东南大学传热学名词解释+分析题整理笔记
传热学简答分析题总结
![传热学简答分析题总结](https://img.taocdn.com/s3/m/ecdcfd1ccc7931b765ce15b6.png)
简答题总结绪论部分主要包括导热、对流换热、辐射换热的特点及热传递方式辨析。
1、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。
试解释原因。
答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×105Pa时,空气导热系数为0.0259W/(m·K),具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
2、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才觉得舒服。
试从传热的观点分析原因。
答:首先,冬季和夏季的最大区别是室外温度的不同。
夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。
而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。
根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
3、试分析室内暖气片的散热过程,各环节有哪些热量传递方式?以暖气片管内走热水为例。
答:有以下换热环节及热传递方式(1)由热水到暖气片管到内壁,热传递方式是对流换热(强制对流);(2)由暖气片管道内壁至外壁,热传递方式为导热;(3)由暖气片外壁至室内环境和空气,热传递方式有辐射换热和对流换热。
4、冬季晴朗的夜晚,测得室外空气温度t高于0℃,有人却发现地面上结有—层簿冰,试解释原因(若不考虑水表面的蒸发)。
解:如图所示。
假定地面温度为了Te ,太空温度为Tsky,设过程已达稳态,空气与地面的表面传热系数为h,地球表面近似看成温度为Tc 的黑体,太空可看成温度为Tsky的黑体。
则由热平衡:,由于Ta >0℃,而Tsky<0℃,因此,地球表面温度Te有可能低于0℃,即有可能结冰。
2015年东南大学考研传热学真题
![2015年东南大学考研传热学真题](https://img.taocdn.com/s3/m/3bf07a7ea45177232f60a2f7.png)
来自QQ2102905080
东南大学2015年研究生入学考试传热学(回忆版)
一、术语解释(3*10)
肋效率傅里叶数表面热阻总传热系数表面传热系数
牛顿冷却公式光谱辐射率换热器效能时间常数有效辐射
二、模型分析
1、把一个高温小球放到环境中,分析影响小球内部温度分布与时间
的规律的因素,分析影响小球内部温度变化的因素
2、一维非稳态有内热源平板导热边界节点显性差分方程
3、影响温度计测量精度的因素,提高温度测量精度的措施
4、恒定热流密度的管内对流换热系数随x的变化规律,以及流体温
度随时间变化规律
5、根据管内自然对流实验关联式推到传热系数与管径的关系
三、计算题
1、一个内部是110度的蒸汽管道,管径133mm,保温材料1,导热
系数0.04,保温材料2,导热系数0.08,厚度都为30mm,问从减少
散热量的角度分析,应该把哪中材料放在里面,并估计散热量,外部
环境温度10度,h为425w/m2k
2、两个圆盘上下平行放置,直径都是1m,表面1的0.8 900k,
表面2 0.9 300k,1-2角系数0.85,外部环境相当于0k的黑体,画出图,求1表面的净辐射量1-2的辐射量
3、换热器内逆流换热,用175度的油加热35度的水到90度,水
的cp4200,油的cp2100,水的q0.8,油q0.9,换热系数425,求
换热面积、换热器单元数、换热器效能、,画出温度变化图
4、温度为65的管道加热30度水到50度,水的流量0.8,管径
25mm,求表面传热系数,求单位长度1m的换热量。
(整理)传热学知识点
![(整理)传热学知识点](https://img.taocdn.com/s3/m/588a9e88770bf78a64295427.png)
传热学主要知识点1.热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。
[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。
a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h因素:流速、流体物性、壁面形状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程Downside surface: adiabaticx A/4 A/4第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
东南大学传热学名词解释+分析题整理笔记
![东南大学传热学名词解释+分析题整理笔记](https://img.taocdn.com/s3/m/6a7860e4b8f67c1cfad6b8a5.png)
第一章1.热传导物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
2.热流量单位时间内通过某一给定面积的热量。
3.热对流指由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。
4.导热系数表征材料导热性能优劣的参数,数值上等于在单位温度梯度作用下物体内热流密度矢量的模。
