建筑工程中桩基检测技术问题分析中英文对照
(整理)桩基施工方案-中文英文对照
塞拉利昂水泥厂项目桩基施工方案Cement terminal project pile foundation construction program in Sierra Leone一、旋挖成孔灌注桩施工 Rotary drilling hole pile construction1.工程量1000M3砼 The project amount 1000M3 concrete2.施工技术 Construction Technology本工程项目桩基施工采用旋挖成孔工程钻机,在施工前须对场地进行清表、清障、平整、压实,使场地表面耐力不小于100Kpa 。
施工时设置泥浆池、沉定池、泥浆循环系统和废浆池,沉淀池的容积两倍于一根桩的体积,储浆池容积大于16m3,以满足钻孔需要。
Pile Foundation Construction of the project use a rotary drilling rig,before construction,we need to cleared the table , wrecker , leveling , compaction venue to make sure the surface endurance is not less than 100Kpa.During construction, we need to set Mud pools , sedimentation tanks , mud circulation system and waste slurry pond.To meet drilling demand, Sedimentation tank volume is twice the volume of a pile , storage slurry pond volume should be greater than 16m33.工艺流程 Process 桩位定位埋设护筒钻机就位钻孔成孔质量检测钢筋笼吊放泥浆制备,注浆跟进砼浇筑养护成桩检测钢筋笼制作、验收4.操作工艺 Operation process(1)测量定位 Measurement Positioning(a )采用全站仪按照图纸测定位置并做好标色。
中英文对照造价工程术语2——建筑地基基础施工质量验收规范
中英文对照造价工程术语2——建筑地基基础施工质量验收规范1 合成材料地基 geosynthetics foundation在土工合成材料上填以土(砂土料)构成建筑物的地基,土工合成材料可以是单层,也可以是多层。
一般为浅层地基。
2 重锤夯实地基 heavy tamping foundation利用重锤自由下落时的冲击能来夯实浅层填土地基,使表面形成一层较为均匀的硬层来承受上部载荷。
强夯的捶击与落距要远大于重锤夯实地基。
3 强夯地基 dynamic consolidation foundation工艺与重锤夯实地基类同,但锤重与落距要远大于重锤夯实地基。
4 注浆地基 grouting foundation将配置好的化学浆液或水泥浆液,通过导管注入土体也隙中,与土体结合,发生物化反应,从而提高土体强度,减小其压缩性和渗透性。
5 预压地基 preloading foundation在原状土上加载,使土中水排出,以实现土的预先固结,减少建筑物地基后期沉降和提高地基承载力。
按加载方法的不同,分为堆载预压、真空预压、降水预压三种不同方法的预压地基。
6 高压喷射注浆地基 jet grouting foundation利用钻机把带有喷嘴的注浆管钻至土层的预定位置或先钻孔后将注浆管放至预定位置,以高压使浆液或水从喷嘴中射出,边旋转边喷射的浆液,使土体与浆液搅拌混合形成一固结体。
施工采用单独喷出水泥浆的工艺,称为单管法;施工采用同时喷出高压空气与水泥浆的工艺,称为二管法;施工采用同时喷出高压水、高压空气及水泥浆的工艺,称为三管法。
7 水泥土搅拌桩地基 soil-cement mixed pile foundation利用水泥作为固体剂,通过搅拌机械将其与地基土强制搅拌,硬化后构成的地基。
8 土与灰土挤密桩地基 soil-lime compacted column在原土中成孔后分层填以素土或灰土,并夯实,使填土压密,同时挤密周围土体,构成坚实的地基。
建筑施工名词中英文对照
建筑施工名词中英文对照建筑施工是一个复杂而细致的过程,其中涉及大量的专业名词。
对于从事建筑施工行业的人士来说,掌握这些名词的中英文对照是非常重要的。
本文将介绍一些常用的建筑施工名词的中英对照,帮助读者更好地理解和运用这些术语。
1. Foundation - 基础基础是建筑物最底部的结构,通常是混凝土的平面,用来支撑整个建筑物的重量。
2. Reinforced concrete - 钢筋混凝土钢筋混凝土是一种由混凝土和钢筋组成的材料,具有高强度和耐久性,广泛应用于建筑施工中。
3. Masonry - 砌体结构砌体结构是一种由砖块或石块按照一定的方式砌筑而成的结构,常用于建筑物的墙体和隔墙。
4. Column - 柱子柱子是一种纵向的结构元素,通常用于支撑建筑物的荷载,并传递到基础。
5. Beam - 梁梁是一种横向的结构元素,通常用于支撑楼板和屋顶,并将荷载传递到柱子上。
6. Slab - 板板是建筑物的水平支撑结构,通常用于构成楼板、屋顶和平台等。
7. Wall - 墙体墙体是建筑物的竖向结构,通常用于分隔空间并承受水平荷载。
8. Roof - 屋顶屋顶是建筑物的最顶部覆盖结构,用于保护建筑物免受自然环境的影响。
9. Foundation pit - 基坑基坑是在施工过程中挖掘的一个具有一定深度和形状的空间,用于建筑物的基础施工。
10. Excavation - 开挖开挖是指移除地表土壤或岩石以形成基坑或其它结构的过程。
11. Pile - 桩基桩基是在土壤或岩石中打入的长桩,用于增加地基的稳定性和承载能力。
12. Formwork - 模板模板是一种用于在混凝土浇筑过程中支撑和成型的结构,通常由木材或金属构造而成。
13. Rebar - 钢筋钢筋是一种用于增加混凝土结构强度的金属材料,通常以长条形式使用。
14. Concrete mixer - 混凝土搅拌机混凝土搅拌机是一种用于将水泥、沙子、石子和水混合制成混凝土的设备。
工程中桩基检测技术问题分析
Q : Q 垒 ( )
工 程 技 术 ቤተ መጻሕፍቲ ባይዱ
Ch i n a Ne w T e c h n o l o g i e s a n d P r o d uc t s
工程 中桩 基检 测 技术 问题 分析
李 晋
( 中铁二十五局五公 司, 山东 青 岛 2 6 6 0 0 0 )
1 0 %。
进 行判 断。 2桩基 的检测 技术 的应用 举一 个简 单 的事例 ,某座 办公 楼 为十 五层, 地 上有 十 四层 , 地 下有一 层 。整座 建
3 0 %, 故 单 桩承 载力 的特征 值 f 标 准值) 为 4 0 0 0 = 2 . 0 = 2 0 0 0 k N, 符 合设计 要求 。 2 . 3低 应变动 力检测 。根据 《 建筑 桩基 检测 技术 规范 》 规定 , 低 应变 方法适 用 于检 测混 凝土 桩 的桩 身完 整性 ,判断 桩身缺 陷 的程 度及 位置 ,并要求 根据 桩身完 整性 检 测结 果 , 给 出每根桩 的桩身完 整性类 别 。 本 次工 程 实 践 中共对 工 程 桩 中 的 3 0 根 桩 进 行 了低 应变 动 力 测 试 。检 测 仪 器 由采 用 F D P 2 0 4 P D A型 动测分 析 系统 , 加速 度传 感 器, 力 棒组成 。检测 方法 是 : 在 桩顶 放置 一 只加 速度传 感器 ,接受锤 击 过程 中产生 的 加速度 信号 , 通过 F D P 2 0 4 P D A型桩基动 测 系统放 大 和 A / D转换 ,变成 数字信 号传 给 微机 , 信号 经计算 机处理 后 , 在屏幕 显示 实 测 波 形 ,每根 桩布 采集点 一个 ,每 点采 集 5 ~ 6 锤 信 号 。将 存储 在磁 盘 上 的测试 信 号 在 时域 内进 行处 理 ,根据 应力 波反射 等 价 地 将 实测 速 度信 号 通过 时 域 由频 域辅 助 , 分 析 不 同部位 的反射信 号 ,据 此分 析每 根 桩 的桩身 完整性 。 检测结果 : 其 中: I 类桩 2 8 根, 满 足设 计要 求 ; I I 类桩 2根 , 满 足 设计
桩基础、钢筋混凝土和钢筋混凝土结构-外文翻译
