人教版九年级数学二次函数应用题(含答案)

合集下载

人教版九年级数学二次函数应用题(含答案)

人教版九年级数学二次函数应用题(含答案)
29.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元,已知
(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;
(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元?
30.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).
(2)分析两种方案,为了获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).
22.某医药研究所进行某一抗病毒新药的开发,经过大量的服用试验后可知:成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间xh的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得服用时(即时间为0)每毫升血液中含药量为0微克;服用后2h,每毫升血液中含药量为6微克;服用后3h,每毫升血液中含药量为7.5微克.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高为4.2 m,宽为2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.
19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.
21.某产品每件成本是120元,为了解市场规律,试销售阶段按两种方案进行销售,结果如下:方案甲:保留每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版题目1:某公司的销售额可以用二次函数$y=-2x^2+20x$来表示,其中$x$表示月份(从1开始),$y$表示对应月份的销售额。

求解下列问题:问题1:请计算公司第6个月的销售额。

解答:将$x=6$代入二次函数中,可得:$y=-2\times6^2+20\times6=-72+120=48$所以公司第6个月的销售额为48。

问题2:请问公司销售额最高的月份是哪个月?解答:二次函数$y=-2x^2+20x$是一个开口朝下的抛物线,最高点即为销售额最高的月份。

通过求导数,我们可以找到函数的最高点。

首先,求导得到一次函数$y'=-4x+20$,令$y'=0$,解方程可得$x=5$。

因此,公司销售额最高的月份是第5个月。

题目2:一架火箭从地面起飞后,高度$h$(以米为单位)随时间$t$(以秒为单位)变化的规律可以用二次函数$h=-5t^2+100t$表示。

求解下列问题:问题1:请问火箭多少秒后达到最大高度?解答:同样地,通过求导数,我们可以找到火箭高度的最高点。

将二次函数$h=-5t^2+100t$求导得到一次函数$h'=-10t+100$,令$h'=0$,解方程可得$t=10$。

因此,火箭在10秒后达到最大高度。

问题2:请计算火箭达到最大高度时的高度。

解答:将$t=10$代入二次函数中,可得:$h=-5\times10^2+100\times10=-500+1000=500$所以火箭达到最大高度时的高度为500米。

以上是对二次函数应用题的解答,希望能帮助到您。

人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练1.某品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?2.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系y=﹣80x+560,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)如果每天获得160元的利润,销售单价为多少元?(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?3.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x 元.(1)填表(不需要化简)(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?4.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.5.南浔区某校增设拓展课程之“开心农场”,如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB ⊥BC ,AB =3米,BC =1米)和总长为11米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,⊥设DF的长为x米,请用含x的代数式表示EF的长;⊥若要求所围成的小型农场DBEF的面积为9平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?6.某经销商销售一种新品种壶瓶枣,这种新品种进价每千克50元(规定每千克销售利润不低于5元且不高于25元),现在以75元/千克的售价卖出,则每周可卖出80千克.该经销商通过对当地市场调查发现:若每千克降价5元,则每周多卖出20千克;因疫情原因,该经销商决定暂时降价销售,设每千克销售价降低x元,每周销售利润为y元.(1)当售价为每千克65元时,每周销售量为千克,利润为元.(2)求y与x之间的函数关系式并直接写出自变量x的取值范围.(3)当销售单价定为多少元时,该经销商每周可获得最大利润?最大利润是多少元?7.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.在双十二活动期间,商店将对某商品进行促销活动.已知进价为每件6元,平时以单价10元的价格售出一天可卖100件.根据调查单价每降低1元,每天可多售出50件;设商品单价降低x元(售价不低于进价),这批商品的日利润为y元(利润=售价-成本),请解决以下问题:(1)当商品的销售单价降低多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到400元时,求x的值.(3)若商店以第(2)问中的方式销售2天后,第三天单价再减a元,当天的销售量不低于前两天总和的70%,求第三天的日利润最大值.9.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?10.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?11.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间有如表关系:(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?12.成绵苍巴高速正在修建中,某单向通行隧道设计图由抛物线与矩形的三边组成,尺寸如图所示,隧洞限高4米,隧洞道路正中间标有一条实线.(1)水平安置一根限高杆,两端固定在洞门上,求限高杆的最小长度.(2)某卡车若装载一集装箱箱宽3m,车与车箱共高3.8m,此车能否不跨越标线通过隧道(标线宽度不计)?说明理由.13.某超市计划共进货50件饮料,其中A款饮料成本为每件20元;当B款饮料进货10件时,成本为每件48元,且每多进货1件,平均每件B款饮料成本降低2元.为保证饮料x x 件.的多样性,规定A款饮料必须进货至少20件,设进货B款饮料(10)(1)根据信息填表:(2)设总成本为W元,写出W关于x的函数关系式,并写出自变量x的取值范围;(3)为了增加盈利,降低进货成本,该超市如何进货才能使得进货总成本最低,最低成本是多少元.14.如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,⊥ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元.(1)探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需_____元;(2)探究2:如果木板边长为1米,当FC的长为多少时,一块木板需用墙纸的费用最省?最省是多少元?(3)探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?15.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为60元时,可售出300套.应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:(2)若商店预计要在第二个月的销售中获利4000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少?此时第二个月的最大利润是多少?16.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式______;所得销售利润w(元)与销售单价x(元)之间的函数关系式______.(2)销售单价定为多少元时,所得销售利润最大,最大利润是多少?17.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)假设每千克涨价x元,商场每天销售这种水果的利润是y元,请写出y关于x的函数解析式;(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?(3)当每千克涨价为多少元时,每天的盈利最多?最多是多少?18.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?19.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每提高1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价提高x(元)之间的函数关系式.(2)求销售单价提高多少元时,该文具每天的销售利润最大?20.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.参考答案:1.(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个2.(1)如果每天获得160元的利润,销售单价为4元(2)当销售单价定为5元时,每天的利润最大,最大利润是240元3.(1)60﹣x ;200+20x ;600﹣200﹣(200+20x )(2)该T 恤第二个月单价为54或46元,该批T 恤总获利为7680元(3)降价10元,单价为50元,获利8000元4.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元(3)36m ≤≤5.(1)⊥(12﹣3x )米;⊥3米(2)饲养场的宽DF 为52米时,饲养场DBEF 的面积最大,最大面积为758平方米 6.(1)120;1800(2)24202000y x x =-++(0≤x ≤20)(3)当销售单价定为72.5元时,该经销商每周可获得最大利润,最大利润是2025元 7.(1)2200y x =-+()3060x ≤≤(2)当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元 8.(1)当商品的销售单价降低1元时,销售这批商品的日利润最大,最大值为450元(2)x =2(3)第三天的日利润最大值为1129.(1)50元或58元(2)54元10.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.11.(1)y =﹣2x +160(2)20件12.(1)(2)能不跨越标线通过隧道13.(1)50-x ;68-2x(2)W =22x -+48x +1000(10≤x ≤30)(3)当A 款饮料进货20件,B 款饮料进货30件时进货总成本最低,最低成本是640元 14.(1)220;(2)当FC 的长为12m 时,一块木板需用墙纸的费用最省,最省是55元; (3)当正方形EFCG 的边长为12a 时,墙纸费用最省. 15.(1)60x +,30010x -(2)第二个月销售定价每套应为80元(3)要使第二个月利润达到最大,应定价为65元,此时第二个月的最大利润是6250元 16.(1)10500y x =-+;21070010000w x x =-+-(2)销售单价定为35元时,所得销售利润最大,最大利润是2250元17.(1)2202004000y x x =-++(2)每千克应涨价3元(3)当每千克涨价为5元时,每天的盈利最多,最多是4500元18.(1)y =﹣2x +180(2)w =﹣2x 2+260x ﹣7200(3)55元,1050元19.(1)2102001250w x x =-++(2)10元20.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元。

二次函数应用题(含答案)

二次函数应用题(含答案)

1、小迪善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?2、如图,一位篮球运动员在离篮圈水平距离4 m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮框内.已知篮圈中心离地面距离为3.05 m .(1) 建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2) 若该运动员身高1.8 m ,这次跳投时,球在他头顶上方0.25 m 处出手.问:球出手时,他跳离地面多高?(图1) (图2) (第14题)3、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由4、如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.①求此桥拱线所在抛物线的解析式.②桥边有一浮在水面部分高4m,最宽处的河鱼餐船,试探索此船能否开到桥下?说明理由.1、(1)由题图,设y=kx,当x=l,时y=2,解得k=2,所以y=2x(0≤x≤20)即小迪解题的学习收益量y与用于解题的时间x之间的函数关系式是y=2x;(2)由题图,当0≤x<4时,设y=a(x-4)2+16,当x=0时,y=0,所以0=16a+16,所以a=-1,所以y=-(x-4)2+16,即y=-x2+8x;当4≤x≤10时,y=16,因此y=即小迪回顾反思的学习收益量y用于回顾反思的时间x的函数关系式是y=(3)设小迪用于回顾反思的时间为x(0≤x≤10)分钟,学习收益总量为y,则他用于解题的时间为(20-x)分钟,当0≤x<4时,y=-x2+8x+2(20-x)=-x2+6x+40=-(x-3)2+49,当x=3时,y最大=49,当4 ≤x≤10时,y=16+2(20-x)=56-2x,y随x的增大而减小,因此当x=4时,y最大=48,综上,当x=3时,y最大=49,此时20-x=17,答:小迪用于回顾反思的时间为3分钟,用于解题的时间为17分钟时,学习收益总量最大。

