方差分析的基本思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节方差分析的基本思想
1、方差分析的意义
前述的t检验和u检验适用于两个样本均数的比较,对于k个样本均数的比较,如果仍用t检验或u检验,
需比较次,如四个样本均数需比较次。假设每次比较所确定的
检验水准=0.05,则每次检验拒绝H0不犯第一类错误的概率为1-0.05=0.95;那么6次检验都不犯第一类错误的概率为(1-0.05)6=0.7351,而犯第一类错误的概率为0.2649,因而t检验和u检验不适用于多个样本均数的比较。用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。
2、方差分析的基本思想
下面通过表5.1资料介绍方差分析的基本思想。
例如,有4组进食高脂饮食的家兔,接受不同处理后,测定其血清肾素血管紧张素转化酶(ACE)浓度(表5.1),试比较四组家兔的血清ACE浓度。
表5.1对照组及各实验组家兔血清ACE浓度(u/ml)
对照组
实验组
A降脂药B降脂药C降脂药
61.24 82.35 26.23 25.46
58.65 56.47 46.87 38.79
46.79 61.57 24.36 13.55
37.43 48.79 38.54 19.45
66.54 62.54 42.16 34.56
59.27 60.87 30.33 10.96
20.68 48.23
329.92 372.59 229.17 191.00 1122.68 () 6 6 7 7 26 (N )54.99 62.10 32.74 27.29 43.18 ()18720.97 23758.12 8088.59 6355.43 56923.11 ()
由表5.1可见,26只家兔的血清ACE浓度各不相同,称为总变异;四组家兔的血清ACE浓度均数也各不相同,称为组间变异;即使同一组内部的家兔血清ACE 浓度相互间也不相同,称为组内变异。该例的总变异包括组间变异和组内变异两部分,或者说可把总变异分解为组间变异和组内变异。组内变异是由于家兔间的个体差异所致。组间变异可能由两种原因所致,一是抽样误差;二是由于各组家兔所接受的处理不同。正如第四章所述,在抽样研究中抽样误差是不可避免的,故导致组间变异的第一种原因肯定存在;第二种原因是否存在,需通过假设检验作出推断。假设检验的方法很多,由于该例为多个样本均数的比较,应选用方差分析。
方差分析的检验假设H0为各样本来自均数相等的总体,H1为各总体均数不等或不全相等。若不拒绝H0时,可认为各样本均数间的差异是由于抽样误差所致,而不是由于处理因素的作用所致。理论上,此时的组间变异与组内变异应相等,两者的比值即统计量F为1;由于存在抽样误差,两者往往不恰好相等,但相差不会太大,统计量F应接近于1。若拒绝H0,接受H1时,可认为各样本均数间的差异,不仅是由抽样误差所致,还有处理因素的作用。此时的组间变异远大于组内变异,两者的比值即统计量F明显大于1。在实际应用中,当统计量F值远大于1且大于某界值时,拒绝H0,接受H1,即意味着各样本均数间的差异,不仅是由抽样误差所致,还有处理因素的作用。
(5.1)
方差分析的基本思想是根据研究目的和设计类型,将总变异中的离均差平方和SS及其自由度分别分解成相应的若干部分,然后求各相应部分的变异;再用各部分的变异与组内(或误差)变异进行比较,得出统计量F值;最后根据F值的大小确定P值,作出统计推断。
例如,完全随机设计的方差分析,是将总变异中的离均差平方和SS及其自由度
分别分解成组间和组内两部分,SS组间/组间和SS组内/组内分别为组间变异(MS组间)和组内变异(MS组内),两者之比即为统计量F(MS组间/MS组内)。
又如,随机区组设计的方差分析,是将总变异中的离均差平方和SS及其自由度
分别分解成处理间、区组间和误差3部分,然后分别求得以上各部分的变异(MS 处理、MS
区组和MS误差),进而得出统计量F值(MS处理/MS误差、MS区组/MS误差)。
3、方差分析的计算方法
下面以完全随机设计资料为例,说明各部分变异的计算方法。将N个受试对象随机分为k组,分别接受不同的处理。归纳整理数据的格式、符号见下表:
处理组(i)
1 2 3 …k
…
…
……………
…
合计…
…
1)总离均差平方和(sum of squares,SS)及自由度(freedom,ν)
总变异的离均差平方和为各变量值与总均数()差值的平方和,离均差平方和和自由度分别为:
(5.2)
=N-1(5.3)2)组间离均差平方和、自由度和均方
组间离均差平方和为各组样本均数()与总均数()差值的平方和
(5.4)
(5.5)
(5.6)
3)组内离均差平方和、自由度和均方
组内离均差平方和为各处理组内部观察值与其均数()差值的平方和之和,
。数理统计证明,总离均差平方和等于各部分离均差平方和之和,因此,(5.7)
(5.8)
(5.9)4)三种变异的关系:
= N-1= (k-1)+(N-k) =
可见,完全随机设计的单因素方差分析时,总的离均差平方和(SS总)可分解为组间离均差平方和(SS组间)与组内离均差平方和(SS组内)两部分;相应的总自由度()也分解为组间自由度()和组内自由度()两部分。
5)方差分析的统计量:
(5.10)
4、方差分析的应用条件与用途
方差分析的应用条件为①各样本须是相互独立的随机样本;②各样本来自正态分布总体;③各总体方差相等,即方差齐。
方差分析的用途①两个或多个样本均数间的比较;②分析两个或多个因素间的交互作用;③回归方程的线性假设检验;④多元线性回归分析中偏回归系数的假设检验;⑤两样本的方差齐性检验等。