Piles, Reinforced Concreteand Reinforced Concrete StructuresPilesPiles are structural members of timber, concrete, and/or steel, used to transmit surface loads to lower levels in the soil mass. This may be by vertical distribution of the load along the pile shaft or a direct application of load to the lower stratum through the pile point. A vertical distribution of the load is made using a friction pile and a direct load application is made by a point, or end-bearing pile. This distinction of piles is purely one of convenience since all piles function as a combination of side resistance and point bearing except when the pile penetrates an extremely soft soil to a solid base.Piles are commonly used: (1) To carry the superstructure loads into or through a soil stratum. Both vertical and lateral loads may be involved. (2) To resist uplift, or overturning, forces as for basement mats below the water table or to support tower legs subjected to overturning. (3) To compact loose, cohesionless deposits through a combination of pile volume displacement and driving vibrations. These piles may be later pulled. (4) To control settlements when spread footings or a mat is on a marginal soil or is underlain by a highly compressible stratum. (5) To stiffen the soil beneath machine foundations to control both amplitudes of vibration and the natural frequency of the system. (6) As an additional safety factor beneath bridge abutments and/or piers, particularly if scour is a potential problem. (7) In offshore construction to transmit loads above the water surface through the water and into the underlying soil. This is a case of partially embedded piling subjected to vertical( and buckling) as well as lateral loads.Piles are sometimes used to control earth movements (as landslides). The reader should note that power poles and many outdoor sign poles may be considered as partially embedded piles subject to lateral loads. Vertical loads may not be significant, although buckling may require investigation for very tall members.A pile foundation is more expensive than spread footings and likely to be more expensive than a mat. In any case great care should be exercised in determing the soil properties at the site for the depth of possible interest so that it can be accurately determined that a pile foundation is needed and, if so, that neither an excessive number nor lengths are specified. A cost analysis should be made to determine whether a mat or piles, in particular the type (steel, concrete, etc.), are more economical. In those cases where piles are used to control the settlement at marginal soil sites, care should be taken to utilize both the existing ground and the piles in parallel so that a minimum number are required.Piles are inserted into the soil via a number of methods: (1) Driving with a steady succession of blows on the top of the pile using a pile hammer. This produces both considerable noise and vibrations which may be disallowed by local codes or environmental agencies and, of course, may damage adjacent property. (2) Driving using a vibratory device attached to the top of the pile. This is usually a relatively quiet method and driving vibrations may not be excessive. The method is more applicable in deposits with little cohesion. (3) Jacking the pile. This is more applicable for short stiff members. (4) Drilling a hole and either inserting a pileinto it or, more common, filling the cavity with concrete which produces a pile upon hardening. Reinforced ConcretePlain concrete is formed a hardened mixture of cement, water, fine aggregate, coarse aggregate (crushed stone or gravel), air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction of