第十一章 曲线积分与曲面积分经典例题

合集下载

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题第11章曲线积分与曲面积分一(曲线积分1.对弧长的曲线积分 (第一类), f(x,y)ds,f[,(t),,(t)],'(t),,'(t)dt(,,,),,L,典型例题,x,acost (1)圆周0,t,1 {y,asint2,222n222n222n,1 (,)ds,(cost,asint)(acos't),(asin't)dt,2,ayax,,L0(x,y)ds(2)线段:把线段表示出来 L是(1,0)到(0,1)的直线段 ,L1(x,1,x)x,1dx,2,0 原式= 直线为:y=1-x22x,yeds (3)圆弧的整个边界(分段) ,La,a222,,xyxa22a42e1dx,e(acos't),(asin't)dt,e1,1dx,e(2,a),2 ,,,0004(4)参数方程 (公式)2xyzds(5)利用折线围成的封闭图形 (坐标分段) A(0,0,0) B(0,0,2) C(1,0,2) D(1,3,2) ,,3322,0,0,1y20,1,0dy,y,9AB: BC: CD: ,,,,ABBC0CD0?,,,,9 ,,,,,ABBCCD2.对坐标的曲线积分 (第二类),P(x,y)dx,Q(x,y)dy,{P[,(t),,(t)],'(t),Q[,(t),,(t)],'(t)dt ,,L,典型例题x,acost222xydx0,t,1(1)圆周圆周及x轴在一(x,a),y,a(a,0){,Ly,asint xaacost,,x,x:(0,t,1),:象限逆时针 {{LL12yasint0,y,2a,3a(1cost)asint(aacost)'dt0dxa,,,,,,,, ,,,,120LLL21222(2)直线: 写出函数关系从(0,0)到(2,4) x-ydx,L:y,x,L25624 原式=x-xdx- (),,015,(3)圆弧 L: x=rcost,y=rsint上对应t从0到的一段弧 ydx,xdy,,L2(4)参数方程 (公式)(5)利用折线围成的封闭图形dx-dy,ydz ,A(1,0,0) B(0,1,0) C(0,0,1) ABCA封闭图形 ,,=01131[1(1)][(1)'(1)']121 ,,,,,zdx,,,z,,zzdz,dx,,,,,,,,,,,ABBCCA10022二(格林公式,Q,P(-)dxdy,Pdx,Qdy1. ,,,L,x,yD1A,xdy-ydx2.面积 ,L2,,PQ3.曲线积分;pdx,dy,, 与路径无关Q,L,y,xP(x,y)dx,Q(x,y)dy同上Pdx,Qdy与路径无关,存在u(x,y)使du,Pdx,Qdy4. ,Lxy u(x,y),p(x,y)dx,Q(x,y)dy0,,xy00典型例题22xyxyyedxxedyL(,),(3,):,,1的正向(1) 22,Lab,p,Q,1,3?,2dxdy,2,ab,解: ,,,L,y,xD(2)验证整个xoy面内存在u(x,y)使2232ydu= (3xy,8xy)dx,(x,8xy,12ye)dy并求u(x,y),p,Q2,,3x,16xy,?存在解: ,y,xxy32y322yU(x,y),0dx,(x,8xy,12ye)dy,c,xy,4xy,12(y,1)e,c ,,002三(曲面积分1.对面积的曲面积分 (第一类)22 f(x,y,z)ds,f[x,y,z(x,y)]1,z,zdxdyxy,,,,Dxy典型例题221,4zds,其中,是z,x,y上z,1的曲面部分(1)球面。

第11章 曲线积分与曲面积分习题解答(开放课程)

第11章 曲线积分与曲面积分习题解答(开放课程)

d
L
02
2
1 a2

cos
d

2
cos
d

2 0 2

2

1 2
a
2

2
sin
2
0
2sin 2
2


2a 2
3.计算 x2 y 2 ds ,其中 L 为曲线 x acos t t sin t ,y asin t t cos t, L
解:
xydx
1
y2 y
y2
dy

2
1 y 4dy 21 y 5 1
4.
L
1
1
5 1 5
8. 计算 x3dx 3zy 2dy x 2 ydz ,其中 L 是从点 A3,2,1 到点 B0,0,0的直线 L
段 AB 。
解:直线段 AB 的方程为 x y z ,化成参数方程为 x 3t , y 2t , z t , 321

1x 0

1

x
2dx
2。
2.计算 x 2 y 2 ds ,其中 L 为圆周 x 2 y 2 ax 。 L
解:
L
的参数方程为
x


y

1 2 1 2
a cos a sin

1 2
a
, 0


2

则 x 2 y 2 1 a cos 1 a2 1 a sin 1 | a | 21 cos
0
ex
|0a
e

高数期末复习题第十一章曲线积分与曲面积分

高数期末复习题第十一章曲线积分与曲面积分

⾼数期末复习题第⼗⼀章曲线积分与曲⾯积分第⼗⼀章曲线积分与曲⾯积分试题⼀.填空题(规范分值3分)11.1.1.2 设在xoy 平⾯内有⼀分布着质量的曲线L ,在点(x,y)处它的线密度为µ(x,y),⽤第⼀类曲线积分表⽰这曲线弧对x 轴的转动惯量I x =。

ds y x y L),(2µ?11.1.2.2 设在xoy 平⾯内有⼀分布着质量的曲线L ,在点(x,y)处它的线密度为µ(x,y),⽤第⼀类曲线积分表⽰这曲线弧的质⼼坐标x =;y =。

x =??LLds y x ds y x x ),(),(µµ;y =??LLdsy x ds y x y ),(),(µµ 11.1.3.1在⼒),,(z y x F F =的作⽤下,物体沿曲线L 运动。

