六年级数学组合图形的面积(二)
组合图形的面积数学教案(精选10篇)
组合图形的面积数学教案(精选10篇)《组合图形的面积》数学教案篇一设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。
在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:知识目标:1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。
能力目标:1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:选择有效的计算方法解决实际问题。
教学过程:一、复习旧知,引入新课1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。
]二、探索组合图形面积计算方法1、割那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。
这些同学的方法可以归结为一个字:割。
就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。
且方法千变万化,只要你有目标,就一定能成功。
[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学平面图形的兴趣。
六年级数学组合图形的面积试题答案及解析
六年级数学组合图形的面积试题答案及解析1.我们开始提到的“乡村小屋”的面积是多少?【答案】18【解析】图形内部格点数;图形边界上的格点数;根据毕克定理,则(单位面积).2.两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为,右下角的阴影部分(线状)面积为,求大正方形的面积.【答案】19【解析】块状部分与线状部分之间的部分称为D,则D与前者共14个方格,与后者共17个方格,因此每个方格的面积是大正方形的面积为.3.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.4.如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.5.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少?【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.6.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.7.右图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).8.如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.9.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.10.如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).11.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.12.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.13.如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).14.已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.15.如下图,长方形和长方形拼成了长方形,长方形的长是20,宽是12,则它内部阴影部分的面积是多少.【答案】120【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为.16.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【答案】13.5【解析】解法一:寻找可利用的条件,连接、,如下图:可得:、、,而即;而,.所以阴影部分的面积是:解法二:特殊点法.找的特殊点,把点与点重合,那么图形就可变成右图:这样阴影部分的面积就是的面积,根据鸟头定理,则有:.17.在长方形内部有一点,形成等腰的面积为16,等腰的面积占长方形面积的,那么阴影的面积是多少?【答案】3.5【解析】先算出长方形面积,再用其一半减去的面积(长方形面积的),再减去的面积,即可求出的面积.根据模型可知,所以,又与的面积相等,它们的面积和等于长方形面积的一半,所以的面积等于长方形面积的,所以.18.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分的面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.19.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.20.如图,长方形的面积是36,是的三等分点,,求阴影部分的面积.【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.。
小学五年级奥数-第19讲 组合图形的面积(二)
小学奥数发散思维-掌握解题技巧-提高运算效率和准确率第19讲组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1.两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)练习1:1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:厘米)3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC (阴影部分)的面积。
