射频矢量网络分析仪(清华)资料讲解

合集下载

矢量网络分析仪使用教程

矢量网络分析仪使用教程

矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁器件和电路的工具。

它可以通过模拟和数字信号处理技术,对电压和电流的振幅、相位以及其它参数进行精确测量。

本教程将介绍如何正确使用矢量网络分析仪进行测试和分析。

1. 连接仪器:首先,将矢量网络分析仪的射频输出端口与待测设备连接。

确保连接的线缆和连接头无损坏,并保持良好接触。

接下来,将矢量网络分析仪的射频输入端口与信号源连接,用以提供测试信号。

同样,确保连接线缆无损坏,保持良好接触。

2. 设置测试参数:通过矢量网络分析仪的操作界面,设置测试参数。

通常包括频率范围、功率级别、带宽等。

根据测试的需求,选择适当的参数设置。

3. 校准:在进行任何测试之前,必须进行校准。

校准过程旨在消除测试系统中的误差,确保测量结果的准确性。

常见的校准方法包括开路校准、短路校准和负载校准。

根据厂家提供的说明书,按照指示进行校准操作。

4. 进行测量:校准完成后,可以开始进行测量。

根据需要选择所需的测量参数,如S参数、功率、相位等。

通过修改测试参数,可以获取更详细的信息。

5. 分析数据:测量完成后,可以对数据进行分析。

矢量网络分析仪通常提供丰富的数据分析和显示功能。

可以通过画图、计算和查看不同参数的数值等方式,深入了解被测设备的性能特征。

6. 导出结果:最后,将测量结果导出到计算机或其他设备中。

矢量网络分析仪通常提供多种数据导出格式,如CSV、TXT 等。

选择合适的格式,并保存数据。

以上是使用矢量网络分析仪的基本步骤。

根据具体的应用场景和要求,可能还需要进行更复杂的操作和分析。

因此,在实际使用中,建议参考矢量网络分析仪的用户手册和厂家提供的技术支持,以获得更详细的指导和帮助。

矢量网络分析仪原理和使用方法课件

矢量网络分析仪原理和使用方法课件
数据处理
利用矢量网络分析仪自带的软件或第三方软件, 对采集到的数据进行处理和分析。
结果解读
根据测量结果,解读被测设备的性能指标,评估 其性能优劣。

04
矢量网络分析仪应用实例
通信系统测试
通信系统测试
矢量网络分析仪能够测试通信系统的传输性能,如信号的幅度、相 位和群延迟等,以确保系统性能稳定可靠。
信号完整性分析
微波元件测试
对于微波元件,如滤波器、放大器等,矢量网络 分析仪可以测试其频率响应、增益和群延迟等特 性。
可靠性分析
通过矢量网络分析仪,可以对电子元件进行可靠 性分析,如温度循环、湿度试验等,以评估元件 的寿命和稳定性。
雷达系统测试
雷达散射特性测试
01
矢量网络分析仪可以测试雷达系统的散射特性,如RCS(雷达
校准
根据需要,进行系统校准 ,以确保测量精度。
操作界面与设置
界面介绍
熟悉矢量网络分析仪的各 个功能键和显示窗口,了 解其基本功能。
设置参数
根据测量需求,设置合适 的频率范围、扫描参数等 ,确保测量准确度。
保存设置
完成设置后,保存参数, 以便下次使用。
数据采集与分析
数据采集
按照测量需求,选择合适的测试端口和电缆类型 ,进行数据采集。
高精度测试技术
误差校正和补偿技术
高精度测试技术需要采用误差校正和 补偿技术,如校准件校正、误差模型 拟合等,以减小测试误差和提高测试 精度。
信号处理算法优化
高精度测试技术需要优化信号处理算 法,如滤波、插值、拟合等,以提高 数据处理的速度和准确性。
自动化测试技术
自动化校准和测试流程
自动化测试技术需要实现自动化校准 和测试流程,以提高测试效率和降低 人工操作误差。

矢量网络分析仪学习

矢量网络分析仪学习

矢量网络分析仪学习矢量网络分析仪(Vector Network Analyzer,VNA)是一种用来测量网络参数的仪器,主要用于研究和设计微波和射频电路。

它能够精确测量反射系数、传输系数、相位和群延时等参数,为电路设计和信号分析提供重要的工具。

本文将对矢量网络分析仪的原理、应用和使用方法进行详细介绍。

一、矢量网络分析仪的原理矢量网络分析仪的信号源产生高度稳定的射频信号,并通过测试通道将信号发送给被测设备。

测试通道通常由方向耦合器和同轴、微带线等传输线组成,用于控制和分配信号。

接收器接收来自被测设备的反射和透射信号,并将其转换为电压或功率信号。

计算机对接收到的信号进行处理和分析,通过数学算法计算出被测试设备的网络参数。

二、矢量网络分析仪的应用1.网络分析:矢量网络分析仪可以测量和分析被测试设备的频率响应、增益和相位等参数,帮助工程师设计和优化电路。

2.频率响应测试:矢量网络分析仪可以测量被测设备在特定频率范围内的频率响应,帮助工程师分析和解决信号衰减、失真和干扰等问题。

3.滤波器设计:矢量网络分析仪可以通过测量和分析滤波器的传输系数和反射系数,帮助工程师设计和调整滤波器的性能。

4.天线测试:矢量网络分析仪可以测量天线的增益、驻波比和波束宽度等参数,帮助工程师优化天线设计和性能。

5.信号分析:矢量网络分析仪可以测量和分析信号的相位、群延时和频率特性,帮助工程师了解信号的传播和失真情况。

三、矢量网络分析仪的使用方法1.设备连接:将测试端口与被测试设备连接,并确保连接可靠和稳定。

2.仪器校准:在进行测量之前,需要对矢量网络分析仪进行校准。

常见的校准方法包括开路校准、短路校准和负载校准等。

校准操作将确定参考平面和参考电阻等参数,确保测量的准确性。

3.参数设置:根据具体需求,设置待测设备的频率范围、功率级别和测量模式等参数。

4.数据采集:通过控制软件或前面板操作,启动测量并收集数据。

矢量网络分析仪将发送射频信号,并接收被测设备的反射和透射信号。

矢量网络分析仪

矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种广泛应用于通信、无线电设备和电子电路实验的精密测试仪器。

它可以测量电路中各种参数,如反射系数、传输系数和阻抗等,并为分析电路的性能提供数学模型。

本文将对矢量网络分析仪的原理、结构和应用进行详尽介绍。

一、矢量网络分析仪的原理矢量网络分析仪的原理是基于麦克斯韦方程组和电磁场理论。

在基础电磁理论的基础上,矢量网络分析仪将电信号分为正弦波和相位两部分进行测量,通过计算这些部分的幅度和相位差异,可以确定电路中各种参数的值。

这里简单介绍一下矢量网络分析仪的基本工作原理。

1.1 反射系数的测量反射系数是指信号在电路中反射时与源信号之间的关系。

在矢量网络分析仪的测量中,反射系数的测量可以通过向电路输入一个特定频率的正弦信号,并在电路的接收端检测到其反射信号,然后测量两个信号之间的相位和振幅差异,来计算反射系数的值。

1.2 传输系数的测量传输系数是指信号从电路的输入端到输出端的传输效率。

在矢量网络分析仪的测量中,传输系数可以通过在电路的输入端和输出端分别加入正弦信号,并测量两个信号之间的相位和振幅差异,来计算传输系数的值。

1.3 阻抗的测量阻抗是指电路对电流和电势差的响应,其强度和方向受到电路的各种参数的影响。

在矢量网络分析仪的测量中,阻抗可以通过向电路输入一个特定频率的正弦信号,并通过测量电路中的电流和电势差,来计算阻抗的值。

二、矢量网络分析仪的结构矢量网络分析仪的结构主要分为三部分:源信号、接收器和计算机控制系统。

源信号负责向电路中输入正弦信号,接收器负责检测电路中的反射和传输信号,计算机控制系统则负责数据处理和分析。

下面将对这些部分的结构和功能进行详细介绍。

2.1 源信号源信号是矢量网络分析仪的核心部分之一。

它主要通过向电路中输入不同频率和振幅的信号来测量电路的性能。

源信号通常由射频信号发生器(RF signal generator)或特定的示波器(oscilloscope)提供,其输出功率和波形必须具有高度稳定性和可控制性。