⽤曲线积分表⽰⼒对物体所做的功=W 。

d z y x L ),,(11.1.4.2 有向曲线L 的⽅程为≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上⼀阶导数连续,且[][]0)()(22≠'+'t y t x ,⼜),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。

αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平⾯内直线a x =上的⼀段,则曲线积分?Ldx y x P ),(=。

011.1.6.2 设L 为xoy 平⾯内,从点(c,a )到点(c,b )的⼀线段,则曲线积分dy y x Q dx y x P ),(),(可以化简成定积分:。

曲线曲面积分练习答案

曲线曲面积分练习答案

第十一章 曲线曲面积分一、填空1、L 为下半圆21y x =--,则22()L x y ds +=⎰___π_______。

2、L 为222x y R +=,则3(2)L x y ds +=⎰____0____。

3、L 为圆22(2)(2)2x y -+-=的逆时针一周,则L ydx xdy +⎰=_0_。

4、设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,L 所围的平面闭区域D 的面积为A ,(2)(43)8L x dx x y dy -++=-⎰,则A=___2_______。

5、分片光滑闭曲面Σ所围成的空间区域Ω的体积为V ,则沿曲面Σ外侧的积分()()()z y dxdy y x dxdz x z dzdy ∑-+-+-⎰⎰= 3V 。

二、选择题1、设是一光滑曲线,为了使曲线积分(,)(,)L yF x y dx xF x y dy +⎰与积分路径无关,则可微函数 应满足条件( A )。

A 、B 、C 、D 、2、OM 是从(0,0)(1,1)O M 到的直线段,则22x y OM e ds +⎰不等于(D )。

A 、1202x e dx ⎰B 、1202y e dy ⎰C 、20r e dr ⎰D 、102r e dr ⎰ 3、∑:2221x y z ++=外侧,1∑:上半面上侧,则正确的是(B )。

A 、12zds zds ∑∑=⎰⎰⎰⎰ B 、12zdxdy zdxdy ∑∑=⎰⎰⎰⎰ C 、1222z dxdy z dxdy ∑∑=⎰⎰⎰⎰ D 、zdxdy ∑⎰⎰=0 4、∑:222(),0z x y z =-+≥,则ds ∑⎰⎰等于( C )。

A 、220014r d r rdr πθ+⋅⎰⎰ B 、2220014d r rdr πθ+⋅⎰⎰ C 、2220014d r rdr πθ+⋅⎰⎰ D 、2 5、∑:222,12x y R z +=≤≤外侧,则下列不正确的是等于(B )。

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分一、 第一类、第二类曲线积分的计算,格林公式 11.6⎰Lxds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 解:如图所示,L 所在直线方程参数为 1,,01y x x x x =-=≤≤,1102Lxds x x ===⎰⎰⎰所以,选B 。

11.9ds y xL)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π解:2222220()(cos sin )2Lx y ds t t dt πππ+=+==⎰⎰⎰所以,选C 。

11.14 下列为第一类曲线积分的是( ); A .⎰Γs z y x f d ),,(,其中Γ为3R 中的光滑曲线 B .⎰Γx z y x f d ),,(,其中Γ为3R 中的光滑曲线 C .⎰Γy z y x f d ),,(,其中Γ为3R中的光滑曲线 D .⎰Γz z y x f d ),,(,其中Γ为3R中的光滑曲线解:由第一类曲线积分的表示,选A 。

11.18 L 为曲线t y t x sin ,cos ==上0=t 到π=t 的一段弧,则=+⎰Ls y x d )( ( );A. 1-B. 0C. 1D. 2解:()(cos sin )(cos sin )2Lx y ds t t t t dt ππ+=+=+=⎰⎰⎰所以,选D 。

11.21 L 为曲线212y x =上0x =到1x =的一段弧,则d Lx s =⎰ ( ); A.11)3 B .C.21)3 D .解:31121200011d (1)|1)33Lx s x x x ===+=⎰⎰⎰所以,选A 。

11.25 设L 是圆周222x y a +=在第一象限内的弧段,则Ls =⎰( ).(A)ae π; (B)2a π; (C)2a ae π; (D)2a e π.解:L 的参数方程为:cos ,sin ,02x a t y a t t π==≤≤,所以,202a Ls e ae ππ==⎰⎰所以,选C 。

曲线积分与曲面积分习题答案.pdf

曲线积分与曲面积分习题答案.pdf
(1) (2x y 2z) dS,其中 为平面 x y z 1在第一卦限的部分;
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr

第十一章曲线积分与曲面积分(解题方法归纳)