练习2:1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)练习3:1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习4:1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)
扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。
2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。
课首沟通和学生交谈。
了解学生对圆的认识,对各计算公式是否掌握。
知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。
导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。
我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。
3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。
我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。
3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。
知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。
例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。
《组合图形面积的计算》评课稿_2
《组合图形面积的计算》评课稿组合图形的面积是一个抽象的计算概念.组合图形是具有普遍特点的平面几何图形,是平面几何初步知识的总结与延伸。
尤其是组合图形面积计算公式的推理过程(不同于简单图形面积公式的推导)蕴含叠加转化的数学思想,对学生今后计算复杂图形面积公式具有重要意义。
听了黄老师执教的《组合图形的面积计算》一课,深受启发。
由于黄老师能深入钻研教材,准确理解教材编写意图,跳出教材,对传统的课堂教学结构进行大胆的改革,把教师的主导作用和学生主体作用紧密结合起来,强化教学互动,对提高学生素质和培养学生的创新意识与实践能力具有一定的作用,取得了较好的教学效果。
我认为主要有以下几方面的亮点:一、转变教师角色,改善教学行为。
在实施新课程的背景下,在“以发展为本”的课堂教学中,“教师的职责现在已经越来越少地传授知识,而是越来越多地激励思考;……他将越来越成为一位顾问,一位交换意见的参加者,一位帮助发现矛盾论点而不是拿出现成真理的人。
他必须拿出更多的时间和精力去从事哪些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。
”本课教学中,黄老师更多地体现为:引导者——给学生的学习提供明确的导航目标,辅导者——为学生提供各种便利与支持,使学生能够比较轻松地完成学习任务。
合作者——关注学生的学习,参与学生的学习活动,与学生共同探讨问题,共同寻求问题的答案。
与学生构成良好的学习共同体。
二、重视自主探究,发挥学生主体性。
学生主动参与学习活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生的参与意识和创新精神。
在教学“组合图形的面积计算”时,黄老师先让学生跟老师一起画一个图形,然后留给学生充分的时间和空间,让学生在自己动手、动脑的基础上,再引导学生交流、验证自己的想法,看看自己没想到的方法有哪些,根据自己的能力有选择地学习其它方法。
这样有序的学习,不仅发展了学生的智能,而且提高了学生的素质。
三、注重兴趣的激发,找准新旧链接组合图形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。
六年级第二次课平面组合图形的面积计算
平面组合图形的面积计算一、教学目标1.初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积;2.熟练运用割补(平移、翻转)方法计算组合图形阴影部分的面积。
二、教学重、难点重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出题目要求的面积。
三、教学过程1. 复习引入(用字母表示下列面积、周长和体积计算公式)周长公式面积 体积正方形 正方形 正方体 长方形 长方形 长方体 圆 三角形 圆柱 半圆 圆 圆锥 扇形 扇形 梯形:圆柱侧面积:圆柱表面积:2.例题讲解题型一(求组合图形的某一边长或周长)例1 如图所示,在直角三角形ABC 中,求斜边AB 边上的高CD 的长度(单位:厘米)。
解析:此题主要考查同学们对三角形面积的理解,以及灵活运用三角形的面积求三角形中相关的线段。
已知直角三角形的三边,可根据等积法求出线段CD 的长度。
14362ABC S ∆=⨯⨯=(平方厘米)625 2.4CD =⨯÷=(厘米)DCBE A练习一(1)图中,王叔叔上班有两条路可走,他走哪条路近?(2) 公园里有一个半圆的花圃,花圃周围要围上竹篱笆,竹篱笆长多少米?题型二(求组合图形的面积)例2 如图,已知梯形ABCD 的面积是560平方厘米,ABCE 是正方形,:5:4CE ED =。
求三角形的面积。
解析:因为:5:4CE ED =,所以正方形和三角形的面积比是25:105:2=,三角形的面积为25601607⨯=(平方厘米)练习二(1) 如图,是由4个相同的半圆形组合的,已知图形的周长是50.24厘米,求图形的面积。
(2) 如图所示,长方形的长12 cm ,宽8 cm ,DE=5 cm ,求△ABC 的面积。
题型三(利用平移法求阴影部分面积)555555例3 求下图阴影部分的面积。
(单位:厘米)解:将阴影部分进行平移,合并成一个简单图形,再求它们的面积,如上右图。
《组合图形的面积》教学设计优秀4篇