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?6.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?7.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S与x的函数关系式;(2)若菜园的面积为96平方米,求x的值;(3)若在墙的对面再开一个宽为a(0<a<3)米的门,且面积S的最大值为124平方米,直接写出a的值.8.榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元,“线下”销售的每箱利润y(元)与销售量x(箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y与x之间的函数关系;(2)当“线下”的销售利润为4350元时,求x的值;(3)实际“线下”销售时,每箱还要支出其它费用a元(a>0),若“线上”与“线下”售完这100箱榴莲所获得的总利润为w元,当20≤x≤45时,w随x增大而增大,求a的取值范围.9.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?10.从下列两题中选择1题完成,两题都完成的仅批改第1题.(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大? 第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x (0<x <0.5).(2)根据题意完成表格填空①_________,②_________.(3)求平均步长减少的百分率x ;【温馨提示:数学运算可以先约分后化简】(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元 (3)106 107 108 【解析】 【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值. (1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克; (2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数, ∵20-< ,∴11x =时,w 有最大值是242元, ∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数, ∴由二次函数的对称性可知,x 的取值为9,10,11,12,13 当9x =或13时,2244234x x -+=; 当10x =或12时,2244240x x -+=, 当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350, ∴当106a =或107或108时符合题意. 答:所有符合题意的a 值为:106,107,108. 【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质. 2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数(2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数(3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =.z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小, 10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】 【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答. (1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70;综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元. 【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键. 5.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元 【解析】 【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可. (1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=,∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =, 当7x =时,5777W =, ∵57785777>,∴6x =时,W 最大,最大利润为5778元. 【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 6.(1)10500y x =-+ (2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元. 【解析】 【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解.(1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩,解得:2730x ≤≤,由(2)可知21070010000w x x =-+-, ∵100-<,即开口向下,对称轴为直线352bx a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=; 答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.7.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.8.(1)y=﹣0.5x+160(20≤x≤60)(2)x的值为30(3)a的取值范围为0<a<15.5【解析】【分析】(1)根据函数图象中的数据,可以计算出y与x之间的函数关系;(2)根据题意和(1)中的结果,可以得到x(﹣0.5x+160)=4350,然后求解即可;(3)根据题意,可以得到利润w与m的函数关系式,再根据二次函数的性质,可以求得a的取值范围.(1)解:(1)设y与x的函数关系式为y=kx+b,∵点(20,150),(60,130)在该函数图象上,∴20150 60130k bk b+=⎧⎨+=⎩,解得0.5160kb=-⎧⎨=⎩,即y与x的函数关系式为y=﹣0.5x+160(20≤x≤60);(2)由题意可得,xy=4350,又∵y=﹣0.5x+160,∴x(﹣0.5x+160)=4350,解得x1=30,x2=290(舍去),即x的值30;(3)设“线下”销售榴莲x箱,则“线上”销售榴莲(100﹣x)箱,总利润为w元,由题意可得,w=x(﹣0.5x+160﹣a)+100(100﹣x)=﹣12x2+(60﹣a)x+10000,该函数的对称轴为直线x=﹣6012()2a-⨯-=60﹣a,∵当20≤x≤45时,w随x增大而增大,∴60﹣a>44.5,解得a<15.5,∴0<a<15.5.【点睛】本题考查二次函数的应用、一次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的方程和函数关系式,利用数形结合的思想解答.9.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的长方形,依题意得:(28-2x)(52-2x)=640,整理得:x2-40x+204=0,解得:x1=6,x2=34.又∵28-2x>0,∴x<14,∴x =6.答:通道的宽是6米;(2)解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.10.(1)房价为350元时,宾馆利润最大;(2)①0.6(1-x );②10000(1+3x );(3)x =0.1;(4)王老师这500米的平均步幅为0.5米【解析】【分析】(1)设房价为(180+10x )元,宾馆总利润为y 元,根据利润=(房价-支出)×房间数量,列出关系式求解即可;(2)根据题意结合表格中的数据求解即可;(3)根据距离=步长×步数列出方程求解即可;(4)先由(3)求出两次张大爷的步数,即可得到500m 的步数,从而即可求出步长.(1)解:设房价为(180+10x )元,宾馆总利润为y 元,依题意得:()22(1801020)(50)103408000101710890y x x x x x =+--=-++=--+∵-10<0,抛物线开口向下,∴当x =17时,y 有最大值,180+10x=350元,答:房价为350元时,宾馆利润最大.(2)解:由题意得第二次锻炼的平均步长为()0.61x -,第二次锻炼的平均步数为()1000013x +,故答案为:()0.61x -;()1000013x +;(3)解:由题意得:10000(1+3x)×0.6(1-x)=7020.解得:1170.5 30x=>(舍去),20.1x=∴x=0.1;(4)解:根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.【点睛】本题主要考查了二次函数的应用,列代数式,一元二次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.。

九年级数学二次函数应用题-含答案

九年级数学二次函数应用题-含答案

九年级数学专题二次函数的应用题一、解答题1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2. 5米时,达到最大高度3.5米,然后准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01米,)4.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系:1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。

2023-2024学年人教版九年级上册数学期末专题训练:二次函数应用题(含答案)

2023-2024学年人教版九年级上册数学期末专题训练:二次函数应用题(含答案)

2023-2024学年人教版九年级上册数学期末专题训练:二次函数应用题1.某汽车出租公司有50辆汽车对外出租,下面是该公司经理租车的方案:公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加40元,那么每月将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.若该公司月出租的汽车是x辆,月利润为y元.(1)求y与x的函数关系式;(2)该公司热心公益事业,每租出1辆汽车捐出10元给慈善机构,该公司捐款后的月利润为w元,求w与x的函数关系式;并求出该公司某月租出30辆汽车,捐款后剩余的月利润是多少?2.某服装店的销售中发现:进货价为每件50元.销售价为每件90元的某品牌服装平均每天可售出20件,现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降低1元,那么平均每天就可多售出2件.(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)求降价多少元利润最大?最大利润是多少?AB=,当水位上升3m时,水面宽3.有一座抛物线型拱桥,在正常水位时水面宽20mCD=.按如图所示建立平面直角坐标系.10m4 DE(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大,最大利润多少?9.垃圾分类作为一个公共管理的综合系统工程,需要社会各个方面共同发力.洛阳市某超市计划定制一款家用分类垃圾桶,独家经销,生产厂家给出如下定制方案:不收设计费,定制不超过200套时.每套费用60元;超过200套后,超出的部分8折优惠.已知该超市定制这款垃圾桶的平均费用为56元1套(1)该超市定制了这款垃圾桶多少套?(2)超市经过市场调研发现:当此款垃圾桶售价定为80/套时,平均每天可售出20套;售价每降低1元.平均每天可多售出2套,售价下降多少元时.可使该超市平均每天销售此款垃圾桶的利润最大?10.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元.设每顶头盔降价x元,每月的销售量为y顶,每月获利w元.(1)直接写出y与x之间的函数表达式;(2)求w与x之间的函数表达式,并求出每顶头盔降价多少元时,每月的销售利润最大?最大利润是多少元?(1)分别求1y 和2y 的函数解析式;(2)该公司同时对Ⅰ型、Ⅰ型两种设备共投资100万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.12.嘉嘉和淇淇在玩沙包游戏,某同学借此情境编制了一道数学题,请解答这道题. 如图,在平面直角坐标系中,一个单位长度代表 1m 长. 嘉嘉在点 ()6,1A 处将沙包(看成点)抛出,其运动路线为抛物线 1C 的一部分,当沙包运动到距离嘉嘉水平距离3米,8 a物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式; (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为______.参考答案:15630x x x x 且为整数且为整数85m .。

数学九下《二次函数》应用题专项练习(带答案)

数学九下《二次函数》应用题专项练习(带答案)

数学九下《二次函数》应用题专项练习(带答案)1.如图所示,已知△ABC 的面积为2400cm 2,底边BC 长为80cm.若点D 在BC 边上,E 在AC 边上,F 在AB 边上,且四边形BDEF 为平行四边形,设BD=xcm, BDEFS =ycm 2,求:(1)y 与x 的函数关系式; (2)自变量x 的取值范围;(3)当x 为何值时,y 有最值,最值是多少?BF A CDE2.如图所示,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约213.铅球落地点在B 处,铅球运行中在运动员前4m 处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗?3.有一条长7.2米的木料,做成如图所示的“日”字形的窗框, 问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)x B A C D y O4.某公司生产的A 种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y 倍,且y 是x 的二次函数,公司作了预测,知x 与y 之间的对应关系如下表:(1)根据上表,求y 关于x 的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元) 与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?5.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)在对称轴右边1m 处,桥洞离水面的高是多少?410mx y Ohb BF A CE 答案1.解:(1)设△DCE 的高为hcm,如答图所示.△ABC 的高为bcm,则y=BDEFS=x ·h∵S △ABC =12BC ·b, ∴2400=12×80b,∴b=60(cm).∵ED∥AB,∴△EDC∽△ABC.∴h DCb BC=, 即806080h x -=, ∴h=3(80)4x -. ∴y=3(80)4x -·x=-34x 2+60x.(2)自变量x 的取值范围是0<x<80. (3)∵a= -34<0,∴y 有最大值. 当x=40时,y 最大值=1200(cm 2).2.解:能.∵OC=4,CD=3,∴顶点D 坐标为(4,3),设 y=a(x-4)2+3,把A 50,3⎛⎫ ⎪⎝⎭代入上式,得 53=a(0-4)2+3,∴a=-112-, ∴y= -112-(x-4)2+3,即y=112-x 2+2533x +.令y=0,得112-x 2+2533x +=0,∴x 1=10,x 2=-2(舍去),故该运动员的成绩为10m.3.解:设窗框的宽为x 米,则窗框的高为7.232x-米. 则窗的面积S=x ·7.232x -=231825x x -+.当x=1853222b a -=-⎛⎫⨯- ⎪⎝⎭=1.2(米)时,S 有最大值. 此时,窗框的高为7.23 1.22-⨯ =1.8(米). 4.解:(1)设所求函数关系式为y=ax 2+bx+c,把(0,1),(1,1.5),(2,1.8)分别代入上式,得11.51.842ca b c a b c=⎧⎪=++⎨⎪=++⎩, 解得13,,1105a b c =-==,∴2131105y x x =-++ (2)S=(3-2)×10y -x=(2131105x x -++)×10-x=-x 2+5x+10.(3)∵S=-x 2+5x+10=-256524x ⎛⎫-+ ⎪⎝⎭.∴当0≤x≤2.5时,S 随x 的增大而增大,因此当广告费在0-2.5万元之间时, 公司的年利润随广告费的增大而增大. 5.解:(1)B 点坐标为(10,0),作AB 的中垂线CD 交AB 于D,交抛物线于C, ∵AB=10m,∴OD=12×10=5(m). 又∵CD=4m,∴抛物线顶点为(5,4).设所求抛物线的关系式为y=a(x-5)2+4, 把B(10,0)代入上式,得0=a(10-5)2+4,a=-425. ∴y=-425(x-5)2+4(0≤x≤10). (2)设对称轴右边1m 处的点为M.∵OM=5+1=6,∴当x=6时,y=-425(6-5)2+4=3.84(m). 故桥洞离水面的高是3.84m.。

中考经典二次函数应用题(含答案)

中考经典二次函数应用题(含答案)

二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量 3.9万台 4.3万台求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

人教版九年级上册 第二十二章 二次函数应用题 练习(含答案)

人教版九年级上册 第二十二章 二次函数应用题 练习(含答案)

二次函数应用题一、利用二次函数解决利润最大化问题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?解:(1) (130-100)×80=2400(元)(2)设应将售价定为x 元,则销售利润 130(100)(8020)5xy x -=-+⨯ 24100060000x x =-+-24(125)2500x =--+.当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元. 2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 解:(1)(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭,即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.3、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.916 6.083 6.164) 解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. (2)去年12月份每台的售价为501226002000-⨯+=(元), 去年12月份的销售量为0.112 3.85⨯+=(万台),根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. 令%m t =,原方程可化为27.514 5.30t t -+=.t ∴==.10.528t ∴≈,2 1.339t ≈(舍去) 答:m 的值约为52.8.4、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,.所求一次函数的表达式为120y x =-+.(2)(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+,抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.5、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

二次函数的应用题(含答案)

二次函数的应用题(含答案)