第十一章曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1. 曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分•(2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分 (6) 利用高斯公式计算闭曲面上的曲面积分• 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则其中J 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则其中L i 是L 在上半平面部分.⑵若空间积分曲线L 关于平面"x 对称,则」(畑=」(皿. (3) 若积分曲面匕关于xOy 面对称,则"yg 2 f(x,y)dsL if 对x 为奇函数 LP(X,y)dX = 2L P(x,y)dyP 对x 为奇函数Q 对x 为偶函数Lf(x,y)d ^ 2 f(x,y)dsL if 对y 为奇函数 f 对y 为偶LP(x,y )dx]2L P(x,y)dyP 对y 为偶函数LQ(x,y )d y ]2L Q(x,y)dyQ 对y 为奇函数0 f对z为奇函数f(x,y,z)dS 二2 R(x,y,z)dS f对z为偶函数工[壬0 R对z为偶函数R(x,y,z)dxdy二2 R(x, y, z)dxdy R对z为奇函数戈l富其中Z1是二在xOy面上方部分.若积分曲面匕关于yOz面对称,则0 f对x为奇函数f(x,y,z)d S二2 R(x,y,z)dS f对x为偶函数龙I X0 P对x为偶函数P(x,y,z)dyd z二 2 P(x,y,z)dydz P对x为奇函数工I量其中二是匕在yOz面前方部分.若积分曲面匕关于zOx面对称,则0 f对y为奇函数f(x,y,z)d S= 2 R(x,y,z)dS f 对y 为偶函数龙I X0 Q对y为偶函数Q(x,y,z)dzdx 二2 Q(x, y,z)dzdx Q对y为奇函数龙I X 其中!1是匕在zOx面右方部分.(4)若曲线弧L:[x—x(t)(°兰t邓),则ly = y(t)f(x, y)ds = _ f lx(t),y(t)l ,x 2(t) y 2(t)dt (:「)L若曲线弧L:r寸⑺「「—J (极坐标),则■L f (x, y)ds 二_ f W)cos 二,r(^)sin「L r2(v) r 2p)d-〔x = x(t)若空间曲线弧-:y=y(t)([乞t —),贝UIz =z(t)J f (x,y,z)ds =「®f [x(t), y(t), z(t) ]Jx'(t) + y"t)+ z^(t)dt (a c 0)(5)若有向曲线弧L : X X(t),则ly = y(t),P(x,y)dx Q(x,y)dy 二lx(t), y(t) lx(t) Q lx(t), y(t) ly (t)?dt华二x(t)若空间有向曲线弧丨:y二y(t) (t:> J),则z 二z(t).P(x, y, z)dx Q(x, y, z)dy R(x, y, z)dz二,P lx(t),y(t),z(t) ]x(t) Q lx(t),y(t),z(t) ly(t) R〔x(t), y(t),z(t) lz (t)1dt(6)若曲面1:z=z(x,y) ((x, y)・ D xy),贝U!! f (x,y,z)dS f〔x,y,z(x, y)l 1 Z x2(x,y) Z y2(x, y)dxdyZ D xy其中D xy为曲面匕在xOy面上的投影域•若曲面二:x=x(y, z) ((y,z)・ D yz),贝Uf(x,y,z)dS = f lx(y,z),y,zl 1 X y2(y,z) X z2(y,z)dydzI D yz其中D yz为曲面[在yOz面上的投影域.若曲面1:y = y(x,z) ((x,z) Dz X),则..f(x,y,z)dS= .. f lx,y(x,z),zl.1 y;(y,z) yf(y,z)dzdxI D zx其中D zx为曲面[在zOx面上的投影域.(7)若有向曲面3:z二z(x, y),则!」R(x,y,z)dxdy ::11 R[x, y,z(x,y)]dxdy (上“ +” 下“-”)T D xy其中D X y为匕在xOy面上的投影区域.若有向曲面1:x=x(y, z),贝U!」P(x, y,z)dydz::iiP[x(y,z), y, z]dydz (前“ +” 后“-”)I D yz其中D yz为二在yOz面上的投影区域.若有向曲面oy=y(x, z),则!)Q(x, y,z)dzdx : : i iQ[x, y(x,z), z]dzdx (右“ +” 左“-”) I D zx其中D zx 为匕在zOx 面上的投影区域.(8) 丄Pdx Qdy 与路径无关=^Pdx Qd^0 ( c 为D 内任一闭曲线)二 du (x, y)二 Pdx Qdy (存在 u(x, y))jP;:Q;:y ;:x其中D 是单连通区域,P(x,y),Q(x, y)在D 内有一阶连续偏导数(9) 格林公式其中L 为有界闭区域D 的边界曲线的正向,P(x,y),Q(x, y)在D 上具有一阶连续 偏导数.(10) 高斯公式[flf P(x,y,z)dydz + Q(x,y,z)dzdx + R(x, y, z)dxdy = Jff —](Pco$ Q cos R coSS)其中匕为空间有界闭区域「|的边界曲面的外侧,P(x, y,z), Q(x, y, z), R(x, y, z)在 i 】上具有一阶连续偏导数,cos 〉,cos :,cos 为曲面3在点(x,y, z)处的法向量的 方向余弦•(11) 斯托克斯公式其中]为曲面匕的边界曲线,且-的方向与匕的侧(法向量的指向)符合右手螺 旋法则,P,Q,R 在包含匕在内的空间区域内有一阶连续偏导数1.计算曲线积分或曲面积分的步骤:dxdy——+——+——〕d v I ex d y d z 1” Pdx+Qdy + Rdz= Hdydz ©-xP dzdx yQ dxdy©cz R ,y)dx Q(x,y)dycP(1)计算曲线积分的步骤:1) 判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分) ; 2) 对弧长的曲线积分,一般将其化为定积分直接计算; 对坐标的曲线积分: ① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件, 若满足条件,利用 格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算•④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件, 若满足 条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算•(2)计算曲面积分的步骤:1) 判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分) ; 2) 对面积的曲面积分,一般将其化为二重积分直接计算; 对坐标的曲面积分: ① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用 高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算 . 例1计算曲线积分d : + dy £,其中L 为x+|y =1取逆时针方向.Lx| + |y|+x由于积分曲线L 关于x 轴、y 轴均对称,被积函数P=Q \ 对x 、y 均为偶1 + x函数,因此『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不 同,记清楚后再使用.事实上,本题还可应用格林公式计算dxL1 x 2=0L1 x 2=0dx dyL |x| + |y|+x 2=02dS2b . 2y d S 2 c乙 d S 2 n d S同, -(a 2 b 2 c 2) x 2dS n 2 dSn(x 2 y 2 z 2)dS 4 R 2n 2R 2 R 2 仃 dS + 4兀 R 2n 2 = 4兀 R 2[R (a 2 + b 2 + c 2) + n 2]3 3a 2b 2c 2『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不理解起来更容易些•若碰到积分曲面是对称曲面,做题时可先考虑一下对称计算曲面积分匚(x 2 y 2 z 2)dS ,其中二为球面x 2 y 2 z 2 =2ax . ff (x 2 +y 2 +z 2)dS = |j) 2axdS = 2a 『J (x —a)dS + 2a ]dS=0 2a 2[ dS 二 2a 2[_4二 a 2 二 8 a 4『方法技巧』 积分曲面匕是关于x-a =0对称的,被积函数x-a 是x-a 的 奇函数,因此[(x-a)dS=0I例4计算曲线积分丄 17 xy x ydx ,其中为圆周 x 2 + y 2 = a 2 (a > 0)的逆 例2 计算曲面积分I 二(ax by cz n)2dS ,其中二为球面y 2 2 2xyz 二 R解 I = (ax by cz n)2dSy2 22 22 22二 (a x b y c z n 2abxy 2acxz 2bcyz 2anx 2bny 2cnz)dS y 由积分曲面的对称性及被积函数的奇偶性知! I xydS 11 xzdS 11 yzdS y xdS 二 ydS “zdS ^O又由轮换对称性知x 2dS 二 y 2dS 二 z 2dS时针方向.解法1直接计算.将积分曲线L 表示为参数方程形式「x =acos 日 L::0 >2 )y = asintl代入被积函数中得[Xy ^^X jdx =玄3 二[cos 日 sin 2 日 cos 。