矢量网络分析仪使用教程

矢量网络分析仪使用教程

矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁网络参数的高精度仪器。

它主要用于测试和优化射频和微波器件的性能,如天线、滤波器、放大器、集成电路等。

本文将为您提供一份针对矢量网络分析仪的使用教程,帮助您快速上手使用该仪器。

一、仪器介绍矢量网络分析仪是一种精密仪器,主要由信号源、接收器和调制器等组成。

它能够通过在被测设备上施加相应的输入信号,并测量输出信号的幅度和相位,从而计算出设备的散射参数(S-parameters)。

矢量网络分析仪通常具有高精度、宽频率范围和高灵敏度等特点,能够提供准确的测量结果。

二、基本操作1. 连接被测设备:首先,将矢量网络分析仪的输出端口与被测设备的输入端口连接,确保连接牢固。

如果被测设备具有多个端口,需要逐个连接。

2. 仪器校准:在测量之前,需要对矢量网络分析仪进行校准,以确保测量结果的准确性。

通常有三种常见的校准方法:全开路校准、全短路校准和全负载校准。

具体的校准方法可以根据被测设备的性质和实际需求进行选择。

3. 设置测量参数:在测量之前,需要设置一些测量参数,如频率范围、功率级别、测量类型等。

这些参数可以根据被测设备的特性和实际需求进行调整。

4. 启动测量:配置好测量参数后,可以开始进行测量。

在测量过程中,矢量网络分析仪会自动控制信号源和接收器,并采集输入和输出信号的数据。

5. 数据分析:测量完成后,可以通过矢量网络分析仪的软件对测量数据进行分析和处理。

常见的数据处理操作包括绘制频率响应图、计算散射参数、优化器件设计等。

三、注意事项1. 确保连接正确:在使用矢量网络分析仪进行测量前,需要确保所有连接正确无误,以避免测量误差的发生。

同时,还需要确保连接的电缆和连接器的质量良好,以减小测量误差。

2. 避免干扰源:在进行测量时,需要避免与其他无关信号源相互干扰,如电源噪音、射频噪声等。

可以通过在实验室中采取屏蔽措施来减小干扰。

矢量网络分析仪的原理介绍

矢量网络分析仪的原理介绍

矢量网络分析仪的原理介绍矢量网络分析仪(Vector Network Analyzer,简称VNA)是用于测量微波电路参数的一种测试仪器。

它可以同时测量幅度和相位,由此可以得到电路的S参数,进而确定电路的电学特性。

原理VNA的核心是一组相互独立的大功率信号源和敏感的接收器,它们分别通过大量的各向异性元件、耦合器以及各种整流器、差分与单端平衡器和放大器等等电路连接起来。

VNA中最基本的组件是频率控制单元,它使用一个可变频率信号源来生成一个宽频信号作为输入信号,并令它经过电路中的传输诸元、非线性元件、各种过渡网络等,从而获得电路的各种参数。

VNA的工作原理可以简单地分为以下几个步骤:1.VNA内置的信号源生成一个可变频率的信号,并将该信号通过耦合器输入待测电路中;2.信号在待测电路中进行传播,经过一些变化,并从待测电路中输出;3.输出信号再通过耦合器进入VNA中的接收器,接收器将输出的信号与输入的信号进行比较,以测量待测电路的各种参数;4.VNA将测量所得的各种参数进行处理,即可确定待测电路的S参数。

优点VNA具有以下几个优点:1.高精度和高灵敏度:VNA的测量精度通常可达到0.1 dB,接近于理论计算值,测试范围也非常宽;2.测量速度快:VNA的测量速度通常可以达到数毫秒,节省了大量的时间;3.大量的参数:VNA可以测量电路的各种参数,如S参数、Y参数、Z参数等等;4.多功能应用:VNA不仅可以测量微波电路,也可以用于其他领域如光学、无线通信等。

应用VNA的主要应用领域有以下几个:1.无线通信:VNA可以测量各种无线通信设备的电学特性,如天线、滤波器、变频器等等;2.微波电路设计和生产:VNA可以帮助设计人员快速准确地了解电路的性能,并帮助改进电路设计;3.光学:VNA可以用于测量光学器件的特性,并对光学器件进行性能评估;4.材料研究:VNA可以帮助研究人员了解各种特性材料的电学特性。

总结矢量网络分析仪是一种常用的微波测试仪器,它可以测量电路的各种参数,具有高精度和高灵敏度等优点,已经成为无线通信、微波电路设计和生产、光学、材料研究等领域必备的测试仪器。

矢量网络分析仪 工作 原理 矢网 高清版

矢量网络分析仪 工作 原理 矢网 高清版

矢网分析仪原理目录1.一类独一无二的仪器2.网络分析仪的发展3.网络分析理论4.网络分析仪测量方法5.网络分析仪架构6.误差和不确定度7.校准8.工序要求9.一台仪器,多种应用10.其它资源:1. 一类独一无二的仪器网络分析仪是一类功能强大的仪器,正确使用时,可以达到极高的精度。

它的应用也十分广泛,在很多行业都不可或缺,尤其对测量射频(RF)元件和设备的线性特性方面非常有用。

现代网络分析仪还可用于更具体的应用,例如,信号完整性和材料测量。

随着NI PXIe - 5632的问世,用户可轻松地将网络分析仪应用于设计验证和生产线测试中,完全摆脱传统网络分析仪成本高、占地面积大的束缚。

2. 网络分析仪的发展矢量网络分析仪,比如图1所示的NI PXIe-5632可用于测量设备的幅度、相位和阻抗。

由于网络分析仪是一种封闭的激励-响应系统,因此可在测量RF特性时实现绝佳的精度。

而充分理解网络分析仪的基本原理对于最大限度地受益于网络分析仪至关重要。

图1.NI PXIe-5632矢量网络分析仪在过去的十年中,矢量网络分析仪由于其较低的成本和高效的制造技术受到越来越多业内人士的青睐,其风头已经盖过标量网络分析仪。

虽然网络分析理论已经存在了数十年,但是直到20世纪80年代初期第一台现代独立台式分析仪才诞生。

在此之前,网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能有限。

NI PXIe-5632的推出标志着网络分析仪发展的又一个里程碑,它将矢量网络分析功能成功地添加到软件定义的灵活PXI模块化仪器平台。

通常我们需要大量的测量实践,才能精确地测量幅值和相位参数,避免重大错误。

在部分射频仪器中,由于测量的不确定性,小误差很可能会被忽略不计,而对于网络分析仪等精确的仪器,这些小误差却是不容忽视的。

3. 网络分析理论网络是一个高频率使用术语,具有很多种现代的定义。

就网络分析而言,网络指一组内部相互关联的电子元器件。

矢网分析仪原理解析

矢网分析仪原理解析

矢网分析仪原理解析目录一、矢网分析仪概述 (2)1. 定义与功能介绍 (2)2. 常见应用场景 (4)3. 发展历程及现状 (5)二、矢网分析仪基本原理 (6)1. 信号传输与接收原理 (8)2. 信号分析与处理技术 (9)3. 矢量调制与解调原理 (10)三、矢网分析仪主要组成部分 (12)1. 信号输入与输出模块 (13)2. 信号处理与分析模块 (14)3. 控制与显示模块 (16)四、矢网分析仪工作流程解析 (17)1. 信号接收与处理流程 (18)2. 数据分析与处理流程 (19)3. 结果展示与输出流程 (20)五、矢网分析仪关键技术探讨 (21)1. 矢量校准技术 (22)2. 动态范围与灵敏度技术 (24)3. 实时分析处理技术 (25)六、矢网分析仪应用实例分析 (26)1. 通信系统测试应用实例 (27)2. 雷达系统测试应用实例 (28)3. 电子对抗应用实例 (30)七、矢网分析仪发展趋势与展望 (31)1. 技术发展趋势分析 (32)2. 市场发展与应用前景展望 (34)八、实验与操作指导 (35)1. 实验环境与设备介绍 (36)2. 实验操作流程介绍 (37)3. 实验数据处理与分析方法介绍 (38)九、常见问题与解决方案 (39)1. 常见故障类型及排查方法介绍 (39)2. 常见误差来源及校正方法介绍 (40)3. 用户操作注意事项及维护保养建议 (41)一、矢网分析仪概述矢网分析仪,又称为网络分析仪或微波网络分析仪,是一种用于测量和模拟复杂电磁波信号的强大工具。

