成压力管内水压上升;泵站系统中,因断电或其他原因而使水泵突然停泵,压水管内的压力在下降之后又产生不同程度的压力上升,导致停泵水锤。
水锤事故都会造成不同程度的灾害,轻则造成水管破裂(即爆管),致使供水中断,影响正常的生产生活;重则造成淹毁泵站、泵船沉没等严重后果。
水锤综合虚拟仿真实验总结
水锤综合虚拟仿真实验总结一、介绍水锤现象是指当液流在管道中发生突然阻塞解除时,产生的压力冲击现象。
在工程实践中,水锤问题可能导致管道或设备的损坏,因此对水锤现象进行研究和仿真实验非常重要。
本文总结了水锤综合虚拟仿真实验的相关内容。
二、水锤综合虚拟仿真实验概述水锤综合虚拟仿真实验是一种通过计算机模拟的方式,对水流运动和水锤现象进行研究的方法。
该方法可以有效地模拟管道系统中复杂的水流动态。
2.1 实验目的水锤综合虚拟仿真实验的主要目的是研究管道系统中水锤现象的发生机理,并提供相应的防控措施。
通过仿真实验可以对不同条件下水锤的影响进行评估,为工程设计提供参考依据。
2.2 实验内容水锤综合虚拟仿真实验包括以下内容: 1. 建立管道系统的几何模型; 2. 设置初始条件,包括水流速度、液体密度等参数; 3. 应用数值方法,对管道系统中的水流进行模拟计算; 4. 监测和记录模拟计算过程中的重要参数变化; 5. 分析和评估水锤现象的发生机理和影响; 6. 提出防控措施,减少或避免水锤现象的发生。
三、水锤综合虚拟仿真实验步骤水锤综合虚拟仿真实验主要包括以下步骤:3.1 管道系统建模首先需要根据实际工程情况,建立管道系统的几何模型。
可以使用计算机辅助设计软件进行三维建模,包括管道的长度、直径等参数。
3.2 设置初始条件在仿真实验中,需要设置初始条件,包括水流速度、液体密度、管道材料等参数。
这些参数将影响水锤现象的发生和发展过程。
3.3 模拟计算通过应用数值方法,模拟计算管道系统中的水流运动过程。
可以使用计算流体力学(CFD)软件进行模拟计算,如FLUENT等。
3.4 监测和记录参数变化在模拟计算过程中,需要实时监测和记录重要参数的变化,如水压、流速等。
这些参数的变化将反映水锤现象的发生和发展情况。
3.5 分析和评估结果通过分析和评估模拟计算的结果,可以了解水锤现象的发生机理和影响。
可以绘制曲线图、散点图等方式展示结果。
停泵水锤的计算原理
停泵水锤的计算原理停泵水锤的计算原理水泵是用于将水或其他液体从低处输送到高处,或从远处输送到近处的机械设备。
水泵系统由许多不同的部件组成,其中一个重要的部分就是阀门。
阀门的作用是控制水流的流量和方向。
在某些情况下,当阀门突然关闭时,会产生一种称为“水锤”的现象。
水锤是由于突然停止水流而导致的一种瞬间峰值压力。
当水的流动速度被迅速减缓时,水流中的动能会被转化为静能,导致水压突然增加,形成了水锤效应。
这种过度压力可以使管道破裂,阀门关闭,压力表爆炸等,因此需要采取措施来减少或消除水锤。
为了避免水锤,我们需要计算水锤的产生和消除所需的时间,并采取相应的措施。
通过计算,我们可以确定水锤的大小和持续时间,进而采取防止水锤的措施。
水锤计算原理:1. 计算水锤压力:水锤压力的计算是防止水锤的主要措施。
水锤的压力取决于如下因素:- 关闭阀门的速度- 管道长度和直径- 管道内水的流速- 阀门的尺寸和类型- 水的密度和粘度2. 计算水锤时间水锤的时间取决于以下因素:- 关闭阀门的速度- 管道长度和直径- 管道内水的流速- 阀门的尺寸和类型3. 计算水锤产生的力水锤产生的力可以用以下公式计算:F = ΔP × A其中,F是水锤产生的力;ΔP是水锤产生的压力;A是阀门的内径。
4. 采取措施为了避免水锤,可以采取以下措施:- 安装减压阀:通过降低压力来减少水锤效应。
- 安装吸声器:吸收水锤的能量,减少其压力。
- 增加开关阀门速度:减少水锤的产生时间。
- 使用防水锤措施:使用相应的水平面处理装置防止水流势能产生水锤效应。
- 更换阀门类型:更换可控制水流速度的阀门来降低水锤效应。
总结:水锤是由于阀门关闭后产生的瞬间压力峰值,当水流中的动能被迅速转化为静能时产生。
为了减少或消除水锤,需要计算水锤的大小和持续时间,并采取相应的措施。
采取措施的方法包括安装减压阀,安装吸声器,增加开关阀门速度,使用防水锤措施和更换阀门类型等。
水锤效应 计算公式
水锤效应计算公式水锤效应计算公式。
水锤效应是指在管道系统中由于液体流动突然停止或改变方向而产生的压力波动现象。
这种现象可能会对管道系统造成严重的损坏,因此对水锤效应进行计算和控制至关重要。
本文将介绍水锤效应的计算公式,并讨论如何有效地控制水锤效应。
水锤效应的计算公式可以通过水锤方程来表示。
水锤方程描述了液体在管道中运动时的压力变化情况。
水锤方程的一般形式如下:ΔP = ρ V ΔV。