第十一章 曲线积分与曲面积分

第十一章 曲线积分与曲面积分

5考研专题解析第十一章 曲线积分与曲面积分1.(98年数一)设L 为椭圆,13422=+y x 其周长为a ,则._______)432(22=++⎰ds y x xy L179解析 L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上22222213412(34)121243LLx y x y x y ds ds a +=⇒+=⇒+==⎰⎰.因此,原式=222(34)12LLxyds x y ds a ++=⎰⎰.2.(09年数一)已知曲线2:(0L y x x =≤,则_______L xds =⎰180解析 直接代公式化第一类平面曲线积分为定积分得Lxds ==⎰1222014)(14)8x d x =++ 32212113(14)(271)83126x =⋅+=-=.1.(00年数一) 计算曲线积分,422⎰+-=L y x ydxxdy I 其中L 是以点(1,0)为中心,R 为半径的圆周(1>R ),取逆时针方向.181解析 记2222,44y xP Q x y x y-==++,则L I Pdx Qdy =+⎰直接计算较繁琐,想借助格林公式.当220x y +≠时,222224(4)Q P y x x y x y ∂∂-==∂∂+, 记L 围成的圆域为D ,因D 内含原点(0,0),而P Q 、在(0,0)无意义,所以不能直接在D 上用格林公式.现作一小椭圆C ε(取逆时针方向):2224x y ε+=,0ε>充分小,使C ε位于D 内,记L 与C ε围成区域D ε,在D ε上用格林公式得()0LC D Q PPdx Qdy Pdx Qdy dxdy x yεε∂∂+-+=-=∂∂⎰⎰⎰⎰, 即222222222241122442L C C x y xdy ydx xdy ydx ydx xdy dxdy x y x y εεεεπεπεεε+≤--==-+===++⎰⎰⎰⎰⎰. 2.(04年数一) 设L 为正向圆周222x y +=在一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为_______182解析 已知L的参数方程,x t y t =,t 从0到2π.直接代公式得202)()]Lxdy ydx t t t t dt π-=-⎰⎰,2220322sin 242dt tdt πππππ=+=+⋅=⎰⎰. 3.(08年数一)计算曲线积分2sin 22(1)LI xdx x ydy =+-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.183解析 将曲线L 的方程代入直接计算2sin 222LLI xdx ydy x ydy =-+⎰⎰(,0)220(0,0)1(cos 2)2sin cos 2x y x x xdx ππ=--+⎰221sin 2cos 22x xdx x d x ππ==-⎰⎰2001cos 2cos 22x x x xdx ππ=-+⎰201sin 222xd x ππ=-+⎰ 220011sin 2sin 22222x x xdx ππππ=-+-=-⎰.1.(97年数一)计算积分⎰-+-+-Cdz y x dy z x dx y z )()()(,其中C 是曲线⎩⎨⎧=+-=+,2,122z y x y x 从z 轴正向往z 轴负向看C 的方向是顺时针的.184 解析 用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围成有限部分,由L 的定向,按右手法则S 取下侧.()()()2CS dydz dzdx dxdy z y dx x z dy x y dz dxdy x y z z y x z x y∂∂∂-+-+-==∂∂∂---⎰⎰⎰, S 在xoy 平面上的投影区域22{(,)1}xy D x y x y =+≤.将第二类曲面积分化为二重积分得22Sdxdy π==-⎰⎰原积分.这里S 取下侧,故公式取负号. 2.(01年数一)计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 为平面2x y z ++=与柱面1=+y x 的交线,从z 轴正向看去,L 为逆时针方向.185解析 用斯托克斯公式来计算,记S 为平面2xy z ++=上L 所围部分.由L 的定向,按右手法则S==S 的单位法向量(cos ,cos ,cos )n a r β==,于是由斯托克斯公式得222222cos cos cos 23Sa r I ds x y z y z z x x y β∂∂∂=∂∂∂---⎰⎰([(24(2622Sy z z x x y ds =----+--⎰⎰(423)2(6)S Sx y z dS x y z x y dS =++++=+-⎰⎰. 将第一类曲面积分化为二重积分得(62(6)S SI x y x y dxdy =+-=-+-⎰⎰, 其中D 为S 在xoy 平面上的投影区域1x y +≤.由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰,所以21224DI dxdy =-=-=-⎰⎰.专题二、求曲面积分与高斯公式∑体222x y x +≤内的部分.179解析 将曲面积分I 化为二重积分(,)xyD I f x y dxdy =⎰⎰首先确定被积函数(,)f x y==, 对锥面z =而言,==, 其次确定积分区域即∑在xOy 平面的投影区域22{(,)(1)1}xy D x y x y =-+≤xyD I =⎰⎰作极坐标变换cos ,sin x r y r θθ==,则{(,)02cos ,}22r D r r θππθθθ=≤≤-≤≤. 2cos 2cos 322000213I d r rdr r d θππθπθθ-=⋅==⎰2.(07年数一)设曲面:1x y z ∑++=,则()______x y dS ∑+=⎰⎰187 解析 ∑关于yoz 平面对称,x 对x 为奇函数⇒0xdS ∑=⎰⎰,由变量的轮换对称性⇒x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰,⇒()111()1333I x y dS y dS x y z dS dS ∑∑∑∑=+==++==⋅∑⎰⎰⎰⎰⎰⎰⎰⎰曲面的面积 记∑在第一卦限部分的面积为111cos ,2r σσ==即,因此118833I σ=⋅==1.(05年数一) 设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则______xdydz ydzdx zdxdy ∑++=⎰⎰192解析 在Ω上用高斯公式得(111)31I dV dV ΩΩ=++=⎰⎰⎰⎰⎰⎰作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθρϕθρϕ===,{(,,)0,0,02}4RπρϕθρϕθπΩ=≤≤≤≤≤≤,所以22240003sin (2RI d d d R ππθϕρϕρπ==⎰⎰⎰.2.(06年数一) 设∑是锥面1)z z =≤≤的下侧,则23(1)_____x d y d z y d z d x z d x d y ∑++-=⎰⎰192解析 添加辅助面221:1(1)z x y ∑=+≤,法向量朝上,123(1)0000xdydz ydzdx z dxdy ∑++-=++=⎰⎰,∑与1∑围成区域Ω,用高斯公式得123(1)(123)623xdydz ydzdx z dxdy dV ππ∑∑Ω++-=++=⋅=⎰⎰⎰⎰⎰,原式202ππ=-=. 3.(08年数一)设曲面∑是z =的上侧,则2_________xydydz xdzdx x dxdy ∑++=⎰⎰193解析 直接代入公式将第二类曲面积分化为二重积分,曲面∑的方程是,)z x y D =∈,其中22{(,)4}D x y x y =+≤,z z x y ∂∂==∂∂所以22()()00D D z zxy x x dxdy x dxdy x y ⎡⎤∂∂-+-+=++⎢⎥∂∂⎣⎦⎰⎰⎰⎰221()42Dx y dxdy π=+=⎰⎰.1.(01年数一)设222z y x r ++=则(1,2,2)()______div gradr -=195解析 先求(,,)x y zgradr r r r =,再求()()()()x y zdiv gradr x r x r x r∂∂∂=++∂∂∂.2223331112()()()x y z r r r r r r r=-+-+-=.所以(1,2,2)2()3div gradr -=.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars.The furthest distance in the world Is not between life and death But when I stand in front of you Yet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。