它结合了频谱分析、网络分析和信号分析的功能,广泛应用于雷达、通信、电子对抗、航空航天等领域。

矢网分析仪的基本工作原理是通过发送和接收信号,测量信号的幅度、相位、频率等参数,以及信号在传输过程中的衰减、反射、传输损耗等特性。

通过对这些参数的分析,可以评估系统的性能,优化设计方案,提高系统的可靠性和稳定性。

矢量网络分析仪基础知识和S参数的测量

矢量网络分析仪基础知识和S参数的测量

矢量网络分析仪基础知识与S 参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络.注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端〔口〕网络,这儿主要是指各种各样简单的射频器件〔射频网络〕,而不是互连成网的网络.1.单端口网络 习惯上又叫负载Z L .因为只有一个端口,总是接在最后又称终端负载.最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等.·单端口网络的电参数 通常用阻抗或导纳表示,在射频X 畴用反射系数Γ〔回损、驻波比、S 11〕更方便些.2.两端口网络 最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆.·匹配特性 两端口网络一端接精密负载〔标阻〕后,在另一端测得的反射系数,可用来表征匹配特性.·传输系数与插损 对于一个两端口网络除匹配特性〔反射系数〕外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T. 插损〔IL 〕 = 20Log │T │dB ,一般为负值,但有时也不记负号,Φ即相移.·两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回损已足够,但对考究的场合会用到散射参量.两端口网络的散射参量有4个,即S 11、S 21、S 12、S 22.这里仅简单的〔但不严格〕带上一笔.S11与网络输出端接上匹配负载后的输入反射系数Г相当.注意:它是网络的失配,不是负载的失配.负载不好测出的Γ,要经过修正才能得到S11.S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益. 上述两项是最常用的.S12即网络输出端对输入端的影响,对不可逆器件常称隔离度.S22即由输出端向网络看的网络本身引入的反射系数.中高档矢网可以交替或同时显示经过全端口校正的四个参数,普与型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正.1.2 传输线传输射频信号的线缆泛称传输线.常用的有两种:双线与同轴线,频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征.·特性阻抗Z它是一种由结构尺寸决定的电参数,对于同轴线:式中εr为相对介电系数,D为同轴线外导体内径,d为内导体外径.·反射系数、返回损失、驻波比这三个参数采用了不同术语来描述匹配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电压一样高,只是相位不同,而实际上反射总是存在的, 这就需要定义一个参数.•式中ZL 为负载阻抗, Z为同轴线的特性阻抗.•由于反射系数永远≤1, 而且在甚高频以上频段手边容易得到的校准装置为衰减器,所以有人用返回损失〔回损>R.L.来描述反射系数的幅度特性,并且将负号扔掉.••••回损R.L. = 20Log│ΓdB 〔1.4〕有反射时, 线上电压即有起伏, 驻波比〔S.W.R〕是使用开槽测量线最易得到的一个参数,比较直观.当|Г|<< 1时,ρ= 1 + 2│Γ│ 〔1.6〕•本仪器三种读数皆有, 可任意选用.·阻抗圆图如A,B两个规格的天线,若只在标网上选择,肯定选B而不要A,而在矢网上看,A比B有潜力得多,加个电容就比B好了.这种情况是大量存在的,在全波振子对测试中就是这种情况.因此,在调试中首先要将天线阻抗调集中〔在圆图上成团〕.举例来看,反射网与振子高度调节就有这种情况,折合振子单边加粗也有这种情况,然后再采取措施〔如并电容,串电感,调短路片位置,改平衡器内导体等〕使其匹配.而且经常不是使中频处于圆图中心,而是使整个频带处于中心某一小圆内,即牺牲一下中频性能,来换取总带宽.阻抗圆图上适于作串联运算,若要作并联运算时,就要转成导纳;在圆图上这非常容易,某一点的反对称点即其导纳.请记住当时的状态,作阻抗运算时图上即阻抗,当要找某点的导纳值时,可由该点的矢徑转180°即得;此时圆图所示值即全部成导纳.状态不能记错,否则出错.记住,只在一个圆图上转阻抗与导纳,千万不要再引入一个导纳圆图,那除了把你弄昏外,别无任何好处.另外还请记住一点,不管它是负载端还是源端,只要我们向里面看,它就是负载端.永远按离开负载方向为正转圆图,不要用源端作参考,否则又要把人弄昏.圆图作为输入阻抗特性的表征,用作简单的单节匹配计算是非常有用的,非常直观,把复杂的运算用简单的形象表现出来,概念清楚.但对于多节级连的场合,还是编程由计算机优化来得方便.·传输线的传输参数同上面两端口网络,不再重复.1.3 有关仪器的几个术语·网络分析仪能测单或两端口网络的各种参数的仪器, 称网络分析仪.只能测网络各种参数的幅值特性者称为标量网络分析仪,简称标网.既能测幅值又能测相位者称为矢量网络分析仪,简称矢网,矢网能用史密斯圆图显示测试数据.·连接电缆一根两端装有连接器的射频电缆叫连接电缆〔也有称跳线的〕,反射特小的连接电缆称测试电缆.·反射电桥为了测得反射系数,需要一种带有方向性〔或定向性〕并保持相位信息的器件,如定向耦合器或反射电桥,本仪器采用的是反射电桥,它的输出正比于反射系数.其原理与惠司顿电桥完全相同,只不过结构尺寸改小适于高频连接,并且不再想法调平衡,而是直接取出误差电压而已.反射电桥一般只能测同轴线等单端馈线系统.·差分电桥能测双线馈线系统的反射电桥称差分电桥.·谐杂波抑制能力一般国产扫频源的谐杂波在-20dB左右,甚至杂散波只有-15dB,进口扫频源好的也就在-30dB多一些,外差式接收机对谐杂波的抑制能力皆在40dB以上,不会出现什么问题.而对于宽带检波低放的扫频仪与标网,不外接滤波器对寄生谐杂波是没有抑制能力的,有时就会出现下面几种问题:滤波器带外抑制会被测小,天线驻波会被测大,窄带天线增益会测低.·动态X围仪器设置到测插损,将一根好的短电缆的一头接到输出口,另一头接到与屏幕显示相对应的输入口上,按执行键进行校直通后,拔掉电缆后仪器显示的数值即动态X围,应≥70dB.·对插损的广义理解隔离度不该通而通了的插损称隔离度或防卫度.方向图天线对一固定信号在不同方向的插损称方向图.§2 传输线的测量2.1 同轴线缆的测量一.测电缆回损1.待测电缆末端接上阴负载〔或阳负载加双阴〕,测其入端回损,应满足规定要求.假如是全频段测试的话,那一般是低端约在30-40分贝左右,随着频率增高到3GHz,一般只能在20dB左右.