二次函数的应用题(含答案)1.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.2.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.3.如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.4.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,抛物线y=﹣x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线的解析式; (2)写出顶点坐标及对称轴;(3)若抛物线上有一点B ,且S △OAB =8,求点B 的坐标.6.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.7.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x 辆车时,每辆车的日租金为 _________ 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?8.某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?9.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?答案得×,解得±;x得,﹣,﹣+解得,y=﹣时,×+1=,故,5.(2012•黑龙江)解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0,∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B的坐标为(a,b),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x2+2x=8中,x无解),∴b=﹣8,∴﹣x2+2x=﹣8,解得x解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.由表格中的数据,得,解得﹣<==35解:(1)画图如图:由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500)、(30,400)这两点,∴,解得:,∴函数关系式是y=﹣10x+700.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得:W=(x﹣10)(﹣10x+700),=﹣10x2+800x﹣7000,=﹣10((x﹣40)2+9000,∴当x=40时,W有最大值9000.(3)对于函数W=﹣10((x﹣40)2+9000,当x≤35时,W的值随着x值的增大而增大,故销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.如图,有一位同学在兴趣小组实验中,设计了一个模拟滑雪场地截面图,平台AB (水平)与x 轴的距离为6,与y 轴交于B 点,与滑道AM :y =k x交于A ,且AB =2,MN ⊥x 轴,测得MN =1,P 到x 轴的距离为3,设ON=b .(1)k 的值为_______,点P 的坐标是________,b =_________;(2)当一号球落到P 点后立即弹起,弹起后沿另外一条抛物线G 运动,若它的最高点Q 的坐标为(8,5)①求G 的解析式,并说明抛物线G 与滑道AM 是否还能相交;②在x 轴上有线段NC =1,若一号球恰好能倍NC 接住,则NC 向上平移距离d 的最大值和最小值各是多少?2.2022年冬奥会成功在北京张家口举行,奥林匹克精神鼓舞了越来越多的年轻人从事冰雪运动,在长8m ,高6m 的斜面上,滑雪运动员P 从顶端腾空而起,最终刚好落在斜面底端,其轨迹可视为抛物线的一部分.按如图方式建立平面直角坐标系,设斜面所在直线的函数关系式为1y kx b =+,运动员轨迹所在抛物线的函数关系式为2214y ax x c =++,设运动员P 距离地面的高度为()m h ,腾空过程中离开斜面的距离为()m d ,回答下列问题:(1)分别求出1y 、2y 与x 之间的函数关系式;(2)求出d 的最大值和此时点P 的坐标.3.某企业研发出一种新产品,该产品的成本为每件3000元.在试用期间营销部门建议: ①购买不超过10件时,每件销售价为3600元;②购买超过10件,每多购一件,所购产品的销单价均降5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出购买产品______件时,销售单价恰好为3200元;x>,且x为整数),该公司所获利润为y元,求y与x之(2)设购买这种产品x件(其中10间的函数解析式,并写出自变量x的取值范围;(3)在试用期间,当购买产品的件数超过10件时,为使销售数量越多,公司所利润越大,公司应将最低销售单价调整为多少元(其它销售条件不变)?4.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图).已知计划中的建筑材料可建围墙的总长为50m,设两间饲养室合计长x (m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围;(2)在所给出的坐标系中画出函数的图象;(3)利用图象判断:若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少? 5.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x (分钟)的变化情况,数据如下:时间x(分钟)0123456789915<≤x人数y(人)0170320450560650720770800810810(1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y与x之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?6.李大爷每年春节期间都会购进一批新年红包销售,根据往年的销售经验,这种红包平均每天可销售50袋,每袋盈利3元,若每袋降价0.5元,平均每天可多售出25袋,设每袋降x 元,平均每天的利润为y 元.(1)请求出y 与x 的函数表达式;(2)若李大爷想让每天的利润最大化,应该降价多少元销售?最大利润为多少元? 7.某网店经销甲、乙两种品牌的西梅,若甲种品牌西梅每千克利润为10元,乙种品牌西梅每千克利润为20元,则每周能卖出甲种品牌西梅40千克,乙种品牌西梅20千克.为了促进销售,该店决定把甲、乙两种品牌西梅的零售单价都降价x 元.经调查,若甲、乙两种品牌西梅零售单价分别每降1元,则这两种品牌西梅每周均可多销售10千克.(1)直接写出甲、乙两品牌西梅每周的销售量y 甲,y 乙(千克)与降价x (元)之间的函数关系式.(2)该网店每周销售甲、乙两种品牌西梅获得的总利润记为W (元),求W 的最大值. 8.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 9.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?(3)在(2)的条件下,若使商场每天的盈利达到最大值,则应涨价多少元?此时每天的最大盈利是多少?10.小亮创办了一个微店商铺,营销一款小型LED 护眼台灯,成本是20元/盏,在“双十一”前20天进行了网上销售后发现,该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系,且第1天销售了78盏,第2天销售了76盏.护眼台灯的销售价格y (元/盏)与时间x (天)之间符合函数关系式1254y x =+(120x ≤≤,且x 为整数). (1)求日销售量p (盏)与时间x (天)之间的函数关系式;(2)在这20天中,哪天的日销售利润最大?最大日销售利润是多少?(3)“双十一”当天,小亮采用如下促销方式:销售价格比前20天中最高日销售价格降低a 元;日销售量比前20天最高日销售量提高了7a 盏;日销售利润比前20天中的最大日销售利润多了30元,求a 的值.(注:销售利润=售价-成本).【参考答案】二次函数应用题1.(1)12,(4,3),12 (2)21(8)58y x =--+,不能相交,理由见解析;d 的最大值是3,最小值是158 【解析】【分析】(1)由题意写出点A 的坐标,代入k y x =即可求出k 值,得到12y x =,将点P 、点M 的纵坐标分别代入12y x=求出点P 和点M 的横坐标,即可求解; (2)①由抛物线G 的最高点Q 的坐标写出抛物线的顶点式2(8)5y a x =-+,将点A 坐标代入求出a 值,即可得到抛物线的解析式;求出抛物线上12x =时对应的y 值,判断此点在点M 的上方还是下方,即可得出抛物线与AM 是否相交.②当线段NC 平移后的线段11N C 的1N 点在抛物线上,即1N 点与D 重合时,平移距离最大,当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,求出相应坐标即可求解.(1) 解:平台AB (水平)与x 轴的距离为6,AB =2,∴点A 、点B 的坐标为(2,6)A ,(0,6)B .将(2,6)A 代入k y x =得,62k =, 解得12k =, ∴滑道AM 所在图象的函数解析式为:12y x = 点P 到x 轴的距离为3,∴点P 的纵坐标为3P y =,将3P y =代入到12y x =得,1243P x ==,∴点P 的坐标为(4,3),MN ⊥x 轴,测得MN =1,∴点M 的纵坐标为1=M y ,将1=M y 代入到12y x =得,12121M x ==, ∴点M 的坐标为(12,1),12ON ∴=,故答案依次为:12,(4,3),12;(2)解:①由题意抛物线G 的最高点Q 的坐标为(8,5),∴设抛物线G 的函数解析式为:2(8)5y a x =-+,将点P 坐标代入2(8)5y a x =-+得23(48)5a =-+,解得18a =-, ∴设抛物线G 的函数解析式为:21(8)58y x =--+, 点M 的纵坐标(12,1),设12x =时抛物线G 上对应点为点D ,则点D 的坐标(12,)D y ,将12x =代入到21(8)58y x =--+,解得3D y =, D M y y >,∴一号球可以飞行到点M 的正上方,∴抛物线G 与滑道AM 不能相交;②将线段NC 向上平移,平移后线段与抛物线有交点时,说明可以接到一号球,如图所示,当线段NC 平移后的线段11N C 的1N 点与D 重合时,平移距离最大,∴最大平移距离为303D N y y -=-=;当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,1NC =,12ON =,∴点C 的坐标为(13,0),∴点2C 的横坐标为13,将213C x =代入到21(8)58y x =--+,解得2158C y = ∴最小平移距离为21515088C C y y -=-=; ∴平移距离d 的最大值是3,最小值是158. 【点睛】本题考查反比例函数、二次函数的实际应用,熟练掌握待定系数法求反比例函数解析式、二次函数顶点式,通过点的坐标判断函数图像是否相交等是解题的关键.2.(1)1364y x =-+,2211684y x x =-++; (2)max 85d =m ,P (4,5) 【解析】【分析】(1)把点(8,0)和(0,6)分别代入直线的函数关系式1y kx b =+,运动员轨迹所在抛物线的函数关系式2214y ax x c =++,,进而得出答案; (2)设与抛物线2211684y x x =-++相切,且与1364y x =-+平行的直线:334y x h =-+,那么切点就是所求的点P ,直线1364y x =-+与直线334y x h =-+之间的距离就是所求的距离.(1)解:把点(8,0)和(6,0)代入直线 1y kx b =+得,806k b b +=⎧⎨=⎩解得346k b ⎧=-⎪⎨⎪=⎩ ∴1364y x =-+ 把点(8,0)和(6,0)代入抛物线2214y ax x c =++得, 210=8846a c c⎧⨯+⨯+⎪⎨⎪=⎩解得86c ⎨⎪=⎩ ∴2211684y x x =-++ (2)解:设与抛物线2211684y x x =-++相切的直线为334y x h =-+, 联立2y 与3y 得:211684x x -++34x h =-+, 化简得:20168x x h ++-=- ∵抛物线2y 与直线3y 相切∴20168x x h ++-=-有两个相等的实数根 ∴ ∆=114()(8)08h -⨯-⨯-= 解得8h =∴3384y x =-+ 联立抛2y 和3y 解得:45x y =⎧⎨=⎩此时点P 的坐标为(4,5)如图,过点A 作AC ⊥直线3y ,垂足为点C ,∵ 直线AC 与直线1y 垂直且过点A (0,6)∴直线AC 的解析式为4463y x =+ 联立3y 和4y 得34384463y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩解得2518225 y⎪⎪⎨⎪=⎪⎩∴点C的坐标为(2425,18225)线段AC的长度就是所求的d,max 408 255d===.【点睛】本题考查了一次函数和二次函数图像的综合题,解题的关键是数形结合,熟练掌握抛物线的三种解析式,特别是顶点式;还要注意当直线与抛物线相切时距离最大;两条直线互相垂直的直线:121k k=-.3.(1)90(2)()2200905650(1090)x x xyx x x x⎧≥⎪=⎨-+<<⎪⎩,为整数,为整数(3)公司应将最低销售单价调整为3325元【解析】【分析】(1)购买这种产品x件时,销售单价恰好为3200元,由题意得:3600-5(x-10)=3200,即可求解;(2)分10<x<90和x≥90两种情况,分别求解即可;(3)根据(2)中求出的函数解析式,结合二次函数与一次函数的增减性求解即可.(1)解:设购买这种产品x件时,销售单价恰好为3200元,由题意得:3600-5(x-10)=3200,解得:x=90,故答案为:90;(2)当x≥90时,一件产品的利润为:3200-3000=200元,故此时y与x的函数关系式为:y=200x(x≥90);当10<x<90时,一件产品的利润为:3600-5(x-10)-3000=(-5x+650)元,故此时y与x的函数关系式为:y=x[-5x+650]=-5x²+650x(10<x<90);故答案为:()2200905650(1090)x x xyx x x x⎧≥⎪=⎨-+<<⎪⎩,为整数,为整数;(3)要满足购买数量越大,利润越多.故y随x的增大而增大,y=200x,y随x的增大而增大,y=-5x2+650x,其对称轴为x=65,故当10≤x≤65时,y随x的增大而增大,若一次购买65件,设置为最低售价,则可以避免y随x增大而减小的情况发生,故x=65时,设置最低售价为3600-5×(65-10)=3325(元),所以公司应将最低销售单价调整为3325元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).4.(1)215033y x x =-+ 其中0<x <50 (2)画函数图象见解析(3)各道墙的长度分别为20m ,10m 或者30m ,20m 3时,总面积达到200m 2 【解析】【分析】(1)根据题意用含x 的代数式表示出饲养室的宽,由矩形的面积=长×宽计算即可; (2)确定特殊点位置,继而可得函数图象;(3)构建方程即可解决问题.(1)解:∵围墙的总长为50 m ,2间饲养室合计长x m ,∴饲养室的宽=503x - m , ∴总占地面积为y =x •503x -=-13x 2+503x (0<x <50); (2)解:y =-13x 2+503x =()216252533x --+, 顶点坐标为(25,6253), 当y =200时,()216252520033x --+=, 解得x =20或30,图象经过点(20,200)和(30,200),当y =0时,()2162525033x --+=, 解得x =0或50,图象经过点(0,0)和(50,0),描点,连线,函数图象如图所示.(3)解:当两间饲养室占地总面积达到200 m 2时,则-13x 2+503x =200, 解得:x =20或30;答:各道墙长分别为20 m 、10 m 或30 m 、203 m 时,总面积达到200 m 2. 【点睛】此题主要考查了二次函数的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.5.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)2【解析】【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.(1)根据表格中数据可知,当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得 17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩, ∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<, ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小,∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0,解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810,解得m ≥118, ∵m 是整数,∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点.【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键.6.(1)y =−50x 2+100x +150(2)应该降价1元销售,最大利润为200元.【解析】【分析】(1)根据题意和题目中的数据,可以写出y 与x 的函数表达式;(2)将(1)中函数关系式化为顶点式,然后利用二次函数的性质即可得到x 为何值时,y 取得最大值.(1)解:由题意可得,y =(3−x )(50+0.5x ×25)=−50x 2+100x +150, 即y 与x 的函数表达式是y =−50x 2+100x +150;(2)由(1)知:y =−50x 2+100x +150=−50(x −1)2+200,∴当x =1时,y 取得最大值,此时y =200,答:若李大爷想让每天的利润最大化,应该降价1元销售,最大利润为200元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,写出相应的函数关系式,利用二次函数的性质求最值.7.(1)4010y x =+甲,2010y x =+乙(2)1520元【解析】【分析】(1)原销售量加增加的销售量,增加的销售量等于降价的元数乘以10;(2)每千克实际利润乘以实际销售量得到每种西梅的总利润,两种西梅总利润的和即为总利润,而后配方把解析式化为顶点式,求出最大利润.(1)4010y x =+甲,2010y x =+乙;(2)(10)(4010)(20)(2010)w x x x x =-++-+22400601040018010x x x x =+-++-220240800x x =-++()22061520x =--+.∵-20<0,∴当x =6时,w 有最大值,最大值为1520元.【点睛】本题考查了销售利润问题,解决此类问题的关键是熟练掌握总利润与每千克利润和销售量的关系.8.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.9.(1)每次下降的百分率为20%;(2)每千克应涨价5元;(3)应涨价7.5元,此时每天的最大盈利是6125元.【解析】【分析】(1)设每次下降的百分率是x ,找出等量条件列方程求解即可;(2)设每千克应涨价a 元,利润为W ,找出等量条件列方程求解即可;(3)根据(2)中的()()=1050020W a a +-,求二次函数的最值即可.(1)解:设每次下降的百分率是x ,则由题意列方程得:()2501=32x -解之得:1=1.8x (舍去),1=0.2x ,故每次下降的百分率是20%;(2)解:设每千克应涨价a 元,利润为W ,则由题意列方程得: ()()=1050020W a a +-令(10)(50020)=6000W a a =+-,解方程得:5a =或10a =,∵要尽快减少库存,∴取5a =,即每千克应涨价5元;(3)解:由(2)可得()22(10)(50020)=203005000=207.56125W a a a a a =+--++--+, 当3007.52(20)a =-=⨯-时,W 取最大值为6125元, ∴应涨价7.5元,此时每天的最大盈利是6125元.【点睛】本题考查一元二次方程的实际应用:增长率问题,二次函数的实际应用:销售问题,解该类题的关键是找出等量条件列方程求解,将销售问题中的最大利润问题转化成求二次函数最值问题.10.(1)日销售量p (盏)与时间x (天)之间函数关系为p-x 280(2)当x =10时,销售利润最大,w 最大=450元(3)a 的值为6【解析】【分析】(1)利用待定系数法求解设该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系为p kx b =+,代入数据得:k+b=782=76k b ⎧⎨+⎩,解方程组即可; (2)设日销售利润用w 表示,根据日销售利润=(售价-成本)×销量,列函数关系w x x 128025204然后配方为顶点式即可;(3)根据函数的性质p-x 280,k =-2<0,y 随x 的增大而减小,x =1时,p 最大=-218078盏,小亮采用如下促销方式:日销售量为(78+7a ),根据1254y x =+,k =104>,y 随x 的增大而二增大,x =20时y 最大=12025=304⨯+元/盏,得出小亮采用如下促销方式:销售价格为(30-a )元/盏,利用销量×每盏台灯的利润=450+30,列方程即可.(1)解:设该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系为p kx b =+,代入数据得:k+b=782=76k b ⎧⎨+⎩, 解得:k=-2=80b ⎧⎨⎩, ∴日销售量p (盏)与时间x (天)之间函数关系为p-x 280;(2)解:设日销售利润用w 表示,w x x 128025204x x21104002 x 21104502, 当x =10时,销售利润最大,w 最大=450元; (3)∵p -x 280,k =-2<0,y 随x 的增大而减小,∴x =1时,p 最大=-218078盏,小亮采用如下促销方式:日销售量为(78+7a ), ∵1254y x =+,k =104>,y 随x 的增大而二增大,x =20时y 最大=12025=304⨯+元/盏, ∴小亮采用如下促销方式:销售价格为(30-a )元/盏, 根据题意:a a302078745030, 整理得a +a-2783000, 解得125067a a ==-,(舍去), ∴a 的值为6.【点睛】本题考查待定系数法求一次函数解析式及其性质,二次函数性质在销售中的应用,一元二次方程在销售中的应用,掌握待定系数法求一次函数解析式及其性质,二次函数性质在销售中的应用,一元二次方程在销售中的应用是解题关键.。