曲线积分与曲面积分知识题目解析

曲线积分与曲面积分知识题目解析

第十一章 曲线积分与曲面积分第三节 Green 公式及其应用1.利用Green 公式,计算下列曲线积分: (1)⎰-Lydx x dy xy22,其中L 为正向圆周922=+y x ;解:由Green 公式,得2322223081()22LDxy dy x ydx x y dxdy d r dr ππθ-=+==⎰⎰⎰⎰⎰, 其中D 为229x y +≤。

(2)⎰-++Ly y dy y xe dx y e )2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界; 解:由Green 公式,得()(2)(1)1yy y y LDDey dx xe y dy e e dxdy dxdy ++-=---==⎰⎰⎰⎰⎰。

*(3)⎰+-Ldy xy ydx x 22,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ;解:连直线段AB ,使L 与BA 围成的区域为D ,由Green 公式,得6cos 222222323cos 444620()01515353cos 334442264LDBAxydx xy dy y x dxdy xydx xy dy d r dr d πθθπθπθθπ-+=+--+=-==⨯⨯⨯=⨯⨯⎰⎰⎰⎰⎰⎰⎰*(4)⎰+-Lyx xdy ydx 22,其中L 为正向圆周4)1(22=++y x . 解:因为22222()x y P Q y x x y -∂∂==∂∂+,(,)(0,0)x y ≠。

作足够小的圆周l :222x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得220L lydx xdyx y+-=+⎰,故 22222222222sin cos 2Lllydx xdy ydx xdyydx xdyx y x y r r r d r πθθθπ---+=-=++--==-⎰⎰⎰⎰2.计算下列对坐标的曲线积分:⎰+-Lx xydy e dx y esin 2)cos 21(,其中L 为曲线x y sin =上由点)0,(πA 到点)0,0(O 的一段弧;解:(12cos ),2sin xxP e y Q e y =-=,2sin x P Q e y y x∂∂==∂∂, 故积分与路径无关,取)0,(πA 经x 轴到点)0,0(O 的一条路径, 从而 原式=(12cos )2sin 1x x x AOe y dx e ydy e dx e ππ-+=-=-⎰⎰。