取决于物质的种类和热力状态(温度和压力等)5.对流换热流体流过固体表面时,对流和导热的联合作用,使流体与固体壁面之间产生热量传递的过程。
6.辐射物体通过电磁波来传递能量的方式。
7.热辐射物体因热的原因而发出辐射能的现象。
8.辐射传热物体不断向空间发出热辐射,又不断吸收其他物体的热辐射,辐射与吸收过程的综合结果就造成了以辐射方式进行的物体间的热量传递。
9.传热过程热量由壁面一侧的流体通过壁面传到另一侧流体中去的过程。
10.传热系数表征传热过程强烈尺度的标尺,数值上等于冷热流体间温差1℃、传热面积1㎡时的热流量的值。
11.传热过程热阻面积热阻(见P14)第二章1.温度场各个时刻物体中各点温度所组成的集合。
2.稳态温度场物体中各点温度不随时间变化的温度场。
3.非稳态温度场物体中各点温度随时间变化的温度场。
4.均匀温度场物体中各点温度相同的温度场。
5.一维温度场物体中各点温度只在一个坐标方向变化的温度场。
6.二维温度场物体中各点温度只在二个坐标方向变化的温度场。
7.等温面温度场中同一瞬间相同温度各点连成的面。
8.等温线在任何一个二维截面上等温面表现为等温线。
9.导热基本定律在导热过程中,单位时间内通过给定截面的导热量,正比于垂直该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。
(傅里叶定律)10.热流线一组与等温线处处垂直的曲线,通过平面上任一点的热流线与该点的热流密度矢量相切。
11.热流通道相邻两条热流线之间所传递的热流量处处相等,相当于构成一个热流通道。
东南大学传热学真题精解
![东南大学传热学真题精解](https://img.taocdn.com/s3/m/b1d91a04a6c30c2259019ecf.png)
东南大学1995年攻读硕士学位研究生入学考试试题1.直径100mm的蒸汽管道,绝热层外径250mm,若绝热层内外璧温度均不变而改用新的绝热材料(已知导热系数λ=1λ/2,单2位体积价格G=22G)。
问价格相同时,但位管厂的热损失变化1是多少?2.两个表面黑率的平行平板,其温度分别为T与2T。
板间辐射换1热,热在中间插入一块厚δ,导热系数λ,表面黑率ε的平板,问热流有什么变化?3.空气在方管内作强迫对流紊流时,若流量增加一倍,问对流换热系数变化多少?压力损失多少?(阻力系数与雷诺数无关)4.设计一个采用瞬态导热理论测试材料热物性(如导热系数a)的实验装置。
说明其工作原理与测试方法。
5.用裸露热电偶测量管中的气流温度,热电偶读数t=170c︒,已1知管壁温度t=90c︒,气流对热接点的对热换热系数2α=50c/,接点表面黑率ε=0.6,试确定气流的温度。
若考mw︒2虑热电偶导热的影响,则真实的温度应有何变化?6. 流量为的907kg/h 水,通过长4.6m 的钢管,水温16c ︒升高至49c ︒,钢管内壁温度66c ︒。
求钢管的内径。
水的物性:东南大学1996年传热学研究生入学考试一. 请设计一个存放液氮的金属容器,附上简图并加以说明(按传热学原理) 二. 导热微分方程)(222222zT yT xT T ∂∂+∂∂+∂∂=∂∂ατ的推导过程与条件三. 请说明并比较换热器计算中的平均温压与传热单元数法。
四. 长铜导线置于温度为∞t 的空气中,已知导线的电阻值为m/10*63.32Ω-,密度为3/9000mKg =ρ,比热CKg J C∙=/386,直径为2.2mm ,问当为8A 的电流通过及对流放热系数Cm W*/1002=α时,该导线的初始温升及其时间常数是多少? 五. 流量为h Kg/10*11.03的水在直径为50mm 的管内作强迫对流换热,管内表面温度为50℃。
试问水由25℃加热到35℃需要多长的圆管?)*/174.4(C Kg KJ C=水的物性六. 由表面1与表面2两平行黑体表面组成的空腔,内有空气流过,进出口空气的平均温度为27℃,空气与热壁的对流换热系数为50W/C m *2,空腔是窄通道。
东南大学2012考研918传热学真题(回忆版)
![东南大学2012考研918传热学真题(回忆版)](https://img.taocdn.com/s3/m/192e1ec8185f312b3169a45177232f60ddcce700.png)
东南大学2012考研918传热学真题(回忆版)
2012东南大学918传热学真题(回忆版)
一.名词解释
1.有效辐射
2. 定向辐射强度
3.特征数方程
4. 时间常数
5.热边界层
二.分析简答
1.热辐射特征,夏天打伞为什么减少得热量
2.圆筒体第一类边界条件温度分布及图
3.无限大平板高度对传热系数的影响并说明特征方程能否用于开始段及粘性流体
4.换热器结垢对传热量的影响
5.常物性二维非稳态无内热源绝热边界节点显式差分方程(热平衡法)及稳定条件
6.强化相变对流的原则及列举强化相变对流的具体措施
三.计算
1.一块平板有内热源,厚1m,λ1=10,两边包以保温材料分别20cm,λ2=0.1,处于20摄氏度的环境中,h=500,保温材料最高能承受200摄氏度,求内热源大
小?若平板最高能承受300摄氏度,则此内热源是否符合要求?
2.同往卷管内强制对流,计算管长
3.两无限大平板,T1为800摄氏度,T2为370摄氏度з1=0.8,з2=0.5两板之间加一块两面发射率不同的遮热板,з3=0.1,з4=0.08,求12板间辐射换热量及遮热板温度
4.同往卷换热器计算,逆流,水水,高温入口80,出口45,低温入口25,出口35,高温流量q m=?,管内壁h=?管外壁h=?内径=?外径=?管材导热系数=?,计算换热面积。
传热学复习资料