九年级数学上册《二次函数实际问题》练习题带答案(人教版)

九年级数学上册《二次函数实际问题》练习题带答案(人教版)

九年级数学上册《二次函数实际问题》练习题带答案(人教版)一、选择题1.华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得( )A.(40﹣x)(20+2x)=1200B.(40﹣x)(20+x)=1200C.(50﹣x)(20+2x)=1200D.(90﹣x)(20+2x)=12002.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y元与销售单价x元满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为( )A.30元B.35元C.40元D.45元3.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为( )A.150B.160C.170D.1804.某商店销售某件商品所获得的利润y(元)与所卖的件数x之间的关系满足y=﹣x2+1000x﹣200000,则当0<x≤450时的最大利润为( )A.2500元B.47500元C.50000元D.250000元5.运动员推出铅球后铅球在空中的飞行路线可以看作是抛物线的一部分,铅球在空中飞行的竖直高度y(单位:m)与水平距离x(单位:m)近似地满足函数关系y=ax2+bx+c(a≠0).下图记录了铅球飞行中的x与y的三组数据,根据上述函数模型和数据,可推断出该铅球飞行到最高点时,水平距离最接近的是( )A.2.6 mB.3 mC.3.5 mD.4.8 m6.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t/s 0 1 2 3 4 5 6 7 …h/m 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=9 2;③足球被踢出9 s时落地;④足球被踢出1.5 s时,距离地面的高度是11 m.其中正确结论的个数是()A.1B.2C.3D.4二、填空题7.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________(不要求写自变量的取值范围),所以每件降价________元时,每日获得的最大利润为________元.8.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=﹣116x2,当水面离桥拱顶的高度OC是4m时,水面的宽度AB为______m.9.公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行米才能停下来. 10.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=﹣29x2+89x+109,则羽毛球飞出的水平距离为米.11.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向点B以2 cm/s 的速度运动,点Q从点B开始沿BC向点C以1 cm/s的速度运动,如果点P,Q分别从点A,B 同时出发,当△PBQ的面积最大时,运动时间为________s.12.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度沿各边向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________s时,四边形EFGH的面积最小,其最小值是________ cm2.三、解答题13.某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?14.某宾馆重新装修后,有50间房可供游客居住,经市场调查发现,每间房每天的定价为140元,房间会全部住满,当每间房每天的定价每增加10元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出40元的各项费用.设每间房每天的定价增加x元,宾馆获利为y元.(1)求y与x的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的2倍,此时每间房价为多少元时宾馆可获利8000元?15.如图,在足够大的空地上有一段长为a m的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN.已知矩形菜园的一边靠墙,另三边一共用了100 m木栏.(1)若a=20,所围成的矩形菜园的面积为450 m2,求所用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.16.如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2 cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t s时,四边形APQC的面积是S cm2,写出S与t之间的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?17.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?18.有一座抛物线形状的拱桥,正常水位时桥下水面宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h m时,桥下水面的宽度为d m,求出用h表示d的函数解析式;(3)设正常水位时桥下的水深为2 m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18 m,求水深超过多少时就会影响过往船只在桥下顺利航行.19.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求出当长方体底面面积为12 dm2时,裁掉的正方形的边长.(2)若要求制作的长方体的底面长不大于底面宽的5倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元.当裁掉的正方形的边长多大时,总费用最低?最低为多少?20.某游乐园有一个直径为16 m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3 m处达到最高,高度为5 m,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1) (2)(1)求水柱所在抛物线(第一象限部分)的函数解析式.(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 m的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32 m,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合.请探究扩建改造后水柱的最大高度.参考答案1.A2.B3.A.4.B.5.C.6.B.7.答案为:(30﹣x) (20+x) ﹣x2+10x+600 5 6258.答案为:16.9.答案为:20.10.答案为:5;11.答案为:2.12.答案为:3,18.13.解:(1)设y与x的函数关系式为:y=kx+b(k≠0)由题意得: ,解得:k=﹣2,b=160所以y 与x 之间的函数关系式是y=﹣2x +160(40≤x ≤80);(2)由题意得,w 与x 的函数关系式为:w=(x ﹣40)(﹣2x +160)=﹣2x 2+240x ﹣6400=﹣2(x ﹣60)2+800当x=60元时,w 最大利润是800元所以当销售单价x 为60元时,日销售利润w 最大,最大日销售利润是800元.14.解:(1)由题意得(14040)(50)10x y x =+--2140500010x x =-++ 答:y 与x 的函数关系式为 2140500010y x x =-++; (2)由(1)可得:2211405000(200)90001010y x x x =-++=--+ 令8000y =,即218000(200)900010x =--+,解得:300x =或100x = 1401402x +⨯,解得:140x ,100x ∴=此时每间房价为:140100240+=(元)答:每间房价为240元时,宾馆可获利8000元.15.解:(1)设AD =x m ,则AB =100-x 2 m. 依题意,得100-x 2·x =450. 解得x 1=10,x 2=90. ∵a =20且x ≤a∴x 2=90不合题意,应舍去.故所利用旧墙AD 的长为10 m.(2)设AD =x m ,矩形ABCD 的面积为S m 2则0<x ≤a ,S =100-x 2·x =﹣12()x 2-100x =﹣12()x -502+1 250. ①若50≤a ,则当x =50时,S 最大值=1 250;②若0<a<50,则当0<x ≤a 时,S 随x 的增大而增大故当x =a 时,S 最大值=50a ﹣12a 2. 综上:当a ≥50时,矩形菜园ABCD 的面积最大为1 250 m 2;当0<a<50时,矩形菜园ABCD 的面积最大为(50a ﹣12a 2)m 2. 16.解:(1)∵AB =6,BC =12,∠B =90°∴BP =6﹣t ,BQ =2t∴S 四边形APQC =S △ABC ﹣S △PBQ =12×6×12﹣12×(6﹣t)×2t 即S =t 2﹣6t +36(0<t<6).(2)∵S =t 2﹣6t +36=(t ﹣3)2+27∴当t =3时,S 最小,最小值是27.17.解:(1)根据题意,得S =x(24﹣3x),即所求的函数解析式为:S =﹣3x 2+24x 又∵0<24﹣3x ≤10∴143≤x<8;(2)根据题意,设花圃宽AB 为xm ,则长为(24﹣3x)∴﹣3x 2+24x =45.整理得x 2﹣8x +15=0,解得x =3或5当x =3时,长=24﹣9=15>10不成立当x =5时,长=24﹣15=9<10成立∴AB 长为5m ;(3)S =24x ﹣3x 2=﹣3(x ﹣4)2+48∵墙的最大可用长度为10m ,0≤24﹣3x ≤10∴143≤x<8∵对称轴x =4,开口向下∴当x =143m ,有最大面积的花圃.18.解:(1)设抛物线的解析式为y =ax 2.∵在正常水位时,点B 的坐标为(10,﹣4)∴﹣4=a ×102,∴a =﹣125. ∴(2)当水位上升h m 时,点D 的纵坐标为﹣(4﹣h).设点D的横坐标为x(x>0),则有﹣(4﹣h)=﹣1 25x2∴x1=54-h,x2=﹣54-h(舍去)∴d=2x=104-h.该抛物线的解析式为y=﹣125x2.(3)当桥下水面宽为18 m时,18=104-h∴h=0.76.又∵2+0.76=2.76(m)∴桥下水深超过2.76 m时就会影响过往船只在桥下顺利航行.19.解:(1)如图所示:设裁掉的正方形的边长为x cm,由题意可得(10﹣2x)(6﹣2x)=12即x2﹣8x+12=0,解得x1=2,x2=6(舍去).所以裁掉的正方形的边长为2 dm.(2)因为长不大于宽的5倍所以10﹣2x≤5(6﹣2x)所以0<x≤2.5.设总费用为w元,由题意可知:w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24. 因为抛物线的对称轴为直线x=6,且开口向上所以当0<x≤2.5时,w随x的增大而减小所以当x=2.5时,w最小值=25.所以当裁掉的正方形的边长为2.5 dm时,总费用最低,最低为25元. 20.解:(1)∵抛物线的顶点坐标为(3,5)∴设其函数解析式为y=a(x﹣3)2+5.将(8,0)代入解析式,解得a=﹣1 5 .∴抛物线的函数解析式为y=﹣15(x﹣3)2+5第 11 页 共 11 页 即y =﹣15x 2+65x +165(0<x<8). (2)当y =1.8时,1.8=﹣15x 2+65x +165,解得x 1=7,x 2=﹣1(舍去). 答:王师傅必须站在离水池中心7 m 以内.(3)由y =﹣15x 2+65x +165可得原抛物线与y 轴的交点为(0,165). ∵装饰物的高度不变∴新抛物线也经过点(0,165). ∵喷水柱的形状不变,∴a =﹣15. ∵直径扩大到32 m∴新抛物线也过点(16,0).设新抛物线为y 新=﹣15x 2+bx +c(0<x<16). 将点(0,165)和(16,0)代入,解得b =3,c =165. ∴y 新=﹣15x 2+3x +165.∴y 新=﹣15(x ﹣ 152)2+28920,当x =152时,y 新=28920. 答:扩建改造后水柱的最大高度为28920 m.。