《组合图形的面积》教学设计优秀4篇《组合图形的面积》数学教案篇一教材分析:《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:知识目标1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:多媒体课件和组合图形图片。
教学过程:一、激趣导入、复习铺垫、认识组合图形1、介绍笑笑和她家的新房子师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)2、引导学生观察,复习有关平面图形面积的计算公式师:从这座房子中可以找到哪些平面图形?会求它们的。
面积吗?3、欣赏图片(课件出示一组图片)师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)4、教师总结,揭示课题并板书师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)二、创设情境、探究新知笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。
(完整版)六年级数学上册组合图形的周长和面积
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
人教版数学六年级下册《总复习组合图形的面积》教案
人教版数学六年级下册《总复习组合图形的面积》教案一、教学目标知识目标•掌握组合图形的面积计算方法•熟练运用组合图形的面积计算技巧能力目标•能够在实际问题中应用组合图形的面积计算知识•提高解决问题的逻辑思维能力情感目标•培养学生对数学的兴趣,增强学生的学习动力•培养学生的合作意识和团队精神二、教学重难点重点•掌握组合图形的面积计算方法•综合运用所学知识解决实际问题难点•理解复杂图形的面积计算方法•能够正确运用组合图形的面积计算技巧解决复杂问题三、教学过程第一节组合图形的面积计算方法1.讲解组合图形的概念和特点2.演示如何计算简单组合图形的面积3.练习:计算给定组合图形的面积第二节组合图形面积计算技巧的运用1.引导学生分析复杂组合图形的结构2.演示如何运用技巧简化计算过程3.练习:解决复杂问题,提升技巧应用能力第三节实际问题应用1.提出实际生活中的问题2.引导学生运用所学知识解决问题3.分组讨论,展示解题过程和答案四、教学评估考查方式•定期小测验:检测学生对知识的掌握情况•课堂表现评价:评估学生的学习态度和解决问题的能力•作业评定:通过作业内容评定学生对知识的掌握程度五、教学反思本节课重点在于帮助学生理解组合图形的面积计算方法,并通过实际问题的应用来巩固和提高学生的技能。
在教学过程中,难点在于引导学生分析复杂图形的结构,需要通过实例让学生掌握技巧应用。
总的来看,通过本节课的教学,学生可以较好地掌握组合图形的面积计算方法和运用技巧解决问题的能力。
以上是本节课的教学设计,希望能够帮助学生更好地理解和掌握组合图形的面积计算知识,并在实际问题中灵活运用。
吴正宪组合图形的面积 [组合图形的面积教学设计]
吴正宪组合图形的面积 [组合图形的面积教学设计] 组合图形的面积教学设计(一)教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。
教学目标:1、认识组合图形,会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。
教学重点:探索并掌握组合图形的面积计算方法。
教学难点:理解并掌握组合图形的组合及分解方法。
教具准备:多媒体课件学具准备:各种有色卡纸、胶水、剪刀等。
教学过程:一、复习铺垫:同学们,老师想知道你们已经学会了计算哪些平面图形的面积?二、创设情境,激趣导入。
根据已知条件进行分解师:大家学会的知识可真多。
为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:(课件展示)我们学过这些图形吗?请同学们认真观察,这些图形有什么共同的特征?左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?三、自主学习,探究新知。
1、组合图形的分解:师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。
(1)电脑出示书第92页的四幅主题图。
师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。
比比看哪一个小组的分法最简单?(2)小组讨论。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想想:生活中哪些地方还有组合图形?2、自主解决例题。
六年级数学思维:组合图形的面积计算,例题解析!
六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。
基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。
解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。
例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。
在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。
从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。
小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。
再变化角度思考,通过相加或相减求出所求图形的面积。
例题1:求下图中阴影部分的面积(最后结果保留一位小数)。
(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。
西师大六年级数学上册全册教案之:第8课时 组合图形的面积
西师大六年级数学上册全册教案之:第8课时组合图形的面积第8课时组合图形的面积【教学内容】教科书第23页例5,课堂活动第1~2题,练习六第1~3题。