假如全频段能在30dB以上此电缆可作测试电缆,一般情况下尤其是3GHz附近是很难作到30dB的,能作到26dB就不错了.2.回损测试曲线呈现周期性起伏,而平均值单调上升,起伏周期满足⊿F=150/L,式中L为电缆的电长度〔米〕,⊿F单位为MHz,则此电缆属常规正常现象,主要反射来自两端连接器处的反射;若低端就不好,甚至低频差高频好,或起伏数少,则电缆本身质量不好.3.回损测试曲线中某一频点回损明显低于左右频点呈一谐振峰状,此时出现了电缆谐振现象.只要不在使用频率内可以不去管它,这是电缆制造中周期性的偏差引起的周期性反射在某一频点下叠加的结果,我们只能先避开它.这种现象在1998年我们买的SYV-50-3电缆中多次碰到,回损只有10-14dB,粗的电缆倒不常见此情况,用户只有自己保护自己,选择质量好的才买.4.在测回损中出现超差现象时,可按下面提到时域故障定位检查加以确诊,以便采取相应措施.二.测电缆插损〔也称测衰减〕1.替代法在使用要求频段下,用插损档通过两个10dB衰减器用双阳校直通,校后用电缆代替双阳接入两衰减器之间即得插损曲线,此法为最常用的方法.2.回损法测插损在仪器经过开短路校正后,接上待测电缆,测末端开路时的回损,回损除2即得插损,此法的优点在于不会出现插损为正的矛盾,特别适合于已架设好的长的粗馈管首尾相距较远的场合.3.非正常情况检测电缆时最好用全频段测试,插损由小到大应是一单调平滑曲线,并且插损在标准规定以内,小有起伏也不要紧,那是反射叠加引起的.但若有某一频点附近显著高于左右频点〔插损增大〕呈一下陷曲线状,说明此电缆有问题.多数是连接器外皮压接不良所造成,返工后重测.少数是电缆本身形成的,那么此电缆只能隔离待查,停止使用.连接器外皮显著接触不良,可用下面提到的电缆屏蔽性能检查方法加以确诊.三.同时测插损与回损可按说明书4.7节进行双参量测量.双参量测量精度不如单参量高,若无必要,以采用单参量为宜.四.同轴电缆电长度的测量1.引言在射频X围内,经常采用同轴电缆对各个功能块、器件或振子单元进行连接〔即馈电〕,除了要求插损小、匹配好之外,常常还对引入的相移提出要求.一般只要求相对相移,譬如同相天线阵或功率组合单位等.它们要求每根电缆一样长,而收发开关或阻抗变换场合则会提出长度为λ/4的要求,而U形环平衡器又会提出长度为λ/2的要求,这就出现了如何测电缆电长度的问题.在不加支持片的同轴线段中,同轴线段的机械长度〔或几何长度〕与电长度是一致的,在有支持片或充填介质的情况下两者是不同的,机械长度与电长度之比为波速比〔也有称缩波系数,或缩短系数〕,一般在0.66到1之间,电长度显得长些,而实际机械长度显得短些.实际上要求的是电长度,矢网正好能测电长度.2.测反射相位定电缆电长度当电缆末端开路时,在其输入端测其反射的相位是容易的,由于反射很强测试精度也较高.当然末端短路也是可行的,但不如开路时修剪长度来得方便,因此常在末端开路的情况下进行测试.ⅰ、λ/4电缆的获得·仪器设定在要求的使用频率下点频工作,在测回损状态下校开路与短路.·接上待测电缆〔末端开路〕,若电缆正好为λ/4时,相位读数应在1800附近.若Φ<1800则说明电缆偏长,反之则偏短.·此法也适于测λ/4奇数倍的电缆,致于是3λ/4还是λ/4,点频下是分不清的.ⅱ、λ/2电缆的获得· 同前〔即在点频测回损状态下校开路与短路〕.· 接上待测电缆〔末端开路〕,若正好为λ/2则测试相位值应在00附近,若Φ在00以上〔第一象限〕,则电缆偏短,若在3600以下〔第四象限〕,则偏长.·此法也适于λ/2整倍数的电缆,至于是λ还是λ/2,在点频下是分不清的.ⅲ、与参考电缆比相对长度·同前〔即在点频测回损状态下,校开路与短路〕.·接上参考电缆〔也称标准电缆〕,记下相位读数Φ0.·接上待测电缆,若读数Φ=Φ0则说明两电缆等长,不等则相差为Φ-Φ0,注意仪器相位为领先值,读数越大越领先,Φ大于Φ0则偏短,反之则偏长.ⅳ、几点说明·ⅰ、ⅱ两种,由于是在λ/4与λ/2特殊情况下进行的,与电缆特性阻抗无关,而第ⅲ种测试精度与特性阻抗有关,只有相同特性阻抗的电缆比较才有意义,否则出错.·在测试中有时会搞不清是长了还是短了,可以在末端或始端加一小段电缆〔如保护接头〕试试,若更离开理论值说明电缆长了,若更靠近理论值则说明电缆短了.还有一种方法,是用三个频率,即f0±Δf,扫频测试,若高频点接近理论值则电缆短了,若低频点接近理论值则电缆长了.·由于反射法电波在电缆上走了两次〔一个来回〕,所以读数与误差皆要除以2. 3.测传输相移定电缆长度在行波状态下,电缆引入的相移即其电长度,这种作法一般更符合实际使用情况,但由于要求两端皆接上高频连接器,因此一般只适于验收,而不适于调整.下面介绍一下比较两根电缆的相对相移.·在测插损状态下,经过连接电缆与两个10dB衰减器对接后校直通.·在两个衰减器之间串入参考〔标准〕电缆,记下相位测试值Φ0.·换接待测电缆,若测试值亦为Φ0则两者等长,若测试值为Φ,Φ-Φ0为正则短了,反之则长了.搞不清时,请参见上面几点说明中的第二点.4.时域故障定位法测电缆电长度同轴电缆末端开路〔或短路〕测出的故障位置即电缆电长度,,此法可测电缆绝对电长度.·按测回损法连接,并选时域状态.·估计电缆电长度,将距离档选到合适距离,以避免模糊距离.·按菜单键取出机内扫频方案后,进行开路与短路校正.·接上待测电缆,进行测试,画面出现一峰点.·将光标移到峰点附近后按菜单键, 光标在《放大》下闪动, 再按执行键画面将展开四倍后重画一次,并在方格下=×××等数值, 此值即电缆电长度.面显出dmax五.同轴电缆的时域故障定位检查1.同轴电缆的三段反射同轴电缆可说是射频设备中少不了的一种连接件,短者几厘米,长者几百米,它并不是一种很起眼的东西,但对系统性能确是至关紧要的一环.对同轴线可以提出多方面的要求,现在我们只看看对它的驻波比要求.通常要求同轴电缆的驻波比≤1.1,即使在V频段这个要求也不低,在更高频段那就更难了.对于电视台发射天馈系统,其系统的驻波比就要求为1.1,那分配给馈线的指标就更不好提了.一根同轴线〔电缆或馈管〕从其输入端测出的驻波比是由三段反射的矢量叠加造成的.一段是远端反射,它包括了负载的反射以与电缆输出连接器处的反射.如果负载是无反射的标阻,则远端反射即指输出连接器处的反射,另一段是输入连接器〔包括转接器〕处的反射叫近端反射.还有中间这一段由电缆本身制造公差引起的分布反射,使用者对这段反射是无能为力的,只是把问题搞清楚而已,以便于采取相应的措施.如何分清这三段反射呢?2.时域分布反射的获得为分清一根电缆的三段反射,通常用时域反射计,它是一种能发射很窄脉冲〔ns级〕后看其反射波形的仪器,虽然它很有权威性,但确有三点不足:第一点是有死区〔或盲区〕.对近端反射无能为力,因为在发射脉冲宽度内的反射一般是被发射脉冲淹没了.第二点是它对波导系统无能为力.第三点由于发的是窄脉冲,所占频段极宽,待测件的测试频段不能控制.如本来电缆只用于400兆赫附近,而它测的却是几十赫到千兆赫内全频段的性能,这并不适合于一般使用者的要求,它只是一种电缆生产厂的一种专用的贵重设备.看来这种仪器早晚是要被淘汰的,它的性能不如测频域反算时域的方法来得灵活,而且还多花钱〔作为验收,频域仪器是必备的,假如它有时域功能就不用再买时域反射计了〕.