the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth of its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforced concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients into suitable forms in which the plastic mass hardens. If the various ingredients are properly proportioned,the finished product becomes strong, durable, and ,in combination with the reinforcing bars, adaptable for use as main members fo any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a beam, a wall, a slab, a foundation, a mass concrete dam, or an extention of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6in.in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power –driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50℉.It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental conditions. Such an array of parameters has to be considered because of the fact that reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.Reinforced Concrete StructuresReinforced concrete systems are composed of a variety of concrete structural elements that, when synthesized, produce a total system. The components can be broadly classified into: floor slabs, beams, columns, walls, and foundations.Floor Slabs Floor slabs are the main horizontal elements that transmit the moving live loads as well as the stationary dead loads to the vertical framing supports of a structure. They can be proportioned such that they act in one direction (one-way slabs) or proportioned so that they act in two perpendicular direction (two-way slabs).Beams Beams are the structural elements that transmit the loads from floor slabs to vertical supporting columns. They are normally cast monolithically with the slabs and are structurally reinforced on one face, the lower tension side, or both the top and bottom faces. As they are cast monolithically with the slab, they form a T-beam section for interior beams or an L beam at the building exterior, as seen in Fig.2.Columns The vertical elements support the structural floor system. They are compression members subjected in most cases to both bending and axial load, and are of major importance in the safety considerations of any structure. If a structural system is also composed of horizontal compression members, such members would be considered as beam-columns.Walls Walls are the vertical enclosures for building frames. They are not usually or necessarily made of concrete but of any material that aesthetically fulfills the form and functional needs of the structural system. Additionally, structural concrete walls are often necessary as foundation walls, stairwell walls, and shear walls that resist horizontal wind loads and earthquake-induced loads.Foundations Foundations are the structural concrete elements that transmit the weight of the superstructure to the supporting soil. They could be in many forms, the simplest being the isolated footing shown in Fig.2. It can be viewed as an inverted slab transmitting a distributed load from the soil to the column.桩基础、钢筋混凝土和钢筋混凝土结构桩基础桩是由木材、混凝土和(或)钢制成的结构构件,被用来把荷载传递到土体的较深处。
土木建筑工程英汉词典
土木建筑工程英汉词典Soil Mechanics - 土力学Structural Analysis - 结构分析Concrete - 混凝土Steel - 钢铁Reinforcement - 钢筋Foundation - 基础Geotechnical Engineering - 岩土工程Shoring - 支护Excavation - 挖掘Tunneling - 隧道工程Surveying - 测量Geology - 地质学Hydraulics - 水力学Construction Management - 施工管理Structural Engineering - 结构工程Bridge - 桥梁Highway - 公路Irrigation - 灌溉Water Supply - 供水Foundation Design - 基础设计Soil Testing - 土壤测试Construction Materials - 建筑材料Earthquake Engineering - 地震工程Environmental Impact Assessment - 环境影响评价Safety Management - 安全管理Cost Estimation - 成本估算Project Planning - 项目规划Project Management - 项目管理Building Codes - 建筑规范Risk