其中,ΔP表示压力变化,ρ表示液体的密度,V表示流速,ΔV表示流速的变化。
根据水锤方程,当液体的流速突然改变时,会产生压力波动,从而导致水锤效应的发生。
为了更好地理解水锤效应的计算公式,我们可以通过一个实际的例子来说明。
假设有一条长为100米的水平管道,管道内的水流速为10m/s。
如果突然关闭了管道的阀门,导致水流速瞬间降为0,那么根据水锤方程,可以计算出压力的变化。
假设水的密度为1000kg/m³,那么根据水锤方程,压力变化ΔP可以计算如下:ΔP = 1000 10 10 = 100000Pa。
这意味着在管道中会产生10万帕的压力波动,这种压力波动可能会对管道系统造成严重的损坏。
为了有效地控制水锤效应,我们可以采取一些措施。
首先,可以通过合理设计管道系统来减小水锤效应的发生。
例如,可以在管道系统中设置缓冲器或减压阀来减缓压力波动的影响。
其次,可以通过控制阀门的开启和关闭速度来减小水锤效应的发生。
此外,还可以通过改变管道的设计参数,如管道的直径和材质等,来减小水锤效应的影响。
除了以上措施外,还可以通过数值模拟和实验研究来进一步探讨水锤效应的计算和控制。
通过数值模拟,可以对管道系统中水锤效应的发生进行模拟和预测,从而找到合适的控制方法。
通过实验研究,可以验证水锤效应的计算公式,并找到更加有效的控制方法。
总之,水锤效应的计算公式可以通过水锤方程来表示,通过对水锤方程的计算,可以预测和控制管道系统中水锤效应的发生。
长距离输水管道出现水锤现象的原因及解决对策研究
892023年4月上 第07期 总第403期工程设计施工与管理China Science & Technology Overview0.引言根据工程实际地形情况,一般情况下,长距离输水管线输水方式可选择重力流和泵送流两种。
通常在工程条件允许的情况下优先选择重力流输水方式。
但当管线上的阀门关闭操作不当或出现水锤造成爆管事故。
泵送流输水方式是通过泵站加压的方式输水,此类管线运行涉及水泵加压,事故停泵时导致水锤波叠加引发重大爆管事故。
因此,大口径重力流、泵送流混合的长距离输水管线更为复杂,一旦产生水锤现象引发爆管事故,将导致全线停运中断供水,且抢修工作困难,抢修周期长,会带来重大损失。
为预防爆管事故的发生,需有针对性地做好防护措施,因此管道薄弱段分析研究至关重要。
文章以某大口径重力泵送流混合长距离输水做为供水企业应保证安全、优质、经济的水源服务于用水户。
在城市化发展的过程中,城市人口数量激增,对城市供水系统施加不小的压力。
在此过程中,爆管现象逐渐增多,无法满足城市居民对水资源的使用需求,也造成严重的水资源浪费问题。
因此,当下有必要深入分析城市管道工程的水锤现象,掌握水锤现象出现的原因,在此基础上选择预防与控制方法。
1.水锤现象出现原因分析水锤现象主要诱因为水流在管道内流速出现巨大变化所致,水流拥有可压缩性与惯性,如果水流在运动中流速出现较大变化,对水体总量形成影响,导致水体总量在短时间内急剧变化,变化部分产生的动能冲击输水管内壁,致使输水管路形状发生变化。
水锤拥有较强的破坏力,就目前输水管材质对外力的承受能力,难以抵消水锤产生的力,破坏输水管结构,为工程埋下较大的隐患。
对于长距离输水工程,需要考虑水锤现场,提前选择防御方法,消除水锤压力,保护输水管,其为输水工程稳定、安全运行的重要保障。
经过统计长距离输水工程出现水锤现象的概率较大,施工单位有必要加强对水锤预防工作的重视程度,需要改变传统观念,基于工程数据进行安全设计,确保输水管工程安全、可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.5.2 分岔管的水锤
第9章 水电站的水锤与调节保证
9.4
节点、计算断面的选取。
计算未知。
所需添加的边界方程:流量之和为零,水头相等。
简化计算:合支法。
第9章 水电站的水锤与调节保证
9.1
第9章 水电站的水锤与调节保证
Water hammer in hydropower stations
第9章 水电站的水锤与调节保证
9.2
9.5 复杂管道的水锤计算
考虑简单管道以外的串联管道和分岔管道。
9.5.1 串联管的水锤
1 、等价当量管等价原则 水锤最大控制值不发生变化(目的) 水体长度相同,动能相同,相长相同(条件)
L li
ce
L li / ci
Ae
L li / Ai
第9章 水电站的水锤与调节保证
9.3
2、 公共积分步长的选取 管段分段长度与积分时间步长满足特征线方程
x / t ci
采用相同的积分步长(最大公约数y)
li ci
ni y
li ni ci
y x ci
y t
y
波速调整方法与原则: 可降低10%, 为保证最大公约数不太小,可针对短管