现在可用网络分析仪上的时域故障定位功能软件来完成时域反射的测试.它的作法是在频域中测出多个有关频率的反射系数,然后经过运算来得到时域画面.纵坐标为反射系数幅度值,横坐标为距离或时间.不单分清了三段反射而且看出了同轴电缆上的分布反射,从而可以检查电缆制造的工艺水平或质量水平.普与型矢量网络分析仪PNA上带有时域功能,它能根据电缆使用频段来设定扫频起止频率,以便得到符合实际需要的时域检查.PNA的时域最高分辨力为6cm,随着探测长度加长而降低.下面的例子都是用PNA测的,曲线都是机内所附的微打印机打的.对一般使用者以与专业电缆生产厂都有参考意义.从以上测试结果可以得到如下初步结论.·相同品种的同轴电缆,粗的分布反射比细的分布反射小.·分清三段反射能帮你找出故障〔或指标差〕的原因,明确改进方向.根据目前掌握的实际情况,插头的反射不宜大于0.03,电缆的分布反射不宜大于0.01,电视用时要求还要高一些.·故障定位功能是很有用的,按使用频段设定扫频频段也是有效的,宽带反射小而起伏多,窄带的反射大而起伏少不容易漏掉故障.六.特性阻抗的检测1.问题的提出这里举个例子,某厂加工了一批SFF-50-1.5的带SMA插头的电缆,做了五根样品长约120mm,都是合格的.后来做了几十根长约240mm的却全部临界,在,发现430MHz附近ρ为1.15.用时域看反射在两端插头处约0.07,为此加测了Z为49.8的电缆,ρ只有1.04.原来做短的合格是因为刚好反为47Ω.后来换了Z射相消,而长的长度不合适造成反射叠加,在窄带虽可用凑长度解决问题,但最好还是采用好的电缆为宜.当时域检测发现两端连接器处反射较大时〔譬如>0.04〕,除了装配质量外,还有插头本身设计问题,一般市售连接器是不适于用到3GHz的.假如连接器是仔细设计,考虑了支持片的影响的,那么还有一个因素那就是电缆的特性阻抗可能不对,此时就应测测电缆特性阻抗.2.作法·样本与扫频方案对于已装好连接器的跳线,长度已定,只能由长度定扫频方案而对于电缆原材料,则可以按要求频率确定下料长度.此时待测电缆一头装连接器即可.·样本长度与扫频方案是相互有关的,可以点频测也可以扫频测,取值要取相位靠近2700时的电抗值,此时电长度为λ/ 8、电抗值在±j50Ω附近,如40~60Ω之间,否则不易得到可信数据.测试频率宜低些,以减少连接器,以与末端开短路的差异造成的误差.以SFF-50的电缆为例,取样本长500mm,其电长度即为700mm〔乘1.4波速比〕,扫频方案可选46~56 MHz,ΔF=2MHz即可.·仪器在测回损状态下,电桥输入端与输出端各串一只10dB衰减器.校过开短路后,接上待测电缆.记下待测电缆在末端开路与短路时的输入电抗值〔不管电阻值〕,两者相乘后开方即得特性阻抗值.·一般测试只选一点最靠近2700的点〔即50Ω〕进行计算即可,要求高时,可在50±10ΩX围内选5点进行平均,这5点之间起伏不应大于0.5Ω,否则电缆质量不好.·电缆两端测出的特性阻抗有可能是不相同的,说明该电缆一头特性阻抗高,一头低.要求高时,应对样本进行掉头测试,两端测出的特性阻抗不应相差0.5Ω.注意: 1:虽然所有λ/ 8奇数倍的频点皆能进行测试,但只测了前面λ/ 8,后面λ/4与其倍数都是不参与的;它只提供了0点与∞点,这两点只与长度有关,而与Z无关.2:测75Ω电缆时,请用75Ω电桥,测试数据请乘1.5倍.,这并非标准方法, 3:有人采用测数百米长电缆的输入阻抗来代替测Z实际上是对电缆提出了超标准的要求.除非电缆非常好,否则不易通过.七.电缆屏蔽度检测也称漏泄检测,也有称防卫度检测,作法同阵面幅相检测.·采用全频段扫频方案,测插损,用一根好的短电缆校直通;·在输出端接上待测电缆,其末端接上阴负载或双阴加阳负载;·将一个拾取环〔见幅相检测〕,通过一段电缆接到输入端,当环远离待测电缆时读数应≥70dB;·将环靠在电缆上滑动,若读数仍在70dB以上则电缆性能优秀,若读数在60dB 左右属良好,若读数在40-50dB就不太好,但勉强能用,若读数在20-30dB则肯定有了故障,一般出现在连接器处,必须重装,压紧后再测,连接器处不宜低于50dB;·连接器接地不良时,其时域波形表现为拖尾巴波形,而不是一个单纯的脉冲波形;以上讲的是带插头的电缆〔常称跳线〕的检测方法,只是一种查毛病的方法,并不作为验收的依据.2.2 PNA用于测量75Ω系统的补充说明PNA本身是50Ω系统测量仪器,在有75Ω配套件的情况下,可在30-1000MHz频段内对75Ω系统进行测量.1.测回损主要是改用75Ω电桥,该电桥输入输出端口仍为50Ω,故仍然可用原配电缆接上,而电桥测试端口为75Ω,即能按原说明书所述方法对75Ω系统的反射特性进行测试.·测阻抗或相位或者所测驻波较大时,请用75Ω短路器加校短路.·对电桥定向性有怀疑时,可用75Ω负载验证,也可采用校零措施.·改用75Ω电桥测试75Ω系统时所有驻波、回损、相移值都是对的,但阻抗值请注意还要乘1.5才对.2.测插损在仪器输出输入端各接一根50Ω电缆,在电缆另一端各接一只50K/75Ω转换,并用75Ω双阴将它们对接起来校直通,然后取出双阴串入待测件即可测出其插损与相移.示意图如下:3.测增益接法与测插损相似,但应加30dB衰减器后校直通,衰减器可以是50Ω的,也可以是75Ω的,各自串入其相应位置,其作法与原说明书相同.4.时域故障定位除改用75Ω电桥外其他与说明书全同,校短路请注意要用细芯子的75Ω短路器.注意:由于75Ω与50Ω两者内导体差别较大,使用时应小心不要插错,粗的插入细的会损坏器件,细的插入粗的则接触不良甚至不通.5. 75Ω配套件清单2.3 多对双绞线电缆的测试在电脑网络连线中,用到了多对双绞线电缆,而且提出了技术要求,如何用常规单端〔一线一地制,如同轴线〕仪器进行测试呢?一.技术要求: 有关单位对于5类线〔四对双绞线〕的技术要求见下表〔每对绕成双绞线的线又有多股与单股之分.相当线号为24AWG—26AWG〕.注:在执行5类线标准验收时,有的用户要求按输入阻抗为100±15Ω来验收,其理由为既然有特性阻抗为100±15Ω的要求,而现在线很长〔300m〕,因此只测其输入阻抗来代替前两项要求.对于理想的均匀线,这个要求还勉强说得过去,问题是线既不理想也不均匀,这个要求就超出了标准X围,否则就没有必要定第二栏的要求.对于100MHz,标准规定回损为16dB,假如按输入阻抗要求则为23dB,超过标准7dB;因此把特性阻抗验收标准改成按输入阻抗验收,是不符合标准的作法.另外有的仪器有|Z|坐标,这是一种电路参数而不是传输线参数,用|Z|≤100±15Ω来要求传输线的输入阻抗,是会闹笑话的.比如Z in=j100Ω,是完全符合|Z|≤100±15Ω要求的,而对于传输线而言却是全反射,根本不能用.二.测试方法这儿只讨论用矢量网络分析仪来测试双绞线,不涉与市售电脑线专用测试设备.1.直接用单端仪器测试这是一种原则性的错误,因为平衡受到破坏,产生了共模电流,将导致衰减加大、窜扰严重.但有的地方仍然是这样作的,不妨试一试.2.采用PNA100Ω差分套件.3.将单端仪器测试口通过复用开关扩为八个,采用混合模式散射参量进行计算与校准,这是ATN公司的方法.。