【教学目标】1.知识与技能:(1)通过计算窗户的面积,掌握求组合图形面积或周长的方法。
(2)通过计算花坛周围小路的面积(课堂活动第2题),掌握求圆环面积的方法。
2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,思考解决问题的不同策略和方案。
3.情感态度与价值观:体会学习圆的面积的现实意义和价值。
【重点难点】重点:掌握求简单组合图形面积的方法。
难点:能将组合图形分解成基本图形。
【教学过程】一、导入新课1.出示所学过的几何图形:长方形、正方形、平行四边形、三角形、梯形、圆。
让学生说说怎样求这些图形的面积?2.生活中,有些现实问题并不是直接求这些基本图形的面积。
例如:希望小学的阅览室有这样的窗户(呈现例1图),圆形花坛的周围有一条小路(呈现课堂活动第2题图)。
3.如何计算它们的面积?解决相关的问题呢?今天就开始学习:解决问题。
二、探究新知1.掌握求组合图形面积的基本策略。
(1)请看与这个窗户相关的信息(完整地呈现例1)。
(2)怎样算出这个窗户的面积?教学方案1:在学生回答的基础上,板书:窗户的面积=正方形的面积+半圆的面积,学生独立解答两个问题。
教学方案2:先让学生独立尝试解答以后,再通过交流反馈,总结出方法。
(3)小结:像这种组合图形的面积,我们一般把它分割成几个学过的图形,再把它们的面积加起来。
2.掌握求组合图形的不同策略。
(1)呈现变式题:求右图形的面积。
(2)独立思考:这个组合图形可以分解成哪些基本图形?(3)引导学生通过画辅助虚线,整理出各种思路。
(4)请同学们选择一种喜欢的思路来求出组合图形的面积。
3.掌握求阴影图形的基本策略。
(课堂活动第1题)(1)议一议:这3个图中的阴影部分的面积有什么关系?(2)交流:预设①:第2图中的2个半圆正好可组合成一个圆。
五、图形的面积(二)教学设计
组合图形面积教学内容:北师大版五年级上册P75-76教学目标:1、知识目标:通过拼图活动,让学生了解组合图形的特点。
2、能力目标:在自主探索的活动中,理解计算组合图形面积的多种方法。
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、情感目标:能运用所学的知识,解决生活中组合图形的实际问题,同时通过各活动培养学生的空间观念。
教学重、难点:重点:掌握组合图形面积的计算方法。
难点:理解计算组合图形面积的多种方法。
教学过程:组合图形面积教学内容:北师大版五年级上册P75-76教学目标:1、知识目标:通过练习,进一步理解和掌握计算组合图形面积的多种方法。
2、能力目标目标:能根据各种组合图形的特点,选择恰当的方法计算面积。
能运用所学的知识,解决生活中组合图形的实际问题。
3、情感目标:在解决问题的过程中,进一步体会数学知识与现实生活的密切联系,产生探索的欲望。
教学过程:探索活动——成长的脚印教学内容:北师大版五年级上册P77——78。
教学目标:1、知识目标:能正确估计不规则图形的大小,并能解释估计的过程与方法。
2、能力目标:能用数格子的方法,计算不规则图形的面积。
3、情感目标:体会数学与现实生活的密切嫡系,感受数学的应用价值。
教学过程:探索活动——成长的脚印教学内容:北师大版五年级上册P77——78。
教学目标:4、知识目标:能正确估计不规则图形的大小,并能解释估计的过程与方法。
5、能力目标:能用数格子的方法,计算不规则图形的面积。
6、情感目标:体会数学与现实生活的密切嫡系,感受数学的应用价值。
教学过程:尝试与猜测鸡兔同笼一、教学内容:北师大版五年级上册P80-81二、教学目标:1、知识目标:培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、能力目标:应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;3、情感目标:在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
六年级上册数学课件:2-10组合图形的面积(西师大版)
1.2m
先求半圆的面积:
直径1.2m
半径0.6m
圆的面积:
半圆的面积:
2
根据S=πr 得:
1.1304÷2
3.14×0.62
=3.14×0.36
=0.5652(平方米)
=1.1304(平方米)
1.2m
解答:
1.2m
解答:
再求正方形的面积:
半圆的面积
窗户的面积
正方形的面积
1.2m
根据S=a2得:
正方形的面积=1.22
求右图涂色部分的面积。
解题思路:
圆的面积
S1=πr2
10分米
半圆的面积
S1
三角形的面积
S2=ah÷2
涂色部分的面积
S= S1-S2
解: 圆的半径:
r=d÷2=10÷2=5(分米)
10分米
圆的面积:
S=πr2=3.14×52
=78.5(平方分米)
半圆的面积:
S÷2=78.5÷2
=39.25(平方分米)
三角形的面积:S=d×r÷2
=10×5÷2
=25(平方分米)
10分米
涂色部分的面积: 39.25-25
=14.25(平方分米)
答:涂色部分的面积是14.25平方分米。
如图,大、小两个正方形的边长分别是大、小两
个圆的半径。阴影部分的面积是10平方厘米。
求圆环的面积。
圆环的面积=外圆面积-内圆面积
R
解题思路:
r
大圆半径(也就是大正方形的边长)为R
小圆半径(也就是小正方形的边长)为r
由大圆半径(也就是大正方形的边长)为R
可知:大正方形的面积为R2
第2单元第4课时 组合图形的面积【教案】|西师大版-六年级数学上册
第2单元第4课时组合图形的面积(教案)|西师大版-六年级
数学上册
一、教学目标
1.知识目标:学生能够理解组合图形的概念,掌握计算组合图形的面积的方法。
2.能力目标:能够综合应用多种图形的面积计算方法,解决组合图形的面积问题。
3.情感目标:培养学生的观察能力和创造力,提高学生的数学兴趣。
二、教学重难点
1.教学重点:组合图形的面积计算方法。
2.教学难点:组合图形面积计算问题的解决方法。
三、教学过程
1. 导入新知识
1.教师出示一张组合图形,并问:“这个图形的面积如何计算?”