![传热学复习资料](https://img.taocdn.com/s3/m/f1898eb3ed3a87c24028915f804d2b160b4e86ea.png)
传热学复习资料第一章概论一、名词解释热流量是单位时间内传递的热量,热流密度是单位传热面上的热流量。
导热是指物体内部温度差或不同温度物体接触时,物质微粒的热运动传递热量的现象。
对流传热是流体通过固体壁的热传递过程,包括表面对流传热和导热。
辐射传热是物体向周围空间发出和接收热辐射能的过程。
总传热过程是指热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程。
对流传热系数、辐射传热系数和复合传热系数分别表示对流传热能力、辐射传热能力和复合传热能力的大小。
总传热系数表示总传热过程中热量传递能力的大小。
二、填空题1.热量传递的三种基本方式为热传导、热对流、热辐射。
2.热流量是指单位时间内传递的热量,单位为W;热流密度是指单位传热面上的热流量,单位为W/m2.3.总传热过程是指热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,总传热系数表示它的强烈程度。
4.总传热系数是指传热温差为1K时,单位传热面积在单位时间内的传热量,单位为W/(m2·K)。
5.导热系数的单位是W/(m·K),对流传热系数的单位是W/(m2·K),传热系数的单位是W/(m2·K)。
6.复合传热是指复合传热系数等于对流传热系数和辐射传热系数之和,单位为W/(m2·K)。
7.单位面积热阻rt的单位是K/W,总面积热阻Rt的单位是m2·K/W。
8.单位面积的导热热阻可以表示为m2·K/W或K/W。
9.单位面积的对流传热热阻可以表示为1/h。
10.总传热系数K与单位面积传热热阻rt的关系为rt=1/K。
11.总传热系数K与总面积A的传热热阻Rt的关系为Rt=1/KA。
12.稳态传热过程是指物体中各点温度不随时间而改变的热量传递过程。
13.非稳态传热过程是指物体中各点温度随时间而改变的热量传递过程。
14.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为30W/(m2·K),对流传热系数为270W/(m·K),其复合传热系数为100 W/(m2·K)。
传热学重要名词解释和简答题
![传热学重要名词解释和简答题](https://img.taocdn.com/s3/m/591351f2910ef12d2af9e79b.png)
momentum diffusion capacity diffusion capacity of the fluid. ⑤ Nusselt number : Nu = hL / λ reflects the flow field of a given thermal heat capacity and its ability to contrast relationships. Is a dimensionless heat transfer coefficient . ⑥ Grashof number : Gr = g β θ L3/ υ 2 reflects the contrast between the natural buoyancy convection fluid flow field caused by the temperature difference caused by the inertial force of the fluid between its viscous force . 雷诺数的大小可用于判定强制对流流场的稳定性, 而自然对流流场的稳定性需要用格拉晓夫 数判定。 对流换热问题中出现的努塞尔数 Nu 与非稳态导热分析中的毕渥数 Bi 形式上是相似的。 但是, Nu 中的 Lf 为流场的特征尺寸, λf 为流体的导热系数; 而 Bi 中的 Ls 为固体系统的特征尺寸, λs 为固体的导热系数。它们虽然都表示边界上的无量纲温度梯度,但一个在流体侧一个在 固体侧。 黑度仅仅与物体表面自身的辐射特性相关,也就是与物体的种类、它的表面特征,还与物体 的温度相关,而与物体外部的情况无关。 解释:暖房的“温室效应” ? 答:物体表面的单色吸收率随波长变化的特性称为物体表面对波长(光谱)的选择性。 暖房:当太阳光照射到玻璃上时,玻璃对波长小于 2.2μm 的辐射能吸收比很小、穿透比很 大,从而使大部分太阳能可以进入到暖房内。暖房中的物体温度低,辐射能绝大部分位于红 外区,而玻璃对于波长大于 3μm 的辐射能吸收比很大、穿透比很小,阻止了辐射能向暖房 外的散失。 基尔霍夫定律:E/α=Eo α=E/Eo=ε 表述: ①在热平衡条件下, 任何物体的辐射力 E 和它对来自黑体辐射的吸收比α的比值恒等 于同温度下黑体的辐射力 Eb。 ②热平衡时任意物体对黑体投入辐射的吸收比α等于同温度下该物体的发射率ε。 思考:善于发射的物体必善于吸收,这个说法是否正确? 答:不正确。由基尔霍夫定律,物体对黑体投入辐射的吸收比α等于同温度下该物体的发射 率ε。即投入辐射必须来自黑体,且达到热平衡。物体发射率越大,其对同温度的黑体辐射 吸收比越大。只能说:善发射的物体必善吸收同温度下的黑体辐射。 比如:某物体在 2000K 时的发射率,并不等于物体对 6000K 的太阳辐射的吸收比。 在加热金属时可以观察到:当金属温度低于 500℃时,由于实际上没有可见光辐射,不 能察觉到金属颜色的变化,随着温度不断升高,铁块的颜色相继出现暗红、鲜红、橘黄等颜 色,最终将出现白炽。这是由于随着温度的升高,热辐射中的可见光及可见光中的短波比例 逐渐增大的缘故。