矢量网络分析仪的功能要点都有哪些呢

矢量网络分析仪的功能要点都有哪些呢

矢量网络分析仪的功能要点都有哪些呢矢量网络分析仪(Vector Network Analyzer,VNA)是一种广泛应用于射频(RF)和微波领域的仪器,用于测量和分析线性电路中的传输和反射特性。

它可以测量信号的传输、驻波比(VSWR)、S参数(散射参数)、衰减、相位延迟等,是RF工程师进行射频器件和系统分析以及测试的重要工具。

以下是矢量网络分析仪的主要功能要点:1.高精度的测量:矢量网络分析仪可以实现高达10位以上的测量精度,可以对微小的信号和相位差异进行测量和分析。

它可以提供非常准确的频率、幅度和相位的测量结果。

2.宽频率范围:矢量网络分析仪可以覆盖从几kHz到数十GHz的宽频率范围,并且可以非常方便地切换和选择测试频率。

这使得它适用于不同频率范围的应用,包括射频通信、微波器件、卫星通信等。

3.双向测量:矢量网络分析仪可以同时测量信号在正向和反向方向的传输和反射特性。

这样可以更全面地了解电路的特性,包括信号的损耗、反射以及功率传输效率等。

4.散射参数分析:矢量网络分析仪可以测量和分析电路的S参数,包括S11、S21、S12和S22、这些S参数可以描述信号在电路中的传输和反射特性,是电路设计和分析中非常重要的参数。

5.驻波比测量:矢量网络分析仪可以测量信号的驻波比(VSWR),用于评估电路中的匹配情况和损耗程度。

它可以帮助工程师找出传输线路和电路中的匹配问题,并进行相应的调整和优化。

6.相位延迟测量:矢量网络分析仪可以准确测量信号在电路中的相位延迟,包括群延迟和相对延迟等。

这对于设计和分析相干系统、滤波器、延迟线路等非常重要。

7.校准和校正:矢量网络分析仪可以进行校准和校正,以确保测量结果的准确性。

常见的校准方法包括开路、短路和负载校准,以及用参考标准进行插入损耗和相位校准等。

8.数据分析和图形显示:矢量网络分析仪可以将测量结果以图形和数据表格的形式显示出来,以便工程师进行数据分析和处理。

它可以绘制频率响应曲线、相位曲线、功率图等,方便用户对不同参数进行比较和评估。

矢量网络分析仪原理

矢量网络分析仪原理

矢量网络分析仪原理矢量网络分析仪是一种用于测量和分析微波网络参数的仪器,其原理基于电磁波在网络中的传播和反射特性。

在现代通信系统和雷达系统中,矢量网络分析仪被广泛应用于网络性能的评估和优化。

本文将介绍矢量网络分析仪的原理及其工作过程。

首先,矢量网络分析仪通过向被测网络中注入测试信号,并测量其在网络中的传播和反射情况来获取网络参数。

其工作原理基于电磁波在网络中的传播和反射特性。

当测试信号进入网络后,部分信号会被网络中的各种元器件反射回来,而另一部分信号则会继续向前传播。

通过测量这些传播和反射信号的幅度和相位,矢量网络分析仪可以计算出网络中各种参数,如传输损耗、驻波比、相位延迟等。

其次,矢量网络分析仪的工作过程可以分为两个主要步骤,校准和测量。

在进行测量之前,矢量网络分析仪需要进行校准以确保测量结果的准确性。

校准过程包括对矢量网络分析仪的各种内部参数进行调整,以消除系统误差和衰减。

一旦完成校准,矢量网络分析仪就可以进行网络参数的测量。

通过向网络中注入测试信号,并测量其在网络中的传播和反射情况,矢量网络分析仪可以计算出网络的各种参数,并将其显示在屏幕上供用户分析和评估。

在实际应用中,矢量网络分析仪可以用于多种场景,如天线测试、滤波器设计、无线通信系统性能评估等。

其高精度和灵活性使其成为微波领域中不可或缺的工具。

通过对网络参数的准确测量和分析,矢量网络分析仪可以帮助工程师们优化系统性能,提高系统的可靠性和稳定性。

总之,矢量网络分析仪是一种用于测量和分析微波网络参数的重要工具,其原理基于电磁波在网络中的传播和反射特性。

通过对网络中的传播和反射信号进行测量和分析,矢量网络分析仪可以准确地计算出网络的各种参数,并帮助工程师们优化系统性能。

在未来的发展中,矢量网络分析仪将继续发挥重要作用,推动微波技术的发展和创新。

矢量网络分析仪

矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种用于测量电路参数并分析信号传输性能的仪器。

它通常用于测试无线电频率器件、天线和电缆等。

工作原理矢量网络分析仪通过在设备端口发送测试信号并测量信号在设备输入端口处的幅度和相位响应来评估设备性能。

该仪器能够测量设备的反射损耗、传输损耗、驻波比等参数,从而帮助工程师优化电路设计。

矢量网络分析仪通过控制测试频率和功率等参数,可以测量各种射频和微波设备的性能。

应用领域矢量网络分析仪在通信、雷达、卫星通信等领域都得到广泛应用。

在通信系统中,矢量网络分析仪可用于评估天线性能、分析信号传输特性,从而提高系统性能和稳定性。

在雷达系统中,矢量网络分析仪可以用于测试反射损耗、驻波比等参数,帮助工程师调试和优化系统。

在卫星通信系统中,矢量网络分析仪可以用于测试信号传输质量,确保通信系统正常运行。

常见类型根据测试频率范围不同,矢量网络分析仪可以分为LF、HF、VHF、UHF、SHF、EHF等不同类型。

同时,根据测试端口数量,还可以分为单口和多口矢量网络分析仪。

一般来说,多口矢量网络分析仪可同时测量多个端口之间的相互作用,适用于复杂系统的测试和分析。

矢量网络分析仪的发展趋势随着通信技术的发展和射频微波领域的不断创新,矢量网络分析仪的性能要求也越来越高。

未来,矢量网络分析仪将更加智能化,具有更高的测量精度和频率覆盖范围,以满足日益复杂的电路设计和测试需求。

同时,随着5G技术的广泛应用,矢量网络分析仪在通信系统中的重要性将进一步提升。

总结矢量网络分析仪作为一种重要的电子测量仪器,在射频微波领域有着广泛的应用。

它可以帮助工程师评估设备性能,优化电路设计,提高系统性能和稳定性。

随着技术的不断进步,矢量网络分析仪将不断演化,更好地满足工程师对电路测试的需求。

矢量网络分析仪简单操作手册(一)

矢量网络分析仪简单操作手册(一)

矢量网络分析仪简单操作手册(一)本周我们给大家带来的是网络分析仪的入门操作,图文并茂,拿着说明就能对网分进行简单的操作。

当然每个仪器都有非常多的功能,本次系列主要涉及S11参数查看和常用功能操作。

仪器操作说明----初级版仪器信息如下图:一、面板说明:1、功能面板分区如下2、区域一:测试通道,通过以下4个按钮可以进行测试通道的切换与选择。

按键说明:a) Channel Prev:选择上一个通道b) Channel Next:选择下一个通道c) Trace Prev:选择上一个轨迹d) Trace Next:选择下一个轨迹3、区域二:常用功能操作栏。

按键说明:a) ChannelMax: 通道最大化b) TraceMax: 轨迹最大化c) Meas 测量类型:S11\S21\S12\S22 转换调整d) Format 格式:LOG、PH、DELAY、SMITH 、POLAR 、LINMAG、SWR 、REAL 、IMAGe) Scale 标尺:扫描线、基准、位置、参考线的设定f) Display显示:显示窗口的设定、测试扫描线的模拟参照等g) Avg 平均值、平滑系数的设定h) CAL:校准菜单4、区域三:常用功能操作栏按键说明:a) Start:起始频率设定b) Stop::终止频率设定c) Center:中心频率的设定d) Span:扫描频宽的设定e) Sweepsetup:扫描设置f) Trigger:触发5、区域四:选择栏,上下左右以及确认操作6、区域五:按键说明:a) Marker: Marker点的设定菜单b) Markersearch: Marker搜查c) Markerfctn: Marker 光标功能d) Analysis:仿真功能7、区域六:数字键操作区域8、区域七:按键说明:a) Save/Recall:贮存、调取键b) System:系统菜单设定键c) Preset:系统复位键。