2.让学生讨论解决方法,并引导学生注意组合图形的特点与不同的计算方法。
2. 理解知识
1.教师结合板书,讲解组合图形的概念及计算方法。
2.教师出示多个组合图形,并让学生分别计算其面积。
3. 巩固知识
1.让学生成为小组,让每组同学自己设计组合图形并计算其面积。
2.让每组同学汇报自己设计的图形,教师鼓励学生用自己的方法解答问题。
4. 课堂小结
1.教师对本课的要点进行总结,并强调组合图形面积计算方法的实际应用价值。
2.鼓励学生运用所学知识与方法解决实际问题。
四、课后作业
1.完成课堂练习,并将答案写在作业本上。
2.策划并设计一个有趣的组合图形,并计算其面积。
五、教学反思
本节课针对组合图形面积计算方法的具体情况,突出了图形面积计算方法的应用和调整实践管理的重要性。
本节课着重讲解了组合图形面积计算的方法,强调了学生学习理解的重要性,并通过举例、讨论等方式让学生参与到教学中,使课堂教学充满活力,达到了预期效果。
小学数学六年级上册二 圆组合图形的面积
西师版小学数学第11册二单元组合图形的面积教学内容:P23、P24教学目标:1、能综合运用所学的知识和技能解决问题,发展学生的应用意识和实践能力。
2、进一步发展学生的空间观念和形象思维。
教学重点:把组合图形进行分解,运用割补、相减等方法自主研究,求出面积。
教学难点:运用已有知识解决新的问题。
教学准备:课件。
教学内容:一、课前准备。
1、在小组内说说长方形、正方形、三角形、平行四边形及圆形的面积公式,请同学汇报。
S正=a2 S长=ab S三=21ah S平=ah S圆=πr22、求一个半圆的面积。
d=12dm。
(独立做,只列算式)二、自主尝试1、展览厅的窗户上面是半圆,下面是正方形(如下图)。
窗户的面积是多少平方米?(独立试做,看看谁先完成)互动探究(1)请一名学生上台板书,并讲一讲怎么想的;(2)还有谁能讲讲,再请同学评价一下。
半径:4÷2=2(m)半圆面积:×22÷2=(㎡)正方形面积:4×4=16(㎡)窗户的面积:+16=(㎡)答:窗户的面积是㎡。
2、一张可折叠的圆桌,半径是,折叠后成了正方形。
折叠部分的面积约是多少平方米?(得数保留两位小数。
)折叠部份有几块,算出每一块的面积再乘4可以吗?(可以,但较麻烦)折叠部分的面积用阴影部分表示,可以怎么考虑呢?(圆形减去正方形的面积) (独立试做,看看谁先完成)互动探究:(1)请同学上台来讲思路,并板书计算过程。
(2)评价,总结。
(计算组合图形面积的方法:合并求和法、去空求差法、割补法、平移法等) 正方形的面积:(×÷2)×4=(㎡)圆形的面积:×=(㎡)折叠部分的面积:(㎡)≈(㎡)答:折叠部分的面积约是平方米。
正方形的面积还可以怎么求?×2×÷2×2=(㎡)三、达标实训。
1、育才小学新建的运动场如下图,它的面积是多少平方米?独立解答。
六年级数学上册组合图形地周长和面积
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合图形的面积(二)
一、专题简析
组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种,一是拼合组合,而是重叠组合,由于组合图形具有条件相“等”的特点,往往使得问题无从下手。
要正确解答组合图形的面积问题,应该注意以下几点:
1、切实掌握相关简单图形的概念、性质、面积计算公式,牢固建立空间概念;
2、仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;
3、适当采用增加辅助线等方法解题;