传热学名词解释及简答题解析
![传热学名词解释及简答题解析](https://img.taocdn.com/s3/m/89cac073dd36a32d737581c2.png)
1.热传导:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
2.传热系数:在数值上等于冷、热流体间温差△t=1℃、传热面积A=1m2时的热流量的值,它表征传热过程的强烈程度。
3.传热过程:热量从壁一侧的高温流体通过壁传给另一侧的低温流体的过程。
4.温度场:指各个时刻物体内各点温度组成的集合,又称温度分布。
一般的,物体的温度场是时间和空间的函数。
5.等温面:同一瞬间,温度场中所有温度相同的点所组成的面。
6.等温线:在任何一个二维截面上,等温面表现为等温线。
7.温度梯度:在温度场中某点处沿等温面的法向的最大方向导数,t 。
8.热流量:单位时间内通过某一给定面积的热量。
记为φ。
9.热流密度:通过单位面积的热流量。
记为q。
10.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。
11.表面传热系数:单位面积上,流体与壁面之间在单位温差下及单位时间内所能传递的能量。
12.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。
13.自然对流:由于流体冷、热各部分的密度不同而引起流体的流动。
14.强制对流:流体的流动是由于水泵、风机或者其他压差作用所造成。
15.沸腾传热(凝结传热):液体在热表面上沸腾(及蒸汽在冷表面上凝结)的对流传热。
16.入口段和充分发展段:流体从进入管口开始,需经历一段距离,管断面流速分布和流动状态才能达到定型,这一段距离通称进口段。
之后,流态定型,流动达到充分发展,称为流动充分发展段。
17.自模化现象:自然对流紊流的表面传热系数与定型尺寸无关的现象。
18.辐射:物体通过电磁波来传递能量的方式。
19.热辐射:物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称~。
20.辐射传热:辐射与吸收过程的综合结果就造成了以辐射的方式进行的物体间的热量传递。
21.黑体:指能吸收投入到其表面上的所有热辐射能量的物体。
传热学名词解释
![传热学名词解释](https://img.taocdn.com/s3/m/14adca45a517866fb84ae45c3b3567ec102ddce0.png)
1、傅里叶定律P35:在导热的过程中,单位时间内通过给定截面的导热量,正比于垂直该截面方向上的变化率和截面面积,而热量传递的方向则与温度升高的方向相反。
2、热导率(导热系数)P6、P37:表征材料导热性能优劣的参数,即是一种热物性参数,单位W/(m·k)。
数值上,其定义为单位温度梯度(在1m长度内温度降低1K)在单位时间内经单位导热面所传递的热量。
3、绝对黑体P9:简称黑体,是指能吸收投入到其表面上的所有热辐射能量的物体。
4、传热系数P13:数值上,它等于冷、热流体间温差△t=1°C、传热面积A=1m ²时热流量的值,是表征传热过程强烈程度的标尺。
5、热扩散率P45:定义式为a=λ/ρc,它表示物体在加热或冷却中,温度趋于均匀一致的能力。
这个综合物性参数对稳态导热没有影响,但是在非稳态导热过程中,它是一个非常重要的参数。
6、接触热阻P67:在未接触的界面之间的间隙常常充满了空气,与两个固体便面完全接触相比,增加了附加的传递阻力,称为接触热阻。
7、肋效率P62:表征肋片散热的有效程度。
肋片的实际散热量与其整个肋片都处于肋基温度下得散热量之比.8、第一类边界条件P44:规定了边界上的温度值,称为第一类边界条件。
9、第二类边界条件P44:规定了边界上的热流密度值,称为第二类边界条件。
10、第三类边界条件P44:规定了边界上的物体与周围流体间的表面传热系数h 及周围流体的温度tf,称为第三类边界条件。
11、集中参数法P117:当固体内部的导热热阻小于其表面的换热热阻时,固体内部的温度趋于一致,近似认为固体内部的温度t仅是时间τ的一元函数而与空间坐标无关,这种忽略物体内部导热热阻的简化方法称为集中参数法。
12、当量直径:定义:把水利半径相等的圆管直径定义为非圆管的当量直径。
13、混合对流P273:当0.1≤Gr/Re2≤10时称混合对流。
14、定性温度:定性温度为流体的平均温度。
传热学 常考名词解释和简答题
![传热学 常考名词解释和简答题](https://img.taocdn.com/s3/m/90a6046158fb770bf68a5528.png)
热阻:反映阻止热量传递的能力的综合参量。
肋效率:征肋片散热的有效程度。
肋片的实际散热量与其整个肋片都处于肋基温度下得散热量之比。
接触热阻:在未接触的界面之间的间隙常常充满了空气,与两个固体便面完全接触相比,增加了附加的传递阻力,称为接触热阻。
换热器的污垢热阻:换热器在运行中积起的垢层的导热阻力,它所表现出来的一个当量的热阻值。
491导热系数:物体中单位温度降单位时间通过单位面积的导热量。
热边界层及厚度:在对流传热条件下,主流与壁面之间存在着温度差,在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈的变化,而在此薄层之外,流体的温度梯度几乎为零,此薄层称为温度边界层.定性温度:定性温度为流体的平均温度。
汽化核心:加热表面能产生气泡的地点。
黑度:实际辐射力E和同温度下黑体的辐射力Eb之比黑体指能吸收投入到其表面上的所有热辐射能量的物体。