第十一章 曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα(1.10)如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰ (1.11)如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰ (1.12)如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F ρρρ),(),(),(+= (2.1)的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F ρ所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A ρρϖ),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βαϖϖ平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{. (2.9)如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q (3.1)其中L 是D 的取正向的边界曲线.若在格林公式(3.1)中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u (3.3)满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂ ),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y x yu2=∂∂ y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ .)(2C x x +=ϕ 由,0)0(=ϕ知0=C .)(2x x =ϕ 故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i Λ=∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例 5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i n ρρρργβα++= 又设k z y x R j z y x Q i z y x P z y x A ρρρϖ),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅ϖϖ 则∑上的第一类曲面积分⎰⎰∑⋅dS n v ϖϖ.)cos cos cos (⎰⎰∑++=dS R Q P γβα (5.5)称为函数),,(z y x A ϖ在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(. (5.9)上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P (6.1)这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. (6.1)式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A ρρρρ),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,ορn 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A ρρρρρο称为向量场A ρ通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A ρ的散度,记为A div ϖ,即zRy Q x P A div ∂∂+∂∂+∂∂=ϖ. (6.5)例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ρ⋅∇=,其中}cos ,cos ,{cos γβα=n ρ是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(ρρdS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式.例5(E05)求向量场k z j y i x r ρρρρ++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r ρρ⎰⎰⎰=Vdv r div ρ⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量 1Q ⎰⎰+⋅=S S d r ρρ⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx (7.1)公式(7.1)称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A ρρρρ++= 则沿场A ρ中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A ρ沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A ρ的旋度,记为A rot ρ,即.k y P x Q j x R z P i z Q y R A rot ρρρρ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ Pz y x k j i A rot ∂∂∂∂∂∂=ρρρρ.四、向量微分算子:,k zj y i x ρρρ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n ρ即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A ϖ=grad u 为势量场或保守场,而u 称为场A ϖ的势函数.例6(E04)设一刚体以等角速度k j i z y x ϖϖϖϖωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v ϖ的旋度.解 取定轴l 为z 轴,点M 的内径r ρOM =,k z j y i x ρρρ++=则点M 的线速度v ρr ρρ⨯=ωzyx kji z yx ωωωρρρ=,)()()(k x y j z x i y z y x x z z y ρρρωωωωωω-+-+-=于是v ρrot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=ρρρ)(2k j i z y x ρρρωωω++=.2ωρ=即速度场v ρ的旋等于角速度ωρ的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆ΩΛ其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i Λ=∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩY 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。

《高数》下册第十一章练习题

《高数》下册第十一章练习题

《高数》下册第十一章练习题第十一章曲线积分与曲面积分习题11-11.设在某Oy面内有一分布着质量的曲线弧L,在点(某,y)处它的线密度为(某,y)。

用对弧长的曲线积分分别表达:(1)这曲线弧对某轴,对y轴的转动惯量I某Iy,(2)这曲线弧的质心坐标某,y2.利用对弧长的曲线积分的定义证明性质33.计算下列对弧长的曲线积分:(1)(2)(某L2y)d,其中L为圆周某acot,yaint(0t2)2nL(某y)d,其中L为连接(1,0)及(0,1)两点的直线段2某d,其中L为由直线y=某及抛物线y某(3)L所围成的区域的整个边界e(4)L某2y2d,其中L为圆周某2y2a2,直线y=某及某轴在第一象限内所围成的扇形的整个边界1tttd某ecot,yeint,ze222(5)某yz,其中为曲线上相应于t从0变到2的这段弧(6)某2yzd,其中为折线ABCD,这里A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),y2d,,其中L为摆线的一拱某a(tint),ya(1cot)(0t2)(1,3,2)(7)(8)LL(某2y2)d,其中L为曲线某a(cottint),ya(inttcot)(0t2)4.求半径为a,中心角为2的均匀圆弧(线密度1)的质心0t2,它的线密度5.设螺旋形弹簧一圈的方程为某acot,yaint,zkt,其中(某,y,z)某2y2z2.求:I(1)它关于z轴的转动惯量z(2)它的质心。

习题11-21.设L为某Oy面内直线某a上的一段,证明:LP(某,y)d某02.设L为某Oy面内某轴上从点(a,0)到点(b,0)的一段直线,证明:LP(某,y)d某P(某,0)d某ab3.计算下列对坐标的积分:(1)(某L2y2)d某,其中L是抛物线y某2上从点(0,0)到点(2,4)的一段弧(2)L某yd某2(某a)2y2a(a>0)及某轴所围成的在第一象限内的区,其中L为圆周域的整个边界(按逆时针方向绕行)(3)Lyd某某dy,其中L为圆周某Rcot,yRint上对应t从0到2的一段弧(某y)d某(某y)dy222某+ya(4)L(按逆时针方向绕行)某2y2,其中L为圆周(5)某2d某zdyydz,其中为曲线某kyaco,zain上对应从0到是从点(1,1,1)到点(2,3,4)的一段直线的一段弧(6)(7)某d某ydy(某y1)dz,其中,其中d某dy+ydz2L为有向闭折线ABCD,这里的A,B,C依次为点(1,0,0),(0,1,0),(0,0,1)(8)(某的一段弧4.计算2某y)d某(y22某y)dy,其中L是抛物线y某2上从点(-1,1)到点(1,1)(某y)d某(y某)dy,其中L是:L2y某上从点(1,1)到点(4,2)的一段弧(1)抛物线(2)从点(1,1)到点(4,2)的直线段(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线22某2tt1,yt1上从点(1,1)到点(4,2)的一段弧(4)曲线222某yR5.一力场由沿横轴正方向的恒力F所构成,试求当一质量为m的质点沿圆周按逆时针方向移过位于第一象限的那一段弧时场力所做的功6.设z轴与动力的方向一致,求质量为m的质点从位置(某,y,z)沿直线移到(某,y,z)时重力所做的功7.把对坐标的曲线积分LP(某,y)d某Q(某,y)dy化成对弧长的积分曲线,其中L为:(1)在某Oy面内沿直线从点(0,0)到点(1,1)2y某(2)沿抛物线从点(0,0)到点(1,1)22某y2某从点(0,0)到点(1,1)(3)沿上半圆周23某t,yt,zt为曲线上相应于t从0变到1的曲线弧,把对坐标的曲线积分8.设Pd某QdyRdz化成对弧长的曲线积分习题11-31.计算下列曲线积分,并验证格林公式的正确性:(1)L(2某y某2)d某(某y2)dyy某2和y2某所围成的区域的,其中L是由抛物线正向边界曲线(2)L(某2某y2)d某(y22某y)dy,其中L是四个顶点分别为(0,0),(2,0),(2,2),(0,2)的正方形区域的正想边界2.利用曲线积分,求下列曲线所围成的图形的面积(1)星形线某aco3t,yain3t22(2)椭圆9某+16y144(3)圆某y2a某22yd某某dy22(某1)y2,L的方向为逆时针方向L2(某2y2)3.计算曲线积分,其中L为圆周4.证明下列曲线积分在整个某Oy面内与路径无关,并计算积分值(1)(2)(2,3)(1,1)(3,4)(某y)d某(某y)dy(1,2)(2,1)(6某y2y3)d某(6某2y3某y2)dy(2某yy43)d某(某24某y3)dy(3)(1,0)5.利用格林公式,计算下列曲线积分:(2某y4)d某(5y3某6)dy(1),其中L为三顶点分别为(0,0),(3,0)和(3,2)L的三角形正向边界;(某(2)L2yco某2某yin某y2e某)d某(某2in某2ye某)dy23,其中L为正向星形线某ya(a0)(3)2323,其中L为在抛物线L(2某y3y2co某)d某(12yin某3某2y2)dy2某y2上由点(0,0)到(2)的一段弧,1(某(4)L2y)d某(某in2y)dyy2某某2上由点(0,0)到点(1,1),其中L是在圆周的一段弧6.验证下列P(某,y)d某Q(某,y)dy在整个某Oy平面内是某一函数u(某,y)的全微分,并求这样的一个u(某,y):(1)(某2y)d某(2某y)dy22某yd某某dy(2)(3)4in某in3yco某d某3co3yco2某dy2232y(3某y8某y)d某(某8某y12ye)dy(4)22(2某coyyco某)d某(2yin某某iny)dy(5)7.设有一变力在坐标轴上的投影为某某y,Y2某y8,这变力确定了一个力场。