Assessment - 风险评估Contract Administration - 合同管理Quality Control - 质量控制Concrete Technology - 混凝土技术Steel Structures - 钢结构Engineering Drawing - 工程图纸Construction Equipment - 建筑设备Slope Stability - 边坡稳定性Dams - 水坝Seismic Design - 地震设计Construction Site - 建筑工地Structural Integrity - 结构完整性Water Treatment - 水处理Sustainable Construction - 可持续建筑Architectural Design - 建筑设计Material Testing - 材料测试Quantity Surveying - 工程测量Earthworks - 土方工程Structural Rehabilitation - 结构修复Road Construction - 道路建设Facade Design - 幕墙设计Construction Methodology - 施工方法论Retaining Wall - 挡土墙Heritage Conservation - 文物保护Building Maintenance - 建筑维护Engineering Ethics - 工程伦理Construction Waste Management - 建筑废弃物管理Public Infrastructure - 公共基础设施Landscape Architecture - 景观建筑。
地基勘察与施工中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)DESIGN AND EXECUTION OF GROUNDINVESTIGATION FOR EARTHWORKS1. INTRODUCTIONThe investigation and re-use evaluation of many Irish boulder clay soils presents difficulties for both the geotechnical engineer and the road design engineer. These glacial till or boulder clay soils are mainly of low plasticity and have particle sizes ranging from clay to boulders. Most of our boulder clay soils contain varying proportions of sand, gravel,cobbles and boulders in a clay or silt matrix. The amount of fines governs their behaviour and the silt content makes it very weather susceptible. Moisture contents can be highly variable ranging from as low as 7% for the hard grey black Dublin boulder clay up to 20-25% for Midland, South-West and North-West light grey boulder clay deposits. The ability of boulder clay soils to take-in free water is well established and poor planning of earthworks often amplifies this.The fine soil constituents are generally sensitive to small increases in moisture content which often lead to loss in strength and render the soils unsuitable for re-use as engineering fill. Many of our boulder clay soils (especially those with intermediate type silts and fine sand matrix) have been rejected at the selection stage, but good planning shows that they can in fact fulfil specification requirements in terms of compaction and strength.The selection process should aim to maximise the use of locally available soils and with careful evaluation it is possible to use or incorporate ‘poor or marginal soils’ within fill areas and embankments. Fill material needs to be placed at a moisture content such that it is neither too wet to be stable and trafficable or too dry to be properly compacted.High moisture content / low strength boulder clay soils can be suitable for use as fill in low height embankments (i.e. 2 to 2.5m) but not suitable for trafficking by earthwork plant without using a geotextile separator and granular fill capping layer. Hence, it is vital that the earthworks contractor fully understands the handling properties of the soils, as for many projects this is effectively governed by the trafficability of earthmoving equipment.2. TRADITIONAL GROUND INVESTIGATION METHODSFor road projects, a principal aim of the ground investigation is to classify the suitability of the soils in accordance with Table 6.1 from Series 600 of the NRA Specification for Road Works (SRW), March 2000. The majority of current ground investigations for road works includes a combination of the following to give the required geotechnical data:▪Trial pits▪Cable percussion boreholes▪Dynamic probing▪Rotary core drilling▪In-situ testing (SPT, variable head permeability tests, geophysical etc.)