灰体:对于各种波长的电磁波的吸收系数为常数且与波长无关的物体,其吸收系数介于0与1之间的物体。
有效辐射:有效辐射是指单位时间内离开表面单位面积的总辐射能,记为J。
投射辐射:单位时间内从外界投入到物体的单位表面积上的总辐射能。
重辐射面:表面温度未定而净辐射传热量为零的表面。
简单逆流式换热器:定向辐射强度:从黑体单位可见面积发射出去的落到空间任意方向的单位立体角中的能量,称为定向辐射强度。
膜状凝结:如果凝结液体很好地润湿壁面,它就在壁面上铺展成膜,这种凝结形式就称为膜状凝结。
珠状凝结:当凝结液体不能很好地润湿壁面时,凝结液体在壁面上形成以个个的小液珠,称为珠状凝结。
热扩散率:定义式为a=λ/ρc,它表示物体在加热或冷却中,温度趋于均匀一致的能力。
这个综合物性参数对稳态导热没有影响,但是在非稳态导热过程中,它是一个非常重要的参数。
定向辐射强度:指垂直于辐射方向的物体单位表面积在单位时间、单位立体角内向外发射出的辐射能量。
是一表征物体表面沿不同方向发射能量的强弱的物理量。
东南大学传热学复习重点提纲-考试范围-大纲笔记
![东南大学传热学复习重点提纲-考试范围-大纲笔记](https://img.taocdn.com/s3/m/a1154b26ad51f01dc381f176.png)
第一章。
基本概念的掌握,一些领域内的问题不用深究,重点把握“什么是什么”这一类型的句子,在名词解释和简答中可能出现。
从其他的试卷中你可以发现其中的计算题不会出现在考试中的。
1.4.1,1.4.2发展史不用看,其他全部都看。
应用具体中的问题要明复习题我没看,你有余力可以多看看,当做复习习题1-10 1-17 1-24 1-32这是我的课后习题,一般都比试卷中的难。
其他题目不要看。
第二章2.1为概念,边看边笔记。
中的微元体定义(P41)要明白,42页中的ab两个式子不需要记下来,看看就行,cde要理解,后面的式子(2-x)都要记下来。
的其他内容我都详细看了,建议你也看详细点。
中的47页的例题要学会自己推导,这个很重要,并且最好记下来。
48页的一堆废话看一遍即可,同样多层平壁也要掌握。
例题看懂即可。
上面说了这么多,一个关键就是要“理解”2.3.2这个多层圆筒我就记下了微分方程和最后的解,够用了。
2-30,31,32,27,28。
2.3.3球壳的导热,记一下热阻和热流量。
,2.3.5 仔细弄懂。
2.4 肋片主要是59面的内容,59到65估计你也看不懂,我没看的。
66面的肋片效率要明白原理。
,要懂原理,简答会有。
但68到70的计算题不用管。
2.5重点掌握。
例题2-10别看。
多为稳态看看前面的介绍就行了78面之后的别看。
习题3 7 10 14 17 30 44 46 51 53习题要是觉得难就别做,比考试复杂多了。
第三章掌握概念3.2 集中参数法是重点。
好难,除了汉字,其他别看3.3.4 要多看下3.4 也是掌握概念,也就是汉字,3中的导热量公式上次我背了,但老师说不用背。
3.4.3,3.5 我看不懂,不看习题9 12 44 49 58第四章基本都要掌握,而且要理解透,试卷上有道很典型的例题习题4第五章重要的一张,205页的几点讨论不用看习题1 8 15第六章看懂就行,不用记,格拉晓夫数公式要背241面的几个数全部都要背下来中的关联式不用记下来,考试该有的关联式都会给。
传热学 名词解释
![传热学 名词解释](https://img.taocdn.com/s3/m/802a9c1a4a73f242336c1eb91a37f111f1850ddb.png)
传热学》名词解释1.热传导:温度不同的物体各部分或温度不同的两物体直接接触时依靠分子,原子及其自由电子等微观粒子热运动而进行的热量传递现象2.导热系数入:单位厚度的物体具有单位温差时,在它的单位面积上每单位时间的导热量。
其单位为W/(m・K)3.热对流:流体内部,只依靠有温差流体微团的宏观掺混运动传递热量的现象4.对流换热:流体在与它温度不同的壁面上流动时,两者产生热量交换,这一热量传递过程称为对流换热过程5.对流换热系数(表面传热系数)h:单位面积上,流体与壁之间在单位温差下及单位时间内所能传递的热量。
单位为W/(m2・K)6.传热过程:冷热两种流体隔着固体壁面的换热,即热量从壁一侧的高温流体通过壁传给另一侧的低温流体的过程7.传热系数k单位时间,单位壁面积上,冷热流体间温差为1°C时所传递的热量。
单位为W/(m2・K)8.热阻:热量传递路径上的阻力,反映了热量传递过程中热量与温差的关系;单位面积的导热热阻R=8/入,单位为(m2・K)/W;总面积的导热热阻R=8/(入A),单位为K/W 入9.辐射换热:物体间靠热辐射进行的能量传递称为辐射换热10.温度场:某一时刻空间所有各点温度的总称11.温度梯度:沿等温线法线方向上的温度增量与发向距离的比值12.等温面:同一时刻,温度场中所有温度相同的点连接所构成的面叫做等温面13.热流密度矢量:单位时间单位面积上所传递的热量称为热流密度。