完整版矢量网络分析仪

完整版矢量网络分析仪
达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领
域。
(二)分类与特点 矢量网络分析仪可以分为分体式矢量网络分析仪、一体化矢量网络分析仪、
高性能矢量网络分析仪、脉冲矢量网络分析仪、毫米波矢量网络分析仪、多端口 矢量网络分析仪、非线性矢量网络分析仪、便携式矢量网络分析仪、矢量网络分 析仪模块(目前只有VXI总线形式)等类型产品。
便携式矢量网络分析仪特点
采用便携、手持式小型化设计,融合精密合成源、高灵敏度接收机和电池供 电系统,能够快速对室外电子系统进行现场安装和调试测试与故障定位,适合野 外现场作业,目前工作频率可达18GHz
矢量网络分析仪模块特点
矢量网络分析仪模块具有体积小重量轻等特点,主要用于组建测试系统,例 如,用于武器装备的维护测试,目前工作频率可达20GHz
动态范围
为接收机噪声电平与测试端口最大输出电平和接收机最大安全电平之间较
小者之差,是表征矢量网络分析仪进行传输测量能力的重要指标。
系统幅度迹线噪声
指矢量网络分析仪显示器上迹线的幅度稳定度,主要取决于矢量网络分析仪
的信号源和接收机的稳定度。
系统相位迹线噪声
指矢量网络分析仪显示器上迹线的相位稳定度,主要取决于矢量网络分析仪
分体式矢量网络分析仪特点 采用积木式结构,以主机、信号源、S参数测试装置、控制机等独立设备系
统集成,配置灵活,技术指标较高,系列化产品工作频段覆盖45MHz〜170GHz,
但体积庞大、连接复杂、对操作要求高,已逐渐被一体化、高性能矢量网络分析
仪替代。
一体化矢量网络分析仪特点
采用集成式结构,将信号源、S参数测试装置、幅相接收机等集成在一个机
波设计与集成化技术、网络化技术等在矢量网络分析仪中将会不断得到提高、 推广与应用。

矢量网络分析仪

矢量网络分析仪

矢量网络分析仪矢量网络分析仪(VNA)是一种高级电子测试仪器,广泛应用于射频(RF)和微波领域。

它能够测量和分析电路中的信号参数,包括幅度、相位和频率等。

矢量网络分析仪通过发送和接收测试信号,可以帮助工程师们更好地理解和优化电路性能,提高系统的可靠性和性能。

矢量网络分析仪主要由两个部分组成:测试仪器和测试件。

测试仪器通常由一台发送器和一台接收器组成。

发送器用于产生测试信号,并通过传输线将信号发送到被测件上。

接收器则用于接收被测件返回的信号,并分析其参数。

在测试过程中,矢量网络分析仪会测量并记录信号的幅度和相位差等信息,进而通过数学计算来分析电路的传输特性。

矢量网络分析仪具有许多优点。

首先,它能够提供高精度的测量结果。

通过精确的硬件设计和先进的校准算法,矢量网络分析仪能够在广泛频率范围内提供高度准确的测量结果。

其次,它能够快速地测量多个参数。

与传统的多台仪器相比,矢量网络分析仪可以同时测量多种参数,提高了测试效率。

此外,矢量网络分析仪还具有广泛的应用范围。

它可以应用于无线通信、雷达、卫星通信、微波通信等领域,对电路的性能进行监测和调试。

在实际应用中,矢量网络分析仪能够帮助工程师们解决许多问题。

首先,它可以帮助检测电路的频率响应特性。

通过测量输入和输出信号的幅度和相位差,工程师们可以了解电路在不同频率下的传输特性,进而进行优化。

其次,矢量网络分析仪可以帮助识别电路中的故障。

当电路出现问题时,通过测量和比较不同节点的信号参数,工程师们可以精确定位故障位置,并进行修复。

此外,矢量网络分析仪还可以进行网络参数的测量和校准,确保系统的稳定性和可靠性。

然而,矢量网络分析仪也存在一些局限性。

首先,它的价格较高,不是所有的企业和个人都能够承担得起。

其次,矢量网络分析仪操作起来较为复杂,需要一定的专业知识和经验。

因此,在使用矢量网络分析仪时,需要具备一定的技术能力和实践经验。

此外,矢量网络分析仪的测量精度也受到环境和测试件影响,需要进行适当的校准和校验。

矢量网络分析仪基本原理

矢量网络分析仪基本原理

矢量网络分析仪基本原理
矢量网络分析仪(Vector Network Analyzer,VNA)是一种用
来测量电路参数的仪器。

它基于矢量信号的特性,可以测量和分析电路的传输、反射和衰减等参数。

矢量网络分析仪的基本原理是通过将被测电路与信号源和接收器相连,发送一系列频率和幅度可调的信号,并通过接收器测量被测电路的响应。

通过在发送和接收信号之间引入相位测量,可以得到复数形式的传输函数,进而得到电路的各种参数。

具体来说,在测量过程中,矢量网络分析仪会通过输入端口向待测电路发送信号,并通过输出端口接收到反射信号和传输信号。

反射信号是由待测电路中的反射和反射损耗引起的,而传输信号是通过电路中传输的信号。

测量过程中,矢量网络分析仪会比较输入信号和输出信号之间的相位和振幅差异。

从而,可以得到待测电路的反射系数和传输系数。

反射系数用于描述信号从待测电路反射回来的程度,传输系数用于描述信号从待测电路传输的程度。

通过测量反射系数和传输系数,矢量网络分析仪可以得到待测电路的S参数(Scattering Parameters),即反射系数和传输系
数与输入和输出端口之间的关系。

S参数可以用于描述电路的
功率传输、阻抗匹配和波导特性等。

总之,矢量网络分析仪通过测量反射和传输信号的相位和振幅差异来分析待测电路的特性。

它可以实时测量电路的S参数,
并提供精确的电路分析结果。

在电子设计、射频工程和通信系统等领域中,矢量网络分析仪被广泛应用于电路设计和性能分析。

矢量网络分析仪基础知识及S参数测量

矢量网络分析仪基础知识及S参数测量

矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。

注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。

1.单端口网络习惯上又叫负载ZL。

因为只有一个口,总是接在zui后又称终端负载。

zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。

单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。

2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。

匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。

传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。

插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。

两端口网络的散射参量有4个,即S11、S21、S12、S22。

这里仅简单的(但不严格)带上一笔。

S11与网络输出端接上匹配负载后的输入反射系数Г相当。

注意:它是网络的失配,不是负载的失配。

负载不好测出的Γ,要经过修正才能得到S11 。

S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。

上述两项是zui常用的。

S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。

S22即由输出端向网络看的网络本身引入的反射系数。

中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。

矢量网络分析仪介绍

矢量网络分析仪介绍

矢量网络分析仪介绍矢量网络分析仪(Vector Network Analyzer,VNA)是现代无线通信领域中不可或缺的测试设备之一,用来测量网络中各个点之间的复数反射系数、传输系数、延迟等特征参数。

它的应用场景非常广泛,包括电磁兼容性测试,毫米波通信测试,天线设计优化,信号测量分析,信号灵敏度研究等。

矢量网络分析仪一般是由频率源,微波信号传输和接收件,数据处理与显示设备组成。

通过矢量网络分析仪可以获得电路中各个测试端口的传输参数,包括S参数,即散射参数。

S参数是指有源器件或无源器件中存在的散射系数,包括反射系数(S11,S22)和传输系数(S21,S12)两种。

反射系数和传输系数是矢量网络分析仪的明星参数,因为它们能够完整地描述某个端口的性能,并可以用它们来计算其他参数,如误差系数、电功率、噪声系数等。

S11反射系数表征能量从端口1反射回同一端口1的程度,S22反射系数则是表征能量从端口2反射回同一端口2的程度。

而S21传输系数则反映了从端口1到端口2的传输效率,S12则反映了从端口2到端口1的传输效率。

除了S参数,矢量网络分析仪还可以进行时域仿真,即测量电路中不同信号随时间的变化情况。

矢量网络分析仪还可以进行功率扫描测试,测试器件的故障情况。

除了传统的基础测试外,矢量网络分析仪还有一些应用领域的拓展。

电磁兼容性测试:电磁兼容性是指不同设备之间共享和保护电磁环境的能力。

矢量网络分析仪可以用于电磁兼容性测试中,测量不同设备之间的干扰和抗干扰能力。

毫米波通信测试:毫米波通信是5G通信的关键技术之一,用于实现高速数据传输。

矢量网络分析仪可以在毫米波波段进行测试,测量毫米波通信信号的传输和反射特性。

天线设计优化:天线是无线通信领域中的关键组件之一,它的性能直接影响到通信质量。

矢量网络分析仪可以测量不同天线设计的反射系数、辐射模式和带宽等特征参数,来实现天线设计的优化。

信号测量分析:在实际应用场景中,矢量网络分析仪可以用于测量和分析信号的特性,如时域特性、频域特性、噪声特性等。

射频矢量网络分析仪(清华)