中考二次函数应用题(及答案解析)

中考二次函数应用题(及答案解析)

中考二次函数应用题(及答案解析)二次函数应用题1.如图1,足球场上守门员李伟在O 处抛出一高球,球从离地面1m 处的点A 飞出,其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,且飞行的路线是抛物线的一部分.以点O 为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x 轴的正方向建立坐标系,并把球看成一个点(参考数据:取437≈,265≈)(1)求足球的飞行高度(m)y 与飞行水平距离(m)x 之间的函数关系式; (2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(3)若对方一名1.7m 的队员在距落点3m C 的点H 处,跃起0.3m 进行拦截,则这名队员能拦到球吗?(4)如图2,在(2)的情况下,若球落地后又一次弹起,据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半,那么足球弹起后,会弹出多远?2.东东在网上销售一种成本为30元/件的T 恤衫.销售过程中的其他各种费用(不再含T 恤衫成本)总计50(百元).若销售价格为x (元/件).销售量为y (百件).当4060x ≤≤时,y 与x 之间满足一次函数关系.且当40x =时,6y =,有关销售量y (百件)与销售价格x (元/件)的相关信息如下: 销售量y (百件) _____________ 240y x =销售价格x (元/件)4060x ≤≤6080x ≤≤(1)求当4060x ≤≤时.y 与x 的函数关系式:(2)①求销售这种T 恤衫的纯利润w (百元)与销售价格x (元/件)的函数关系式; ②销售价格定为每件多少元时.获得的利润最大?最大利润是多少?3.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下: 时间x (分钟) 0 123456789915x <≤人数y (人)0 170 320 450 560 650 720 770 800 810 810(1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x 之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?4.某社区委员会决定把一块长40m ,宽30m 的矩形空地改建成健身广场;设计图如图所示,矩形四周修建4个全等的长方形花坛,花坛的长比宽多5米,其余部分修建健身活动区,设花坛的长为()m 610x x ≤≤,健身活动区域的面积为2m S .(1)求出S 与x 之间的函数关系式; (2)求健身活动区域的面积S 的最大值.5.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?6.为进一步落实“双减增效”政策,某校增设活动拓展课程——开心农场.如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB BC ⊥,3AB =米,1BC =米)和总长为14米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D在线段AB上时,①设DF的长为x米,请用含x的代数式表示EF的长;②若要求所围成的小型农场DBEF的面积为12平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?7.在“乡村振兴”行动中,某村办企业开发了一种有机产品,该产品的成本为每盒30元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每涨价1元,每天少销售10盒.(1)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式;(2)当每盒售价订为多少元时,可使当天获得最大销售利润,销售利润是多少?a>给村级经济合作社,物价部门要(3)现在该企业打算回报社会,每销售1盒捐赠a元()5求该产品销售定价不得超过每盒75元,该企业在严格执行物价部门的定价前提下欲使每天捐赠后的日销售利润随产品售价的增大而增大,求a的取值范围.8.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x为正整数且x≤80),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该店每月所获利润为w元,当销售单价降低多少元时,每月所获利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从出售的每条裤子中捐出5元资助贫困学生.总捐款额不低于750元,求捐款后每月最大利润.9.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天可多销售4件,设每件商品的售价下降x元,每天的销售利润为w元.(1)求w与x的函数关系式;(2)每天要想获得510元的利润,每件应降价多少元?(3)每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?10.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是2724y x x =-++(x >0).(1)柱子OA 的高度是______米;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?【参考答案】二次函数应用题1.(1)21(6)412y x =--+ (2)13m(3)这名队员不能拦到球 (4)足球弹起后,会弹出10m 【解析】 【分析】(1)根据其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,设顶点式()264y a x =-+,将()0,1A 代入,待定系数法求解析式即可;(2)令0y =,求得与x 轴的交点坐标即可求解; (3)将10x =代入求得y 的值,进而比较即可求解(4)根据题意求得新抛物线的解析式,根据题意即求元抛物线与2y =的所截线段长即可,解一元二次方程求解即可 (1)①当最大高度4y =时,6x =,∴设y 与x 之间的函数关系式为()264y a x =-+, 又()0,1A , ∴()21064a =-+, ∴112a =-,∴21(6)412y x =--+; (2)令0y =,则210(6)412x =--+, 解得143613x =+≈,2436x =-+(负值舍去), ∴球飞行的最远水平距离是13m ; (3)当13310x =-=时,81.70.323y =>+=, ∴这名队员不能拦到球; (4))如图,足球第二次弹出后的距离为CD ,根据题意知CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位长度),∴21(6)4212x --+=, 解得1626x =-,2626x =+, ∴214610m CD x x =-=≈. 答:足球弹起后,会弹出10m .【点睛】本题考查了二次函数的应用,掌握二次函数的平移,二次函数与坐标轴的交点问题,二次函数图像与性质,掌握二次函数图像与性质是解题的关键. 2.(1)0.110y x =-+(2)①当4060x ≤≤时,20.113350=-+-w x x ;当6080x <≤时,7200190=-+w x; ②销售价格定为80元/件时,获得的利润最大,最大利润是100百元 【解析】 【分析】(1)把把60x =代入240y x=得4y =,设y 与x 的函数关系式为:y =kx +b ,把x =40,y =6;x =60,y =4,代入解方程组即可得到结论;(2)①根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式; ②结合①中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可. (1)解:把60x =代入240y x=得4y =. 设y 与x 的函数关系式为:y kx b =+, ∵当40x =时,6y =,当60x =时,4y =,∴406604k b k b +=⎧⎨+=⎩, 解得:0.110k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:0.110y x =-+. (2)①当4060x ≤≤时,()()2300.110500.113350w x x x x =--+-=-+-;当6080x <≤时,()24072003050190w x x x=-⋅-=-+; ②当4060x ≤≤时,()220.1133500.16572.5w x x x =-+-=--+, ∵4060,65,x x ω≤≤≤随x 的增大而增大. ∴当60,70x w ==最大 (百元). 当6080x ≤≤时,7200190xω=-+ ∵72000-<,∴w 随x 的增大而增大,当80x =时,100w =最大 (百元).答:销售价格定为80元/件时,获得的利润最大,最大利润是100百元. 【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键. 3.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟; (3)2 【解析】 【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解. (1)根据表格中数据可知,当x =0时,y =0, ∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩,∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<,①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490, ∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小, ∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0, 解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟; (3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810, 解得m ≥118, ∵m 是整数, ∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点. 【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键. 4.(1)24201200S x x =-++;()610x ≤≤ (2)活动区域面积S 的最大值为21176m 【解析】 【分析】(1)利用健身区域的面积等于矩形的面积减掉周围四个长方形花坛的面积即可求解; (2)把(1)中求得的S 与x 之间的函数关系式化成二次函数的顶点式,利用二次函数的增减性即可求解. (1)(1)由题意解得:()2=4030454201200S x x x x ⨯--=-++;()610x ≤≤(2)(2)2254201200412252S x x x ⎛⎫=-++=--+ ⎪⎝⎭,∵40a =-<,抛物线开口向下,对称轴为52x =, ∴当610x ≤≤时,S 随x 的增大而减小, ∴当6x =时,S 有最大值,最大值为1176, 答:活动区域面积S 的最大值为21176m . 【点睛】本题考查了二次函数的应用及二次函数的性质,读懂题意,找出题目中的等量关系是解题的关键.5.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元. 【解析】 【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可. (1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤ 即10300y x =-+,1030x ≤≤, (2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-, ∵100-<,开口向下,对称轴为20x ,1030x ≤≤∴当20x 时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式. 6.(1)①153EF x =-;②4米(2)饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米 【解析】 【分析】(1)①根据题意结合图形即可求解; ②根据矩形的面积公式列方程求解即可;(2)设饲养场DBEF 的面积为S ,求出关于DF 的长的关于x 的函数关系式,根据二次函数的性质即可解答. (1)①设DF 的长为x 米, ∵点D 在线段AB 上,∴()()1421153EF x x x =---=-米, ②∵3AB =,∴3EF ≤,即1533x -≤, ∴4x ≥;设DF 的长为x 米,根据题意得:()15312x x -=, 解得:14x =,21x =(此时点D 不在线段AB 上,舍去), ∴4x =,答:饲养场的长DF 为4米; (2)设饲养场DBEF 的面积为S ,DF 的长为x 米, ①点D 在15段AB 上,由(1)知此时4x ≥, 则()22575153315324S x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,∵30a ,抛物线对称轴是直线52x =, ∴在对称轴右侧,S 随x 的增大而减小,∴4x =时,S 有最大值,23415412S =-⨯+⨯=最大值(平方米);②点D 在线段BA 的延长线上,此时4x <, 则()()2132715333222S x x x =-+=--+, ∵302a =-<,34<,∴3x =时,S 有最大值,272S =最大值, ∴3x =时,272S =最大值(平方米); ∵27122>, ∴饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 答:饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 【点睛】此题主要考查的是二次函数的应用,一元二次方程的应用,掌握矩形的面积计算方法是解题的关键.7.(1)w=-10x2+1400x-33000;(2)每盒售价订为70元时,可使当天获得最大销售利润,销售利润是16000元;(3)10≤a<30.【解析】【分析】(1)根据利润=(售价-进价)×销量,即可得到w关于x的函数解析式;(2)把(1)中的函数解析式化成顶点式,根据二次函数的性质,即可得出答案;(3)根据题意,仿照(1)列出函数关系式,求出对称轴,再根据二次函数的性质分析,即可得到a的取值范围.(1)解:当售价为x元时,上涨(x-60)元,销量为500-10(x-60)=-10x+1100,∴w=(x-30)(-10x+1100)=-10x2+1400x-33000,故w关于x的函数解析式是w=-10x2+1400x-33000;(2)解:w=-10x2+1400x-33000=-10(x-70)2+16000∵-10<0∴抛物线开口向下,函数有最大值即当x=70时,w有最大值,最大值是16000,故每盒售价订为70元时,可使当天获得最大销售利润,销售利润是16000元.(3)解:由题意得w=(x-30-a)(-10x+1100)=-10x2+(1400+10a)x-(33000+1100a)其中60≤x≤75,∵-10<0∴抛物线开口向下,函数有最大值,抛物线的对称轴是x=140010170202aa+-=+-,∵每天捐赠后的日销售利润随产品售价的增大而增大,∴当60≤x≤75时,w随着x的增大而增大,∴1702a+≥75即a≥10,又∵x-30-a>0,∴a<x-30,其中60≤x≤75,∴ a <60-30,即a <30时,a <x -30恒成立,∴ 10≤a <30∴a 的取值范围是10≤a <30.【点睛】本题考查了二次函数在销售问题中的应用,熟练应用二次函数求最值是解决问题的关键. 8.(1)5500y x =-+(x 为正整数且x ≤80)(2)10元,4500元(3)3750元【解析】【分析】(1)直接利用销售单价每降1元,则每月可多销售5条列出y 与x 的函数关系式并整理即可;(2)利用“销售量×每件利润=总利润”列出函数关系式,然后运用二次函数的性质求最值即可;(3) 利用“销售量×(每件利润-5)=总利润”列出函数关系式,再根据总捐款额不低于750元以及题意列不等式组求出x 的取值范围,最后利用二次函数的性质求最值即可.(1)解:由题意可得:y =100+5(80﹣x ),整理得 y =﹣5x +500(x 为正整数且x ≤80).(2)(2)由题意,得:w =(x ﹣40)(﹣5x +500)=﹣5x 2+700x ﹣20000=﹣5(x ﹣70)2+4500,∵a =﹣5<0,∴w 有最大值,即当x =70时,w 最大值=4500,∴应降价80﹣70=10(元).答:当降价10元时,每月获得最大利润为4500元.(3)(3)由题意,得:w =(x ﹣40﹣5)(﹣5x +500)=﹣5(x ﹣72.5)2+3781.25,由题意得5(5500)75080x x -+≥⎧⎨≤⎩, 解得x ≤70,∵﹣5<0,∴x <72.5时,w 随x 的增大而增大,∴x =70时,w 最大值=﹣5(x ﹣72.5)2+3781.25=3750.答:捐款后每月最大利润是3750元.【点睛】本题主要考查了二次函数和不等式组在销售问题中的应用,理清题中的数量关系、正确列出函数关系式是解答本题的关键.9.(1)w =−8x 2+32x +480;(2)每件商品应降价2.5元;(3)每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【解析】【分析】(1)设每件商品应降价x 元,由每件利润×销售数量=每天获得的利润可列出关于x 的关系式;(2)根据题意列出一元二次方程,解方程可得答案;(3)把w 关于x 的函数解析式配方成顶点式,再利用二次函数的性质可得答案.(1)解:由题意得w =(40−30−x )(4×0.5x +48)=−8x 2+32x +480, 答:w 与x 的函数关系式是w =−8x 2+32x +480;(2)解:由题意得,510=−8x 2+32x +480,解得:x 1=1.5,x 2=2.5,所以为尽快减少库存每件商品应降价2.5元;答:每天要想获得510元的利润,每件应降价2.5元.(3)解:∵w =−8x 2+32x +480=−8(x −2)2+512,∴当x =2时,w 有最大值512,此时售价为40−2=38(元),答:每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【点睛】此题主要考查了二次函数的应用,一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.10.(1)74(2) 【解析】【分析】(1)OA 在y 轴上,2724y x x =-++中,令x =0,可得y 即为OA ; (2)水流落得最远时,落点在x 轴上,在2724y x x =-++中,当y =0时,27204x x -++=,求得1x . (1)在2724y x x =-++中,令x =0,则y = 74, ∴柱子OA 的高度为74米; 故答案为74; (2)(2)在2724y x x =-++中, 当y =0时27204x x -++=, 272-04-x x =, ()27=-2-41-=114⎛⎫∆⨯⨯ ⎪⎝⎭,∴1x ==∴1x =,2x =·, 又∵x >0,∴解得x =【点睛】本题考查了二次函数的应用,解决问题的关键是平面直角坐标系中x 轴上的纵坐标为0,y 轴上的横坐标为0,解方程.。