定义等温面上某点,以通过该点最大热流密度的方向为方向,数值上正好等于沿该方向热流密度的矢量称为热流密度矢量,简称热流矢量14.热扩散率(热扩散系数,导温系数)a:a-入/(P C p)称为热扩散率,热扩散系数,导温系数,单位为m2/s,表征物体被加热或冷却时,物体内各部分温度趋于均匀一致的能力15.稳态导热:物体的温度不随时间发生变化的导热过程称为稳态导热16.临界热绝缘直径:对应于总热阻为极小值时的保温层外径称为临界热绝缘直径17.肋片效率n f:在肋片表面平均温度下,肋片的实际散热量与假定整个肋片表面都处在肋基温度时的理想散热量的比值18.接触热阻:当导热过程在两个直接接触的固体之间进行时,由于固体表面不是理想平整的,所以两固体直接接触的界面容易出现点接触,或者只是部分的而不是完全的和平整的面接触,这时就会给导热过程带来额外的热阻,这种热阻称为接触热阻19.(导热)形状因子:将有关涉及物体几何形状和尺寸的因素归纳在一起,称为形状因子20.非稳态导热:温度场随时间而变化的导热过程21.瞬态导热:物体的温度不断升高(加热过程)或降低(冷却过程),在经历相当长的时间之后,物体的温度逐渐趋近于周围物体的温度,最终达到平衡,这样的过程称为瞬态导热,即为加热或冷却过程22.周期性非稳态导热:温度按照一定的周期发生变化的导热过程23.(瞬态温度变化的)正常情况阶段:经历不规则情况后,随着时间的推移,初始温度的影响逐渐消失,此时物体内部各处温度随时间的变化率具有一定的规律,称为正常情况阶段24.集总参数法:当BivO.1时,可以近似地认为物体的温度是均匀的,这种忽略物体内部导热热阻,认为物体温度均匀一致的分析方法称为“集总参数法”j225.(材料的)蓄热系数:叩小/g,它表示物体表面温度波振幅为1€时,导入物体的最大热流密度26.傅立叶准则:Fo应EI,它是非稳态导热过程的无量纲时间27.毕渥准则:B i=h5/入,它表示物体内部导热热阻6/入与物体表面对流换热热阻1/h的比值28.自然对流:流体因各部分温度不同而引起的密度差异所产生的流动称为自然对流29.受迫对流:流体因受外力作用产生的流动称为受迫对流30.混合对流:受迫对流与自然对流并存的流动称为混合对流31.流动边界层:黏性流体流过物体表面时,紧挨壁面处将形成极薄的,具有很大速度梯度的流动边界层32.热边界层:当壁面与流体之间有温差时,在紧挨壁面处会出现极薄的,具有很大温度梯度的温度边界层,又称热边界层33.物理现象相似:在同一类物理现象中,凡相似的现象,空间各对应点的同名物理量分别成一定的比例34.雷诺准则:Re=ul/v它的大小表征了流体流动时惯性力与粘滞力的相对大小35.努谢尔特准则:Nu=hl/入,它表征壁面法向无量纲过于温度梯度的大小,而此梯度的大小反映了对流换热的强弱36.格拉晓夫准则:Gr=(g A t a13)/V2,表征了浮升力与粘滞力的相对大小37.普朗特准则:Pr=v/a,,它的值反映了流体的动量传递能力与热量传递能力的相对大小38.(流动、热)进口段:流体从进入管口开始,需经历一段距离,管断面流速分布和流动状态才能达到定型,这一段距离通称进口段39.(流动、热)充分发展段:流体经过进口段后,流态定型,流动达到充分发展,称为流动充分发展段40.(自然对流换热的)自模化现象:对于自然对流紊流,其表面传热系数与定型尺寸无关,该现象称“自模化现象”41.膜状凝结:当凝结液能很好地湿润壁面时,凝结液将形成连续的膜向下流动,称为膜状凝结42.珠状凝结:若凝结液不能很好地湿润壁面,则凝结液将聚成一个个液珠,称为珠状凝结43.沸腾:液体在受热面的加热下,液体内部产生气泡的相变过程称为沸腾44.沸腾温差(过热度):饱和沸腾时,壁温与饱和温度之差45.(饱和、过冷、泡态、膜态)沸腾:一定压强下,当液体主体为饱和温度t s,而壁面温度t高于ts时的沸腾称为饱和沸腾;若主体温度低于ts,而壁面温度tw高于ts的沸腾W称为过冷沸腾;热量依靠自然对流过程传递到主体,蒸发在液体表面进行,这时的沸腾称为自然对流沸腾;自然对流过后,沸腾温差继续增加,之后会产生大量de气泡,称为泡态沸腾(核沸腾);沸腾温差继续增大,当沸腾温差达到一定值时,壁面将全部被一层稳定的气膜所覆盖,这时气化只能在气膜-液交界面上进行,气化所需热量依靠导热,对流,辐射通过气膜传递,称为膜态沸腾46.黑体:物体能全部吸收外来射线,即a=1,由于可见光被全部吸收而不被反射,人眼所看到的颜色呈现黑色,故这种物体被定义为黑体47.白体:物体能全部反射外界投射过来的射线,即P=1,不论是镜反射还是漫反射,由于可见光被全部反射,颜色上呈现白色,故这种物体称为白体48.透明体:如果外界投射过来的射线能够全部穿透物体,即T=1,则称这种物体为透明体49.辐射力E:单位时间内,物体单位辐射面积向半球空间所发射全部波长的总能量称为辐射力,单位为W/m250.单色辐射力E K:单位时间内,物体单位辐射面积,向半球空间所发射的某一波长的能量称为单色辐射力,单位为W/(m2•卩m)51.定向辐射强度I p:在某给定辐射方向上,单位时间,单位可见辐射面积,在单位立体角内所发射的全部波长的能力称为定向辐射强度52.单色定向辐射强度I:在某给定辐射方向上,单位时间,单位可见辐射面积,在单位入P立体角内所发射的某一波长的能力称为单色定向辐射强度53.发射率(黑度)£:实际物体的辐射力与同温度下黑体的辐射力之比;£=E/E b54.单色发射率£入:J=E”/E b入入入入D入55.定向发射率£p:£p=E p/E入卩:56.单色定向发射率£:£=E/E b入,p入,p入,pb入,p57.灰体:假如某物体的光谱发射率£入不随波长发生变化,即£=j=const,这种物体称灰体入入58.温室效应:投射阳光的密闭空间由于与外界缺乏热量交换而形成的保温效应59.角系数X a,b:表示离开表面的辐射能中直接落到另一个表面上的百分数60.有效辐射J:单位时间离开单位面积表面的总辐射能61.投入(投射)辐射G:单位时间,单位面积表面得到的总辐射能62.重辐射面:在辐射换热系统中,表面温度未定,净辐射换热量为零的表面63.辐射隔热:减少表面间辐射换热的有效方法是采用高反射比的表面涂层,或在表面间加设遮热板,这类措施称为辐射隔热64.复合换热:当流体为气体介质时,壁面上除对流换热外,还将同时存在辐射,这种对流与辐射并存的换热称为复合换热(区别于“混合换热”)65.换热器:实现两种或两种以上温度不同的流体相互换热的设备66.(换热器的)效能£:换热器的实际传热量与最大可能的传热量之比67.(换热器的)传热单元数NTU:传热单元数NTU是表示换热器传热量大小的一个无量纲数,NTU=kA/C min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章1.热传导物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