第十一章 曲线积分与曲面积分(题库)答案

第十一章 曲线积分与曲面积分(题库)答案
x y
解: P x, y y e x , Q x, y 3 x e y ,
P Q 1, 3 y x
dxdy 2dxdy 2 ab y e dx 3x e dy = x y
x y C
Q
P
D
D
29.(11-3)计算曲线积分
2 xy 2 y dx x
L
2
4 x dy ,其中 L 取正向的圆周 x 2 y 2 9 .
解:设 P 2 xy 2 y, Q
x2 4x ,
Q P 2x 4 2 x 2, x y
2
B. 6S
C. 12S
D.
24S
L
x 上自点 A 1,1 到点 B 1, 1 之间的一段弧,则 I yds (
C. 1
2 2
D. 1
设 C 为沿 x y R 逆时针方向一周的闭合曲线,则曲线积分
2 2 I x ydx xy dy 应用格林公式计算得( A ) C
2
0 x 2 ,计算
2
L
x 1 x ds .
解:直接代公式化第一类平面曲线积分为定积分得

L
xds
2
0
x 1 y2 dx
0
x 1 4 x 2 dx
1 1 2 2 2 1 4 x d 1 4 x 2 8 0 3 1 2 2 2 1 4 x 8 3 2 0

L
x 2 ds
2 . 3
2.
7. (11-1)设 L 为连接 (1,0) 及 (0,1) 两点的直线段,则 8. (11-1)计算曲线积分

第11章习题 曲线积分与曲面积分

第11章习题 曲线积分与曲面积分

第十一章 曲线积分与曲面积分一、填空题:1.设L 是连接点)0,0(O 与点)2,1(B 的直线段,则⎰+L ds y x )(= 。

2.设L 是上半圆周21x y -=,则曲线积分=+⎰L ds y x 22 。

3.设L 是任意简单封闭曲线(取正向),b a ,为常数,则=+⎰L bdy adx 。

4.设k z j xy i y x a 222++=在点)1,2,1(-M 的散度a div = 。

5.设∑为球面:2222R z y x =++,则曲面积分=++⎰⎰∑dS z y x )(222 。

二、选择题: 1.设L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形的周界,则曲线积分⎰+L ds y x 1=( )。

—(A )0 (B) 2 (C) 22 (D) 242.设L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形依逆时针方向的周界,则曲线积分⎰++L y x dy dx =( )。

(A ) 1 (B) 2 (C) 0 (D) 1-3.已知曲线积分⎰+L xdy ydx y x f ))(,(与积分路径无关,则),(y x f 必须满足下列条件( )。

(A )0='+'x y f y f x (B )0='-'x y f y f x(C )0='+'y x f y f x (D 0='-'y x f y f x4.设∑是平面 1963=++z y x 在第一卦限部分,则⎰⎰∑++dS z y x )236(=( )。

(A )567 (B ) 54 (C ) 1134 (D )1085.由分片光滑的封闭曲面S 所围成的立体的体积=V ( )。

(A )⎰⎰++S xdxdy zdzdx ydydz 31 (B )⎰⎰++S zdxdy ydzdx xdydz 31 >(C )⎰⎰++S ydxdy xdzdx zdydz 31 (D ) ⎰⎰-+-Szdxdy ydzdx xdydz 31 三、计算题:1.求圆心在原点、半径为a 的均匀上半圆弧段(密度为μ)对于x 轴的转动惯量。