4、采用割、补、分解、代换、重组等方法,将复杂问题简单化。
二、常考模型
1、等积模型:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如下图12::S S a b =;③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
2、燕尾模型:如图2,在△ABC 中,AD 、BE 、CF 交于一点O ,那么::ABO ACO S S BD DC ∆∆=。
(图2) (图3—1) (图3—2)
3、蝴蝶模型:如图3—1,在四边形ABCD 中,AC 、BD 交于一点O ,①1243::S S S S =或者1324S S S S ⨯=⨯;②()()1243::AO OC S S S S =++。
如图3—2,梯形中的比例关系(“梯形蝶形定理”):①2213::S S a b =;
②221324::::::S S S S a b ab ab =;③S 的对应份数为()2
a b +.
三、专题精讲
例1、如图所示,已知正方形ABCD的边长是12cm,E是CD边上的中点,连接对角线AC,交BE于点O,则△AOB的面积是多少平方厘米?
举一反三
如图, 在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰△PAB,则△PAC的面积是多少平方厘米?
例2、如图,已知ABCD是平行四边形,BC:CE=3:2,△ODE的面积为6平方厘米,则阴影部分的面积是多少?
举一反三
如图,已知平行四边形ABCD的面积为12cm2,CE=1
3
CD,AE与BD的交点为F,求图中阴影部分的面积?
例3、如图,在图中的正方形中,A、B、C分别是所在边的中点,△CDO的面积是△ABO面积的几倍?
举一反三
如图,一个等腰直角三角形和一个正方形如左下图摆放,①、②、③这三块的面积比依次为1:4:41,那么④、⑤这两块的面积比是多少?
例4、下图中每个小圆的半径是1厘米,阴影部分的周长是多少?
举一反三
能覆盖的面积为多少?
课后作业
1、0.4×()1132 4.3 1.826524⎡⎤÷⨯⨯⎢⎥⎣⎦
- 2、[2007-(8.5×8.5-1.5×1.5)÷10]÷160-0.3
3、51.2×8.1+11×9.25+537×0.19
4、2016×2018×112016201720172018⎛⎫ ⎪⨯⨯⎝⎭
+
5、定义新运算:a✞b=
1
a
b
+
,(1)求2✞(3✞4)的值;(2)若x✞4=1.35,则x的值是多少?
6、如图,四边形ABCD的对角线AC与BD交于点E,且AF=CE,BG=DE,当四边形ABCD的面积为25平方厘米时,△EFG的面积是多少?
7、下图中,四边形ABCD和四边形CGEF都是正方形,AG和CF相交于点H,已知CH=1
3
CF,△CHG的面
积是6cm2,求五边形ABGEF的面积。
8、如图,四边形CDEF是正方形,四边形ABCD是等腰梯形,它的上底AD=23cm,下底BC=35cm,求△ADE 的面积。
9、如图,AF=7cm,DH=4cm,BG=5cm,AE=1cm,若正方形ABCD内四边形EFGH的面积为78cm2,则正方形边长为多少?
10、淘气用一张正方形纸片剪下了一个最大的圆(如图甲),笑笑用一张圆形纸片剪下了七个相等的最大圆(如图乙),在这两种剪法中,哪种剪法的利用率最高?(利用率指的是剪下的圆形面积和占原来图形面积的百分率)下面几种说法中正确的是
A、淘气的剪法利用率高
B、笑笑的剪法利用率高
C、两种剪法利用率相同
D、无法判断。