▪Laboratory testingThe importance of ‘phasing’ the fieldwork operations cannot be overstressed, particularly when assessing soil suitability from deep cut areas. Cable percussion boreholes are normally sunk to a desired depth or ‘refusal’ with disturbed and un disturbed samples recovered at 1.00m intervals or change of strata.In many instances, cable percussion boring is unable to penetrate through very stiff, hard boulder clay soils due to cobble, boulder obstructions. Sample disturbance in boreholes should be prevented and loss of fines is common, invariably this leads to inaccurate classification. Trial pits are considered more appropriate for recovering appropriate size samples and for observing the proportion of clasts to matrix and sizes of cobbles, boulders. Detailed and accurate field descriptions are therefore vital for cut areas and trial pits provide an opportunity toexamine the soils on a larger scale than boreholes. Trial pits also provide an insight on trench stability and to observe water ingress and its effects.A suitably experienced geotechnical engineer or engineering geologist should supervise the trial pitting works and recovery of samples. The characteristics of the soils during trial pit excavation should be closely observed as this provides information on soil sensitivity, especially if water from granular zones migrates into the fine matrix material. Very often, the condition of soil on the sides of an excavation provides a more accurate assessment of its in-situ condition.3. ENGINEERING PERFORMANCE TESTING OF SOILSLaboratory testing is very much dictated by the proposed end-use for the soils. The engineering parameters set out in Table 6.1 pf the NRA SRW include a combination of the following:▪Moisture content▪Particle size grading▪Plastic Limit▪CBR▪Compaction (relating to optimum MC)▪Remoulded undrained shear strengthA number of key factors should be borne in mind when scheduling laboratory testing:▪Compaction / CBR / MCV tests are carried out on < 20mm size material.▪Moisture content values should relate to < 20mm size material to provide a valid comparison.▪Pore pressures are not taken into account during compaction and may vary considerably between laboratory and field.▪Preparation methods for soil testing must be clearly stipulated and agreed with the designated laboratory.Great care must be taken when determining moisture content of boulder clay soils. Ideally, the moisture content should be related to the particle size and have a corresponding grading analysis for direct comparison, although this is not always practical.In the majority of cases, the MCV when used with compaction data is considered to offer the best method of establishing (and checking) the suitability characteristics of a boulder clay soil. MCV testing during trial pitting is strongly recommended as it provides a rapid assessment of the soil suitability directly after excavation. MCV calibration can then be carried out in the laboratory at various moisture content increments. Sample disturbance can occur during transportation to the laboratory and this can have a significant impact on the resultant MCV’s.IGSL has found large discrepancies when performing MCV’s in the field on low plasticity boulder clays with those carried out later in the laboratory (2 to 7 days). Many of the aforementioned low plasticity boulder clay soils exhibit time dependant behaviour with significantly different MCV’s recorded at a later date – increased values can be due to the drainage of the material following sampling, transportation and storage while dilatancy and migration of water from granular lenses can lead to deterioration and lower values.This type of information is important to both the designer and earthworks contractor as it provides an opportunity to understand the properties of the soils when tested as outlined