2.热流量单位时间内通过某一给定面积的热量。
3.热对流指由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。
4.导热系数表征材料导热性能优劣的参数,数值上等于在单位温度梯度作用下物体内热流密度矢量的模。
取决于物质的种类和热力状态(温度和压力等)5.对流换热流体流过固体表面时,对流和导热的联合作用,使流体与固体壁面之间产生热量传递的过程。
6.辐射物体通过电磁波来传递能量的方式。
7.热辐射物体因热的原因而发出辐射能的现象。
8.辐射传热物体不断向空间发出热辐射,又不断吸收其他物体的热辐射,辐射与吸收过程的综合结果就造成了以辐射方式进行的物体间的热量传递。
9.传热过程热量由壁面一侧的流体通过壁面传到另一侧流体中去的过程。
10.传热系数表征传热过程强烈尺度的标尺,数值上等于冷热流体间温差1℃、传热面积1㎡时的热流量的值。
11.传热过程热阻面积热阻(见P14)第二章1.温度场各个时刻物体中各点温度所组成的集合。
2.稳态温度场物体中各点温度不随时间变化的温度场。
3.非稳态温度场物体中各点温度随时间变化的温度场。
4.均匀温度场物体中各点温度相同的温度场。
5.一维温度场物体中各点温度只在一个坐标方向变化的温度场。
6.二维温度场物体中各点温度只在二个坐标方向变化的温度场。
7.等温面温度场中同一瞬间相同温度各点连成的面。
8.等温线在任何一个二维截面上等温面表现为等温线。
9.导热基本定律在导热过程中,单位时间内通过给定截面的导热量,正比于垂直该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。
(傅里叶定律)10.热流线一组与等温线处处垂直的曲线,通过平面上任一点的热流线与该点的热流密度矢量相切。
11.热流通道相邻两条热流线之间所传递的热流量处处相等,相当于构成一个热流通道。
12.保温材料导热系数小的材料。
13.表观导热系数不均匀连续的介质的一种折算导热系数。
14.导热微分方程根据能量守恒定律和傅里叶定律来建立的物体中的温度场应该满足的变化关系式。
15.热扩散率表征材料传播温度变化能力大小的参数。
(导温系数)16.边界条件第一类:规定了边界上的温度值。
第二类:规定了边界上的热流密度值。
第三类:规定了边界上物体与周围流体间的表面传热系数h及周围流体温度tf另外辐射边界条件,界面连续条件(见P45)17.导温材料的结构①均匀、各向同性②均匀、各向异性③不均匀、各向同性④不均匀各向异性18.接触热阻两名义上互相接触的固体表面,实际上接触仅发生在一些离散的面积元上。
在未接触的界面之间的间隙中常常充满了空气,热量将以导热的方式穿过这种气隙层。
这种情况与两固体表面真正完全接触相比,增加了附加的传递阻力,称为接触热阻。
影响因素:①表面粗糙度②表面硬度③表面间的压力等19.肋片依附于基础表面上的扩展表面。
20.肋效率肋片实际散热量与假设整个肋片表面处于肋根温度下的理想散热量的比值。
21.过余温度某点温度与基准温度之差(基准温度一般选取不受换热条件影响的物体温度)22.多维稳态导热求解方法①分析解法②数值解法③模拟方法注意:形状因子法只能用于两个等温边界F 套管测温减小误差的方法(P62)F 单层圆筒壁温度分布(P52)J 肋总效率(P66)第三章1.非稳态导热物体的温度随时间而变化的导热过程分类①非周期性物体的温度随时间的推移逐渐趋近于恒定值②周期性物体的温度随时间而做周期性变化其中非周期性非稳态导热阶段分为①非正规阶段温度分布主要受初始温度分布控制②正规阶段物体初始温度分布的影响逐渐消失,温度分布主要受热边界条件的影响2.导热微分方程解的唯一性定律不可能同时存在两个都满足导热微分方程及同一定解条件的不同解。
3.牛顿加热(冷却)物体内部导热热阻可以忽略的导热或冷却。
4.半无限大物体指从界面一侧开始可以向上、下以及正向无限延伸,而在每一个与正向垂直的截面上的物体温度都相等,即温度分布至于一个坐标有关的物体。
(详见P133)5.特征数表征某一类物理现象或物理过程特征的无量纲数。
6.特征长度出现在特征数定义式中的几何尺度。
7.集总参数法当固体内部的导热热阻远小于其表面的换热热阻时,任何时刻固体内部的温度都趋于一致,可认为整个固体在同一瞬间均处于同一温度下。
这时温度仅是时间τ的一元函数而与空间坐标无关,好像该固体的质量与热容量汇总到一点上,这种忽略物体内部导热热阻的简化分析方法称为集总参数法。
F第三类边界条件下Bi对平板内温度分布的影响(P116)F诺谟图仅适用于第一类与第三类边界条件(P131)F三种边界条件下半无限大物体温度场(P134)F多维非稳态导热的乘积法(P139)以过余温度或无量纲过余温度表示,不能用温度表示适用条件:初始温度均匀,第一类边界条件时边界温度为定值或第三类边界条件时流体温度与对流传热系数为定值第四章1.节点用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置。
2.步长相邻两节点间的距离。
3.元体节点所代表的小区域。
4.离散方程节点上物理量的代数方程。
5.网格Bi数以网格步长为特征长度的Bi数。