人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案

人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案

人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________1.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?2.正常水位时,抛物线拱桥下的水面宽为20m,水面上升3m达到该地警戒水位时,桥下水面宽为10m.(1)在恰当的平面直角坐标系中求出水面到桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式;(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?3.某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?4.如图,二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的表达式,以及点B的坐标.(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.5.近年来国家倡导“电动车,上牌照,保安全,戴头盔”.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足函数关系y=−2x+200.专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.(1)设专卖店在优惠活动期间,月销售利润为w元,求w与x之间的函数解析式;(2)嘉嘉说:“在优惠活动期间,该专卖店的月销售的最大利润能达到1700元.”请判断嘉嘉的说法是否正确,并说明理由.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?7.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25米)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长40米的栅栏围成(如图),设绿化带的边BC长为x米,绿化带的面积为y 平方米.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带面积最大?最大面积是多少?8.某公司生产某种皮衣,每件成本为200元.据公司往年数据分析预测,今年12月份的日销售量s(件)与时间t(天)的关系如图.前20天每天的价格m1(元/件)与时间t(天)的函数关系式m1=2.5t+250(1≤t≤20且t为整数),第21天到月底每天的价格m2(元/件)与时间t(天)的函数关系式m2=-5t+400(21≤t≤31且t为整数).(1)求s与t之间的函数关系式;(2)求预测12月份中哪一天的日销售利润最大,最大利润是多少?(3)根据疫情情况,在实际销售的前20天中,该公司决定每销售一件衣服就捐赠10a元(a<4)给红十字会.公司要求在前20天中,每天扣除捐款后的日销售利润随时间t(天)的增大而增大,问第10天时,日销售利润能不能超过3600元,请说明理由.9.某化工材料经销公司购进一种化工原料若干千克价格为每千克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100在销售过程中,每天还要支付其他费用450元。

人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)

人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)
(1)求 与 的函数关系式,并写出 的取值范围;
(2)当销售单价定为多少时, 最大,最大为多少元?
(3)销售期间,为了确保获利不低入36000元,直接写出该花生销售价格的范围.
10.合肥某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是150件;销售单价每上涨1元,每天的销售量就减少10件.
(1)求该款T恤4月份到6月份销售量的月平均增长率;
(2)从7月份起,商场决定采用降价促销回馈顾客,销售利润不超过30%.经试验,发现该款T恤在6月份销售量的基础上,每降价1元,月销售量就会增加20件.如何定价才能使利润最大?并求出最大利润是多少元?
16.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)(元)之间的关系可近似的看作一次函数: .
(1)求y与x的函数解析式
(2)求出当x是多少时,利润y有最大值,最大值是多少?
2.某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶.经市场调查表明,每瓶售价每增加 元,日均销售量减少40瓶.
(1)当每㼛售价为11元时,日均销售量为______瓶;
(2)当每㼛售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?
(1)当每月获利5250元时,求此时每顶头盔的售价;
(2)当每顶头盔售价多少元时,每月的销售利润最大?最大利润是多少元?
9.直播扶贫助农已经成为10万淘宝主播共同的公益事业.为切实提高农民的收入,推动贫困乡村脱贫致富,在明星直播间销售花生.已知该花生的成本为8元/kg,销售量 与销售单价 (元/kg)的函数关系如图所示,销售获利为 元.
6.(1) ,详见解析
(2)售价定为70元/千克时,最大利润是1800元

人教版初中数学九年级二次函数(经典例题含答案)

人教版初中数学九年级二次函数(经典例题含答案)