11曲线积分与曲面积分1

11曲线积分与曲面积分1
七、判断
1、曲线积分 L (x4 4xy3)dx (6x2 y2 5 y4 )dy 是否与路径无关?试说明理由。 2、验证 (2x yz)dx (2 y xz)dy xydz 与路径无关,并计算
I (1,1,1) (2x yz)dx (2y xz)dy xydz (0,0,0)
4、计算 (z 2x 4 y) cos ds 其中∑是平面 x y z 1 在第一卦限部分的曲面块,r 为∑
3
234
的法线向量
1
,
1
,
1
与 z 轴正向所夹的角。
2 3 4
5、计算 其中∑为锥面 z = x2 + y2 在第一卦限中满足 z≤1 的部分曲面的下侧。
五、证明
1、证明:(2xy-y2)dx+(x2-2xy-y2)dy=du(x,y),并求出函数 u(x,y).
11 曲线积分与曲面积分练习题 1
一、选择(10 小题
1、设 I
c
x
y 2y
2
dx
x2
x
y2
dy
,因为有 P y
Q x
y2 x2 (x2 y2)2
所以
A、在 C 所围区域内不含原点时,I=0; B、在 C 所围区域内含原点时 I=0,不含原点时 I≠0; C、对任意闭曲线 C,I=0;
D、因
C、 3 2 d 1 1 r 2 r d r ;
0
0
D、 3 2 d 1 r cos d r
0
0
11 曲线积分与曲面积分练习题 1 第 1 页 (共y)在 x2 y2 1 具有连续的二阶偏导数,L 是椭圆周 x2 y2 1 的顺时针方向,则
分表示为___________. (ρ(x,y)为连续函数)。

第十一章 曲线积分与曲面积分

第十一章 曲线积分与曲面积分

第十一章 曲线积分与曲面积分一. 单项选择题 11.1已知曲线积分()()d (+)d ++⎰x Ly f x x x e y y 与路径无关,其中函数()f x 可微,则()=f x ( ).(A) -xe x (B) xe (C) 1-+xe x (D) 1-x 11.2 设∑为空间区域Ω的封闭表面外侧,下述计算中运用高斯公式正确的是 ( ). (A) 2(2)(22)x dydz z y dxdy x dxdydz ∑Ω++=+⎰⎰⎰⎰⎰ (B) 3222()2(321)x yz dydz x ydzdx zdxdy x x dxdydz ∑Ω--+=-+⎰⎰⎰⎰⎰ (C) (1)xydzdx zdxdy y dxdydz ∑Ω+=+⎰⎰⎰⎰⎰(D)2(2)x dydz z y dxdy dxdydz ∑Ω++=⎰⎰⎰⎰⎰11.4下列为第一类曲面积分的是( ); A .⎰⎰∑S z y x f d ),,(,其中∑为3R 中的光滑曲面B .⎰⎰∑y x z y x f d d ),,(,其中∑为3R 中的光滑曲面 C .⎰⎰∑z y z y x f d d ),,(,其中∑为3R中的光滑曲面D .⎰⎰∑x z z y x f d d ),,(,其中∑为3R 中的光滑曲面 11.5 设∑为球面1222=++z y x 外侧在0,0≥≥y x 的部分,则⎰⎰∑y x xyz d d 2= ( );A .154 B .152 C .151D .0 11.6 .⎰L xds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 11.7 .抛物面22y x z +=夹在平面0=z ,1=z 之间的曲面面积为( )A.)15(6-πB.)155(6-πC.35πD. 65π11.8 设闭区域D 由分段光滑的曲线L 围成,)(x f 有二阶连续导数,且)(x g 是)(x f 的一个原函数,则⎰=+Ldy x g y f dx y g x f )()()()(( )A.1B.-1C.0D.-2 11.9ds y x L)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π 11.10 =⎰⎰∑ydS ( ),其中∑为平面2=++z y x 在第一卦限的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα(1.10)如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰ (1.11)如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰ (1.12)如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F ρρρ),(),(),(+= (2.1)的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F ρ所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A ρρϖ),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βαϖϖ平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{. (2.9)如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q (3.1)其中L 是D 的取正向的边界曲线.若在格林公式(3.1)中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u (3.3)满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂ ),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y x yu2=∂∂ y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ .)(2C x x +=ϕ 由,0)0(=ϕ知0=C .)(2x x =ϕ 故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i Λ=∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例 5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i n ρρρργβα++= 又设k z y x R j z y x Q i z y x P z y x A ρρρϖ),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅ϖϖ 则∑上的第一类曲面积分⎰⎰∑⋅dS n v ϖϖ.)cos cos cos (⎰⎰∑++=dS R Q P γβα (5.5)称为函数),,(z y x A ϖ在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(. (5.9)上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P (6.1)这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. (6.1)式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A ρρρρ),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,ορn 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A ρρρρρο称为向量场A ρ通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A ρ的散度,记为A div ϖ,即zRy Q x P A div ∂∂+∂∂+∂∂=ϖ. (6.5)例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ρ⋅∇=,其中}cos ,cos ,{cos γβα=n ρ是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(ρρdS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式.例5(E05)求向量场k z j y i x r ρρρρ++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r ρρ⎰⎰⎰=Vdv r div ρ⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量 1Q ⎰⎰+⋅=S S d r ρρ⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx (7.1)公式(7.1)称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A ρρρρ++= 则沿场A ρ中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A ρ沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A ρ的旋度,记为A rot ρ,即.k y P x Q j x R z P i z Q y R A rot ρρρρ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ Pz y x k j i A rot ∂∂∂∂∂∂=ρρρρ.四、向量微分算子:,k zj y i x ρρρ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n ρ即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A ϖ=grad u 为势量场或保守场,而u 称为场A ϖ的势函数.例6(E04)设一刚体以等角速度k j i z y x ϖϖϖϖωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v ϖ的旋度.解 取定轴l 为z 轴,点M 的内径r ρOM =,k z j y i x ρρρ++=则点M 的线速度v ρr ρρ⨯=ωzyx kji z yx ωωωρρρ=,)()()(k x y j z x i y z y x x z z y ρρρωωωωωω-+-+-=于是v ρrot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=ρρρ)(2k j i z y x ρρρωωω++=.2ωρ=即速度场v ρ的旋等于角速度ωρ的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆ΩΛ其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i Λ=∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩY 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。

相关文档
最新文档