射频矢量网络分析仪(清华)

上述条件( a1 = 0或a2 = 0 )在两端传输线分别匹配时才成立。
反射与传输测量原理

反射参数测量系统:
伸长线
R
b1
~
信号源

ES
幅 相 接 收 机
显 示 器
DUT 定向耦合器
a1
功率分配器
T
设信号源的出射波为ES,电阻式功率分配器的分配系数分 别为c1和c2,投向DUT的入射波为a1,参考道通的信号为R。 定向耦合器将负载反射波b1耦合到测试道通,信号为T,耦 合系数为c3。于是可以写出:


具有很低的损耗(例如,一个20 dB的定向耦合器,耦合端的信号电 平低于输入端信号电平20 dB,通过主臂的损耗只有0.046dB); 好的隔离度(大约50 dB); 好的定向性(大约30 dB),但很难工作到低频(很难做到宽带)。
幅相接收机



幅相接收机是一台窄带-调谐接收机。它用一 个本振源(LO)与射频(RF)混频得到较低的 中频(IF)。 矢量网络分析仪(采用调谐接收机)采用窄带 中频滤波器(3KHz中频带宽)产生相当低的噪 声,结果是显著改善了灵敏度。 中频滤波器后采用ADC和DSP,从中频信号中提 取幅度和相位信息。
数据处理和显示



矢量网络分析仪中所用硬件的最后一个主要方 块是处理器/显示器部分。用于解释测量结果 的方式,对反射和传输数据进行格式化。 大多数网络分析仪都具有相类似的特点,诸 如:线性扫描和对数扫描、线性格式和对数格 式、极座标图、Smith圆图等。 另一些共同的特点是:迹线标记、极限线和合 格/不合格测试。
射频电路测试原理清华大学电子工程系2005春季学期50的测量显示功能输入标注和说明显示功能四通道测量结果同时显示功能自定义四通道测量显示功能彩色显示功能射频电路测试原理清华大学电子工程系2005春季学期51输入标注和说明显示功能射频电路测试原理清华大学电子工程系2005春季学期52四通道测量结果同时显示功能射频电路测试原理清华大学电子工程系2005春季学期53自定义四通道测量显示功能射频电路测试原理清华大学电子工程系2005春季学期54彩色显示功能射频电路测试原理清华大学电子工程系2005春季学期55时域分析功能射频电路测试原理清华大学电子工程系2005春季学期56基本测量步骤基本测量的五个步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本结构(续1)
滤波器测试连接 (二端口测试)。
基本结构(续2)
对于功率分配 器和定向耦合 器,它们是三 端口器件,所 以有九个S参 数,需要进行 三端口测试。
本机没有 Opetion H39, 不能进行三端 口器件测试。
现有选件:
1D5(High Stability Frequency Reference) 006(6 GHz Operation)
定向耦合器将负载反射波b1耦合到测试道通,信号为T,耦
合系数为c3。于是可以写出:
R = c1ES , a1 = c2ES , b1 = ΓLa1, T = c3b1

T R
= c3b1 c1ES
=
c3c2 c1
ΓL
R = c1ES , a1 = c2ES , b1 = ΓLa1, T = c3b1
在频率较低时,网络的特性常用阻抗参数矩阵Z或导纳 参数矩阵Y来描述其端口特性(还有H参数矩阵和ABCD 参数矩阵)。
这些参数的定义是基于电压电流的概念,因而测量时 需要在一定的端口条件下,如开路或短路,测出特定 的电压或电流来确定各个参数。
但在微波频率下,这种测量方法不再适合。因为在高 频下,电压和电流很难测量。
b1 b2
= =
S11a1 + S12a2 S21a1 + S22a2
其中符号的意义为:
a2
=
0

S11
=
b1 a1
是在端口2匹配情况下端口1的反射系数
a2
=
0

S21
=
b2 a1
是在端口2匹配情况下的正向传输系数
a1
=
0

S22
=
b2 a2
是在端口1匹配情况下端口2的反射系数
a1
=
0

S12
=
把端口1的两股出射波合在一起构成b1,把端 口2的两股出射波合在一起构成b2。
网络的S参数
二端口网络的信号流图。 DUT:device under test。
S参数的定义
按上图中入射波和反射波的方向,就可以定义S参量:
b1 b2
=
S11
S
21
S12 S22
a1 a2

该系统中使用的功率分配器和定向耦合器是两个重要 的微波部件,前者的作用是把信号源的输出信号分成 两路,分别作为参考信号和测试信号;后者的作用是 把测试信号加于DUT的测试端口,并取出反射信号。
在参考通道内接一段长度可变的传输线,其作用是补 偿两个通道的传输路径差。在系统校准时,起相位补 偿的作用。

T = c3b1 = c3c2 Γ R c1ES c1
反射与传输测量原理(续1) Nhomakorabea 由上图可见,只要测出T/R的复数比值,便能得出DUT 的反射系数,而系数c2c3 /c1为常数,可通过校准而 消除之。
幅相接收机对输入的两路射频信号R和T先进行混频, 然后在中频下进行幅度比较和相位比较,结果在显示 屏上示出。
Opetion 010(时域功能--本机没有) Opetion 014(前面板按用户的需要来设置信号的路
径--本机没有)
网络分析仪与频谱分析仪的区别
9.2 射频矢量网络分析仪的工作原理
网络分析是在所关心的频率范围内,通过激励—响应 测试来建立线性网络的传输与阻抗特性的数据模型的 过程。
Guide_08753-90472 ..\Understanding the Fundamental Principles_5965-7707E ..\Characterize High-Power Components_5966-3319E ..\Filter and Amplifier Examples_5965-7710E ..\Measurements of Frequency-translating Devices_5966-
反射与传输测量原理(续2)
传输参数测量系统:
R幅
~
在微波频段,因为采用了波的概念,所以微波网络常 用S参数表示。双口网络都可以用4个S参数来表示其端 口特性。
S参数
S参量表达的是功率波,可以用入射功率波和 反射功率波的方式来定义网络的输入、输出关 系。
当在端口1加有入射波a1时,其中一部分由于 该端口的失配而被反射,成为该端口出射波b1 的一部分;a1的其余部分经网络传输到端口 2,成为端口2的出射波b2的一部分。同样,若 当在端口2也有入射波a2时,分析相同。
射频电路测试原理
第九讲 射频矢量网络分析仪(VNA)
leiyh@
参考文献
《射频电路设计--理论与应用》,王子宇译,电子工业出版社, 2002年
《现代网络频谱测量技术》,吕洪国编,清华大学出版社,2000 Agilent仪器说明书\8753ES_RF矢量网络分析仪\User's
b1 a2
是在端口1匹配情况下的反向传输系数
上述条件( a1 = 0或a2 = 0)在两端传输线分别匹配时才成立。
反射与传输测量原理
反射参数测量系统:
伸长线
R

~
信号源 ES
b1 DUT







功率分配器
定向耦合器 a1
T
设信号源的出射波为ES,电阻式功率分配器的分配系数分 别为c1和c2,投向DUT的入射波为a1,参考道通的信号为R。
9.1 射频矢量网络分析仪的基本结构
8753ET集成化 传输/反射测量 (正向测量)。
8753ES集成化 S参数测量 (正向和反向测 量)。
基本结构
1.电源开关 2.显示屏幕 3.软盘驱动器 4.软盘退出键 5.软功能键 6.激励信号源功能键组 7.响应功能键组 8.显示通道选择键 9.数字量等输入硬键 10.仪器功能键组 11.复位键 12.探头电源连接器 13.R通道连接器 14.测试端口1和端口2
3318E ..\RF Component Measurements_Amplifier_5956-4361 ..\RF VNA_10 Hints_5965-8166E ..\Data Sheet_5968-5160E
内容
9.1 射频矢量网络分析仪的基本结构 9.2 射频矢量网络分析仪的工作原理 9.3 误差模型与校准 9.4 典型器件特性测量简介 第三次实验 射频矢量网络分析仪的使用 第九讲 射频矢量网络分析仪小结
相关文档
最新文档