二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。

人教版九年级上册数学第二十二章二次函数应用题专题训练含答案

人教版九年级上册数学第二十二章二次函数应用题专题训练含答案

人教版九年级上册数学第二十二章二次函数应用题专题训练1.某超市购进一批水果,成本为8元/kg ,根据市场调研发现,这种水果在未来10天的售价m (元/kg )与时间第x 天之间满足函数关系式1182m x =+(110x ≤≤,x 为整数),又通过分析销售情况,发现每天销售量()kg y 与时间第x 天之间满足一次函数关系,下表是其中的三组对应值.(1)求y 与x 的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?2.荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示). (2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?3.来商店经市场调查发现:某种商品的周销售量y (件)与售价x (元/件)的关系为2200y x =-+,其售价与周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价) (1)求该商品的进价;(2)求当该商品的售价是多少元/件时,周销售利润为1600元?4.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件. (1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?5.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是______(填一次函数或二次函数),求这个函数关系式;(2)若当月销售量不低于300件,售价为多少时,当月利润最大?最大利润是多少?6.在学习一次函数时,我们经历了列表、描点、连线画函数图像,并结合图像研究函数性质的过程下面我们尝试利用之前的学习经验研究函数2y x 的性质及其应用,请按要求完成下列各题.(1)函数2yx 中自变量x 的取值范围是:_________.(2)请同学们通过列表、描点、连线画出此函数的图像; (3)根据函数图像,写出此函数的三条性质; (4)写出不等式26x x -+<的解集.7.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该商品销售价定为每干克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?8.为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y (千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围.(2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大利润为多少?9.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价-进价)(1)直接完成下列填空①每件商品的进价为元/件①y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(50<m<70),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,求出周销售的最大利润.10.某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?11.某商场销售一款工艺品,每件工艺品的进价为11元,经过一段时间的销售发现,每天的销量y(件)与每件工艺品的售价x(元)满足一次函数关系,当每件售价为15元时,每天销售150件;当每件售价为20元时,每天销售100件.(1)求y与x之间的函数关系式;(2)设商场销售该工艺品每天获得的利润为W(元),试求W与x的函数表达式;(3)既要保障商场每天的获利最大,还要尽快减少库存,问每件工艺品售价应定为多少?商场每天获得的最大利润是多少?12.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x (元)( x≥30)满足一次函数关系m=162﹣3x.(提示:注意m的取值范围.)(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式(写出自变量x 的取值范围).(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.13.在平面直角坐标系中已知抛物线L1:y=ax2+bx﹣3经过点A(﹣1,0)和点B(3,0),点D为抛物线的顶点.(1)求抛物线L1的表达式及点D的坐标;(2)将抛物线L1关于点A对称后的抛物线记作L2,抛物线L2的顶点记作点E,求抛物线L2的表达式及点E 的坐标;(3)是否在x轴上存在一点P,在抛物线L2上存在一点Q,使D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出Q点坐标,若不存在,请说明理由.14.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y (件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?15.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天销售利润为y元.(1)求y与x之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要元.16.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?17.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?18.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?19.某件产品的成本是每件10元,试销售阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表所示.(1)观察以上数据,根据我们所学到的一次函数、二次函数,回答:y是x的什么函数?并求出解析式.(2)要使得每日的销售利润最大,每件产品的销售价应定为多少?此时每日的销售利润是多少?20.某商场销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价(元)满足y=﹣10x+400,设销售这种商品每天的利润为w(元).(1)求w与x之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得750元的利润,应将销售单价定为多少元?(3)当每天销售量不少于30件,且销售单价至少为35元时,该商场每天获得的最大利润是多少?答案1.(1)y =−x +35(1≤x ≤10,x 为整数);(2)在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元. 2.(1)()4010x + (2)21060400y x x =-++ (3)24元/千克3.(1)该商品的进价为40元/件(2)当售价为60元/件或80元/件时,周销售利润为1600元 4.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元. 5.(1)一次函数,10900y x =-+(2)当售价定为60元时,利润最大,最大值为6000元 6.(1)x 取任意实数 (2)见解析(3)①图像关于y 轴对称;①此函数有最小值0;①当0x >时,y 随x 的增大而增大.(答案不唯一) (4)3x <-或2x >7.(1)221201600w x x =-+-(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元 (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元 8.(1)()209601830y x x =-+≤≤ (2)这天该农产品的售价为28元/千克(3)当销售单价为30元时,当天获得的利润最大,最大利润是4320元 9.(1)①20;①y =-2x +200(2)每件售价为60元时,利润W 最大,为3200元(3)当50<m <62时,周销售最大利润为2(22484800)m m -+-元;当62≤m <70时,周销售最大利润为2888元10.(1)401016()y x x =-+≤≤(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元. 11.(1)10300y x =-+; (2)2104103300W x x =-+-;(3)每件工艺品售价应定为20元,商场每天获得的最大利润是900元 12.(1)32524860y x x -+-=(30≤x ≤54)(2)商场每天销售这种商品的销售利润不能达到500元13.(1)抛物线1L 的函数表达式为223y x x =--,顶点D 的坐标为()1,4- (2)抛物线2L 的函数表达式为265y x x =---,点E 的坐标为()3,4-(3)点Q 的坐标为()5,0-或()38---或()38-+- 14.(1)y =﹣2x +160 (2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元 15.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500016.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元 17.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805018.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元 19.(1)y 是x 的一次函数,40y x =-+(2)产品的销售价应定为25元,此时每日的销售利润最大,为225元 20.(1)W =﹣10x 2+600x ﹣8000 (2)应将销售单价定为25元(3)该商场每天获得的最大利润是750元。