F稳态收敛性条件(对角占优)(P171)F非稳态导热显示格式内部节点(P176) 外部节点(P178)F稳定性条件(常被误说成“收敛性条件”)(P178) 注:第一类,第二类边界条件只有内点限制,第三类还要注意边界点的限制。
常考二维第五章1、对流传热:流体流过固体表面时与固体间的热量交换称为对流传热。
(自然对流,强制对流见第六章12、21)2、对流传热的研究方法:分析法、比拟法、数值法、实验法3、流动边界层:在固体表面附近流体速度发生剧烈变化的薄层称为流动边界层(又称速度边界层)。
特点:①起粘滞性作用的区域仅仅局限在靠近壁面的薄层内,尺寸很小;②边界层内流速急剧变化,壁面法线方向速度梯度很大;③沿流动方向边界层逐渐加厚,并逐渐由层流边界层过渡为湍流边界层;④主流区可以认为是理想流体的流动;⑤规定达到主流速度99%处的距离Y为流动边界层厚度,记为δ4、层流边界层:在平板的起始段边界层很薄,随着板长度X的增加边界层逐渐加厚,但在某一距离Xc内以前会一直保持层流的性质,此时流体左右秩序的分层流动,各层互不干扰,这时的边界层称为层流边界层。
5、湍流边界层:随着边界层厚度的增加,边界层内由于粘滞力和惯性力的作用变得不稳定起来,自前缘Xc处起流动朝着湍流过渡,最终过渡为旺盛湍流。
此时流体质点在沿X方向流动的同时,有作者紊乱的不规则脉动,故称湍流边界层。
6、粘性底层:湍流边界层的主体核心虽处于湍流流动状态,但紧靠壁面处粘滞应力仍占主导地位,致使贴附于壁面的一极薄层内仍保持层流的主要性质,这个极薄层称为粘性底层。
7、缓冲层:在湍流核心与粘性底层之间存在着起过渡作用的部分。
8、温度边界层:固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层(或热边界层),其厚度称为δt9、数量及分析:通过比较方程式中各项数量级的相对大小,把数量级大的保留下来,而舍去数量级小的项。
10、特征数方程:以特征数表示的对流传热计算关系式。
11、比拟理论:利用两个物理现象之间在控制方程方面的类似性,通过测定其中一种现象的规律而获得另一种现象基本关系的方法。
(注:只是控制方程方面的相似,而实际内容不同,例如湍流切应力和湍流热流密度)F1对流传热的影响因素P197-198F2换热微分方程与第三类边界条件的异同P202F3对流传热问题总的数学描写P205F4流动边界层内的流态分析P207下方-P208F5数量级分析法P210F6二维稳态边界层型对流传热问题的数学描述P211第六章1、相似原理:是一种借助于量纲分析研究相似物理现象之间的关系,从而指导实验的理论。
目的是减少实验次数而又能获得通用性规律2、同类现象:指那些由相同形式并具有相同内容的微分方程式所描写的现象。
3、相似现象:对于两个同类的物理现象如果在相应的时刻及相应的地点上与现象与有关的物理量一一对应成比例,则称此两现象彼此相似。
(同类现象才能谈相似)辩证关系:相似必同类,同类不一定相似,例如描写电场与导热物体的温度场的微分方程虽然形式相仿但内容不同,因此不是同类现象,而是比拟现象。
相似现象必须满足的条件:①必须是同类现象②同名已定准则数相等③单值性条件相似4、单值性条件:指使所研究的问题能被唯一地确定下来的条件,包括①初始条件②边界条件③几何条件④物理条件5、模化试验:是指用不同于实物几何尺度的模型(在大多数情况下是缩小的模型来研究实际装置中所进行的物理过程的试验)P239最下面6、近似模化:即只要求对过程有决定性影响的条件满足相似原理的要求。
P2407、已定准则:有已知量组成的准则8、待定准则:含有未知量的准则9、特征长度:包括在相似准则数中的,具有代表性的尺寸称为特征长度。
10、特征速度:计算Re时用到的流速,一般取截面平均流速。
11、定性温度:用以计算流体物性的温度。
12、强制对流:由于泵、风机或其他外部动力源造成的流体流动的对流换热现象。
13、内部流动:换热壁面上边界层的发展受到流道壁面的限制的流动。
14、外部流动:换热壁面上的流体边界层可以自由的发展,不会受到流道壁面的阻碍或限制。
15、入口段:从进口到流动边界层及热边界层汇合于管子中心线处之间的区域称为入口段。
16、充分发展段:当流动边界层及热边界层汇合于管子中心线后称流动或换热已经充分发展,汇合后的部分称为充分发展段,此后换热强度将保持不变。
17、入口效应:由于入口段边界层较薄,平均表面传热系数比较充分发展段大,入口段有强化传热的作用。
18、均匀热流:轴向与周向热流密度均匀。
(用均匀缠绕的电热丝加热)19、均匀壁温:轴向与周向壁温均匀。
(用蒸汽凝结或液体沸腾加热)20、当量直径:对于非圆形槽道计算Re时的特征尺度(De=4Ac/P,Ac-流动截面积,P-润湿周长)21、自然对流:不依靠泵和风机等外力推动,有流体自身温度场的不均匀所引起的流动称为自然对流。
22、大空间自然对流:指热边界层的发展不受到干扰或阻碍的自然对流,而不拘泥于几何上的很大或无限大。
(又称外部自然对流)23、有限空间自然对流:边界层的发展受到干扰或者流体流动受到限制的自然对流。
(又称内部自然对流)F1相似准则数的物理意义P241F2入口段和充分发展段的换热系数h分析(图)P243-244F3均匀热流及均匀壁温条件的解释及对数温差P245F4管内流动速度分布随换热情况的畸变(图)P247F5流体横掠单管的边界层分离理论P256F6大空间自然对流传热边界层中速度与温度的分布P263F7大空间自然对流局部换热系数沿竖壁的变化P265-266(三一丛书)F1管内强制对流换热的强化P91下方F2影响外掠管束对流换热表面传热系数h的因素P106下方F3对流换热强化综述P107第七章1、膜状凝结:凝结液体能很好的润湿壁面,并在壁面上铺展成膜的凝结传热形式。