人教版九年级上册数学第二十二章二次函数应用题训练

人教版九年级上册数学第二十二章二次函数应用题训练

人教版九年级上册数学第二十二章二次函数应用题训练1.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为x m(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?2.某服装店销售一款卫衣,该款卫衣每件进价为60元,规定每件售价不低于进价.经市场调查发现,该款卫衣每月的销售量y(件)与每件售价x(元)满足一次函数关系y=-20x+2800.(1)若服装店每月既想从销售该款卫衣中获利24000元,又想尽量给顾客实惠,售价应定为多少元?(2)为维护市场秩序,物价部门规定该款卫衣的每件利润不允许超过每件进价的50%.设该款卫衣每月的总利润为w(元),那么售价定为多少元时服装店可获得最大利润?最大利润是多少元?3.为响应国家提出的由中国制造向中国创造转型的号召,某公司自主设计了一款可控温杯,每个的生产成本为18元,投放市场进行试销,经过调查得到每月销售量y(万/个)与销售单价x(元/个)之间的部分数据如下:(1)试判断y 与x 之间的函数关系,并求出函数关系式; (2)设每月的利润为w (万元),求w 与x 之间的函数关系式;(3)该公司既要获得一定利润,又要符合相关部门规定(产品利润率不高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?求出最大利润.4.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,1224x ≤<)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销售量固定为400件. ①当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润; ①若线下月利润与线上月利润的差不低于800元,直接写出x 的取值范围.5.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:千克)之间的函数关系.(1)求折线ABD 所表示的,1y 与x 之间的函数表达式.(2)若产品产量不超过70千克,求产量x 为多少千克时,获得的利润最大?最大利润是多少?6.某农场有100亩土地对外出租,现有两种出租方式:方式一 若每亩土地的年租金是400元,则100亩土地可以全部租出.每亩土地的年租金每增加5元土地少租出1亩. 方式二 每亩土地的年租金是600元.(1)若选择方式一,当出租80亩土地时,每亩年租金是_____元;(2)当土地出租多少亩时,方式一与方式二的年总租金差.....最大?最大值是多少? (3)农场热心公益事业,若选择方式一,农场每租出1亩土地捐出a 元()0a >给慈善机构;若选择方式二,农场一次性捐款1800元给慈善机构,当租出的土地小于60亩时,方式一的年收入高于方式二的年收入,直接写出a 的取值范围. (注:年收入=年总租金-捐款数)7.已知每张门票价格为30元时,平均每天有游客4000人,经调研知,若每张门票价格每增加10元,平均每游客减少500人,物价部门规定,每张门票不低于30元,不高于100元.设每天游客人数为y (人),每张门票价格涨价x (元)(x 为10的倍数).(1)写出y 与x 之间的函数关系式,并写出自量x 的取值范围;(2)若某天的门票收入为15万元,此收入是否为每天的门票最大收入?请说明理由; (3)请分析并回答门票价格在什么范围内每天门票收入不低于12万元.8.“童心迎六一,欢乐共成长”,某超市计划在儿童节期间进行一款文具的促销活动.该文具进价为5元/件,售价为9元/件时,当天的销售量为100件.在销售过程中发现:售价每下降0.5元,当天的销售量就增加5件.设当天销售单价统一为x 元/件(59x <≤,且x 是按0.5元的倍数下降),当天销售利润为y 元.(1)求y与x的函数关系式;(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过60%,要想当天获得最大利润,每件文具的售价应为多少元?并求出最大利润.9.某景区由A,B两个核心区域构成,可单独购票,也可购联票,挂牌价格如下表.去年6月份旺季到来,选择甲、乙、丙三种购票方式人数分别约有2万、3万、2万.预测今年6月份大致相当.为鼓励游客扩大游玩区域,决定调整联票价格.预期丙种票单价每下降1元,将约有原计划购甲种票600人,乙种票400人改购丙种票.(1)若丙种票单价下降10元,求景区今年6月份门票预期总收入.(2)将丙种票单价下降多少时,今年6月份门票总收入有最大值?最大值是多少?10.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;①当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.11.调查了某个考点上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,并绘制了如图所示图像.(1)研究发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x之间的函数关系式;(2)如果考生一进考点就开始排队测量体温,体温监测点有2个,每个监测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?12.用一根长20cm的铁丝围矩形.(1)若围成的矩形的面积是16cm2,求该矩形的长和宽;(2)当长和宽分别为多少时,该矩形的面积最大?最大面积是多少?13.如图,小亮父亲想用长为80m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边m,面积为2AB xS.m(1)写出S与x之间的关系式,并指出x的取值范围;AB BC分别为多少米时,羊圈的面积最大?最大面积是多少?(2)当,14.自由落体运动是由于引力的作用而造成的,地球上物体自由下落的时间t (s )和下落的距离h (m )的关系是h =4.9t 2.我们知道,月球的引力大约是地球引力的16,因此月球上物体自由下落的时间t (s )和下落的距离h (m )的关系大约是h =0.8t 2. (1)在同一平面直角坐标系中作图,分别表示地球、月球上h 和t 的关系; (2)比较物体下落4s 时,在地球上和月球上分别下落的距离;(3)比较物体下落10m 时,在地球上和月球上分别所需要的时间(结果精确到0.1s ).15.如图,有一座抛物线型拱桥,在正常水位时水面宽20m AB =,当水位上升3m 时,水面宽10m CD =.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5km /h 的速度向此桥径直驶来,当船距离此桥35km 时,桥下水位正好在AB 处,之后水位每小时上涨0.25m ,当水位达到CD 处时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?16.一个高尔夫球手击出一个高尔夫球,水平距离()m d 和球上升的高度()m h 满足关系:20.004h d d =-.(1)当球飞了90m 远时,它上升的高度是多少?(2)当球第一次到达50m 高处时,它已飞了多远?(结果精确到1m )17.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?18.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.x 时,完成以下两个问题:(1)当4①请补全下面的表格:①若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.19.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).20.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学二次函数实际问题(含答案)一、单选题2+2t,则当t=4t(米)与时间(秒)的关系式为s=5t时,该物体所经1.在一定条件下,若物体运动的路程s过的路程为][A.28米B.48米C. 68米米.88 D2 +bx+c的图象过点(1,0)……2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax 求证这个二次函数的,题中的二次函数确定具有的性质是图象关于直线x=2对称.][ A.过点(3,0)B.顶点是(2,-1)C.在x轴上截得的线段的长是33)(0,D.与y轴的交点是3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面是离墙的距离OB1m,离地面m,则水流落地点BM垂直),如图,如果抛物线的最高点离墙A.2mB.3mC .4 mm5D.之间的函数关系式是,则该运与水平距离4.如图,铅球运动员掷铅球的高度y(m)x(m)页9共,页1第动员此次掷铅球的成绩是][A.6 mB.8mC. 10 mm.12 D2,若滑到间的关系为S=l0t+2t的斜坡笔直滑下,滑下的距离S(m)与时间5.某人乘雪橇沿坡度为1t(s):4s,则此人下降的高度为坡底的时间为][A.72 m36 .m BC.36 mm.18D2 +50x-500,则要想满足关系y=-x与销售单价x(元))6.童装专卖店销售一种童装,若这种童装每天获利y(元获得最大利润,销售单价为][A.25元B.20元C.30元元40D.7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入2 +bx+c所示,则下列结论正确的是网.若足球运行的路线是抛物线y=ax-12a0<b< a-b+c>0;④③;;①a<②<a<0页9共,页2第][A.①③B.①④C.②③D.②④ 2 轴有交点,则my=2mx的取值范围是+(8m+1)x+8m的图象与xx8.关于的二次函数][m<A.B.m≥且m≠0C.m=m≠0D.m吨,该产品的年产量(吨)与费用(万元)之间函数的图象是顶点在原1 0009.某种产品的年产量不超过所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是①点的抛物线的一部分,如图(毛利润吨时,所获毛利润最大.所示,若生产出的产品都能在当年销售完,则年产量是( )线段,如图②-费用)=销售额②①][000 1 A.750 .B725 C.500 D.页9共,页3第10.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为8m,两侧距地面4m 高处各有一个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)][A.5.1 mB.9.0mC.9.1 mm9.2 D.11.图(1)是一个横断面为抛物线形状的拱桥,当水面在如图(1)时,拱顶(拱桥洞的最高点)离水面2m,水建立平面直角坐标系,则抛物线的关系式是如图(2)面宽4 m.][22x A. y= -2 .y=2xB2 y=-2 xC.2xD.y=2+bx.若此炮弹在第7秒与第秒后的高度为y公尺,且时间与高度关系为y=ax1x12.向上发射一枚炮弹,经4秒时的高度相等,则在下列哪一个时间的高度是最高的?][A.第8秒B.第10秒C. 第12秒页9共,页4第秒15D.第二、填空题13.把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积2.)的取值范围是( 的函数关系式是( ),自变量的和为S cmx,则S与x14.如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的表达式为( ).如果不考虑其他因,才能使喷出的水流不致落到池外.( )素,那么水池的半径至少要15.如图,一桥拱呈抛物线状,桥的最大高度是16 m,跨度是40 m,在线段AB上离中心M处5m的地方,.)m 桥的高度是(16.在距离地面2m高的某处把一物体以初速度v(m/s)竖直向上抛出,在不计空气阻力的情况下,其o:(其中g是常数,通常取10m/s),若v上升高度s(m)与抛出时间t(s)满足=10 m0)m/s,则该物体在运动过程中最高点距离地面(三、计算题17.求下列函数的最大值或最小值.(l);(x-2).(2)y=3(x+l)四、解答题18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC 所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O页9共,页5第.6 m的距离为(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高为4.2 m,宽为2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升20.如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =x2Smm,面积为2时,x的值;与x之间的函数关系式,并求当S=200 m(1)写出S,即矩形成黄金矩形,求此黄金矩形的长和宽.:(x+y)满足关系式x:y=ym(2)设矩形的边BC=y ,如果x,y21.某产品每件成本是120元,为了解市场规律,试销售阶段按两种方案进行销售,结果如下:方案甲:保留每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销量y(件)是售(元)的一次函数,且前三天的销售情况如下表:x价(1)如果方案乙中的第四天,第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?(2)分析两种方案,为了获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S.×销售量)成本额,销售额=销售额-=售价是多少?(注:销售利润22.某医药研究所进行某一抗病毒新药的开发,经过大量的服用试验后可知:成年人按规定的剂量服用后,页9共,页6第2 +bx+c(a≠0)的变化规律与某一个二次函数y=ax1微克=10-3毫克)随时间xh每毫升血液中含药量y微克(相吻合.并测得服用时(即时间为0)每毫升血液中含药量为0微克;服用后2h,每毫升血液中含药量为6微克;服用后3h,每毫升血液中含药量为7.5微克.(l)试求出含药量y微克与服用时间xh的函数关系式;并画出0≤x≤8内的函数图象的示意图;(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.)0 的总时间.(3)结合图象说明一次服药后的有效时间有多少小时?(有效时间为血液中含药量不为23.某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即(不考虑墙的厚度)m.AD=EF=BC=x3,xm应等于多少?(1)若想水池的总容积为36(2)求水池的容积V与x的函数关系式,并直接写出x的取值范围;应为多少?最大容积是多少?实践探究xV最大,(3)若想使水浊的总容积24.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20 m,如果水位上升3m时,水面CD的宽是10 m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)现有一辆载有一批物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以40 km/h的速度开往乙地,当行驶1 h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0. 25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?25.全线共有隧道37座,共计长达742421.2米.如图所示是庙垭隧道的截面,截面是由一抛物线和一矩形车道.米,隧道为单行线CD总宽度为82构成,其行车道页9共,页7第EHF建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;(1)示其中一盏路灯的平面直角坐标系中用坐标表在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)(2) 的位置;米.现为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5(3)米,该车能否通过这个隧米,车载货物的顶部与路面的距离为2.5有一辆汽车,装载货物后,其宽度为4道?请说明理由.千1 000我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌26.元;但冷冻存放这批野生菌时每天克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1千克的野3元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有需要支出各种费用合计310 生菌损坏不能出售.之间的函数关系式.与x元,试写出设x天后每千克该野生菌的市场价格为yy (1)之间的函xP 与若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出(2) 数关系式.各种费用)-=销售总额-收购成本(3)李经理将这批野生菌存放多少天后出售可获得最大利润W元?(利润,为了减轻桥身重量,还为了桥形的美观,10 m27.在如图所示的抛物线型拱桥上,相邻两支柱间的距离为、4m、D离桥面的距离分别为更好地防洪,在大抛物线拱上设计两个小抛物线拱,三条抛物线的顶点C、B.你能求出各支柱的长度及各抛物线的表达式吗?2 m10 m、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结28.(月)的关系可用一条线段上的点来表示,如图甲,一件商品的成t元M()与时间果如下:一件商品的售价月份成本最高,如图乙.根据图象提(月)的关系可用一条抛物线上的点来表示,其中6)本Q(元与时间t供的信息解答下面问题页9共,页8第售价一成本)=一件商品在3月份出售时的利润是多少元?(利润(1) (月)之间的函数关系式;)与时间t(2)求出图(乙)中表示的一件商品的成本Q(元之间的函数关系式吗?若该公司能在一个(月)与时间t7月份至月份一件商品的利润W(元)(3)你能求出3件,请你计算该公司在一个月内最少获利多少元?月内售出此种商品30000元,已知吨这种产品的售价为每吨Q吨所需费用为P元,而卖出x产品29.某工厂生产Ax(吨)的函数关系式;(元)关于吨,写出这种产品所获利润Wx(1)该厂生产并售出x?(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元)元(台)与销售单价x(30.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w (元).满足w=-2x+80,设销售这种台灯每天的利润为y 之间的函数关系式;y与x(1)求当销售单价定为多少元时.每天的利润最大?最大利润是多少?(2)元的利润.应将销售单价定为多少元?150(3)在保证销售量尽可能大的前提下.该商场每天还想获得页9共,页9第参考答案D1、 A 2、B3、 C 4、 C 、5A、6B、7B、8 B 、9C、10C、11B、120<x<100 、132 2.5 +2. (x-1)25 14、y=-15、15716、17、解:(l),有最大值.时,yy有最大值,当x=-l(x-2)=3(x2-x-2) a=3>0,(2)y= 3(x+l)有最小值时,有最小值,当.yx=y2+6,又因为抛物线过点(4,2)、解:设抛物线的解析式为18y=ax,则16a+6=2,,y=+6.抛物线的解析式为y=x=2.4当时,56>4.2,(2)+6 =-1. 44+6=4.故这辆货运卡车能通过该隧道.2 +252x-48603 x、解:(l)y=(x-30) (162-3x)= - 192元432当定价为42-3 (2)y= (x-42) 元时,最大销售利润为+432 2时,S=200x2x)=-2 .+40x, 当、20解:(l)S=x(40-y=40-2x,则当(2)BC=y2②①=x(x+y) ②由、y①又页4共,页1第20+不合题意,舍去,,其中解得x=20±,x=20-y=m.m当矩形成黄金矩形时,宽为,长为20-21、解:(1)方案乙中的一次函数为y= -x+200.第四天、第五天的销售量均为20件.方案乙前五天的总利润为:130×70+150×50+160 ×40+180 ×20+180 ×20-120 ×(70+50+40+20+20)=6 200元.方案甲前五天的总利润为(150-120)×50×5=7 500元,显然6200<7 500,前五天中方案甲的总利润大.(2)若按甲方案中定价为150元/件,则日利润为(150-120)×50=1500元,对乙方案:2 2+1600(x-160),-120(-x+200)= -x +320x-24000= -S=xy-120y=x(-x+200)元.元/件,日销售利润最大,最大利润为1600即将售价定在160(1)图象略.22、解:(2)当x=4时,函数y有最大值8.所以服药后4h,才能使血液中的含药量最大,这时的最大含药量是每毫升血液中含有药8微克.8h轴两交点的横坐标的差即为有效时间.故一次服药后的有效时间为(3)图象与x23、解:(l)因为AD= EF=BC=x m,所以AB=18-3x.所以水池的总容积为1. 5x(18-3x)=36,即x2-6x+8=0,解得x=2,x=4,21所以x应为2或4.2 +27x,V=1. 5x(18-3x)= -4.5x (2)由(1)可知V与x的函数关系式为且x的取值范围是:0<x<6.2+27.x (3)V=4.53.,最大容积为40.5 m时,V有最大值,即若使水池总容积最大,x应为3所以当x=32,y= ax24、解:(1)设抛物线的解析式为桥拱最高点0到水面CD的高为h米,则D(5,-h).B(10,-h-3).y=-即抛物线的解析式为.所以(2)货车按原来速度行驶不能安全通过此桥.千米/时.60要使货车安全通过此桥,货车的速度应超过25、解:(1)以EF所在直线为x轴,经过H且垂直于EF的直线为y轴,建立平面直角坐标系,显然E(-5,0),F(5,0),H(0,3).页4共,页2第.y=所以+bx+c 设抛物线的解析式为+3依题意有:1)1.(2)y=1)或(一,路灯的位置为((只要写一个即可),,,点到地面的距离为1.08+2=3.08x=4 (3)当,时,,所以能通过.因为3.08-0.5=2.58>2.5x为整数)(1)y=x+30(1≤x≤160,且26、解:+910x+30000 =-3(2)P=(x+30)(1000-3x).最大=30000x=100时,W2+30000 +910x+30000)-30×1000-310x=-3(x-100)(3)由题意得W=(当-3元.30000存放100天后出售这批野生菌可获得最大利润100天<160天,,A(100,0),过B(50, 27、40) 解:抛物线OBAOBA.的解析式为抛物线的值分别为:x=20, 30, 40时,y 当T=GT-,BR= 10 m) ( ,(m)MC=4( m),,EN= (m). GFQ=50-GT==( m) 1 1-FQ=PQ(m),(m).1,C(10,46),E(20又),抛物线CE过顶点2,PD过顶点.D(85,48),P(70(x-10)y=-+46.而抛物线解析式为)2求得.(x-85)y= 解析式为y=-+48.x=80KK=50--.= (m)KK,-LL111综上:三条抛物线的解析式分别为:,m10m,,m,m从左往右各支柱的长度分别是:4m,m,mm,,10m,m,m .6-1=5(月份出售时利润为:元)(1)28、解:一件商品在3 t(月)的二次函效,元(2)由图象可知,一件商品的成本Q()是时间(6,4), 由图象可知,抛物线的顶点为页4共,页3第t=3,4,5,6,7由题知.(月)的一次函数,元)是t (3)由图象可知,M(W∴当t=5时,t=3,4,5,6,7其中元∴所以该公司一月份内最少获利)、解:(129.Q=+45=40 当x=150吨时,(元)000当x=150吨时,利润最多,最大利润2 元.+120x-1600 -2x+80)=-230、解:(1)y=(x-20)(2+200 x-30)(2) y=-2+120x-1 600=-2(元.当x=30时,最大利润为y=2002=35x.=25(由题意,(3)y=150,即-2x-30)+200=150解得x,2l随单价增大而减小,w=-2x+80又销售量元的利润.故当时,既能保证销售量大,又可以每天获得150x=25页4共,页4第。

相关文档
最新文档