above. It can also illustrate the advantages of pre-draining in some instances. With mixed soils, face excavation may be necessary to accelerate drainage works.CBR testing of boulder clay soils also needs careful consideration, mainly with the preparation method employed. Design engineers need to be aware of this, as it can have an order of magnitude difference in results. Static compaction of boulder clay soils is advised as compaction with the 2.5 or 4.5kg rammer often leads to high excess pore pressures being generated –hence very low CBR values can result. Also, curing of compacted boulder clay samples is important as this allows excess pore water pressures to dissipate.4. ENGINEERING CLASSIFICATION OF SOILSIn accordance with the NRA SRW, general cohesive fill is categorised in Table 6.1 as follows:▪2A Wet cohesive▪2B Dry cohesive▪2C Stony cohesive▪2D Silty cohesiveThe material properties required for acceptability are given and the design engineer then determines the upper and lower bound limits on the basis of the laboratory classification and engineering performance tests. Irish boulder clay soils are predominantly Class 2C.Clause 612 of the SRW sets out compaction methods. Two procedures are available:▪Method Compaction▪End-Product CompactionEnd product compaction is considered more practical, especially when good compaction control data becomes available during the early stages of an earthworks contract. A minimum Target Dry Density (TDD) is considered very useful for the contractor to work with as a means ofchecking compaction quality. Once the material has been approved and meets the acceptability limits, then in-situ density can be measured, preferably by nuclear gauge or sand replacement tests where the stone content is low.As placing and compaction of the fill progresses, the in-situ TDD can be checked and non-conforming areas quickly recognised and corrective action taken. This process requires the design engineer to review the field densities with the laboratory compaction plots and evaluate actual with ‘theoretical densities’.5. SUPPLEMENTARY GROUND INVESTIGATION METHODS FOR EARTHWORKSThe more traditional methods and procedures have been outlined in Section 2. The following are examples of methods which are believed to enhance ground investigation works for road projects:▪Phasing the ground investigation works, particularly the laboratory testing▪Excavation & sampling in deep trial pits▪Large diameter high quality rotary core drilling using air-mist or polymer gel techniques译文:土方工程的地基勘察与施工1、引言许多爱尔兰含砾粘土的勘察与再利用评价使岩土工程师与道路工程师感到为难。
英汉对照图示基础工程学第十二章 桩基础-单桩
第十二章桩基础-单桩Chapter12 Pile foundation-single piles301.Piles桩pile cap桩帽piles桩soft clay软粘土sand砂土raker pile斜桩batter pile斜桩302.Vibrations振动tanks贮罐silos筒仓chimneys烟囱machine foundations机器基础sand砂土ground water地下水303.Examples of pile foundations桩基础的例子compaction piles压实桩raked piles斜桩damping of piles桩的阻尼small damping小阻尼vibrations振动304.Stability of bridge abutment桥墩的稳定性soft clay软粘土fill填土bridge abutment桥墩305.Embankment piles路堤桩soft clay软粘土raked piles斜桩bridge abutment桥墩fill填土306.Anchor piles for dry docks,subway stations 干船坞或地铁车站下的锚桩ground water地下水up-lift上浮力anchor piles锚桩307.Offshore structures on piles桩支撑的离岸结构物cyclic loading循环荷载scour冲刺compression压缩steel pipe piles钢管桩tension force拉力308.Stabilisation of slope by piles边坡用桩稳定slope stability边坡稳定性large diameter pile大直径桩steel pipe piles钢管桩failure surface破坏面309.Design of embankment piles路堤桩的设计failure surface破坏面clay粘土precast piles预制桩310.Anchor piles in swelling soil膨胀土中的锚桩seasonal changes季节性变化swelling clay膨胀性粘土montmorillonite蒙脱石high liquid limit高液限high plasticity index高塑性指数building建筑物311.Examples of pile types桩型应用的例子driven piles打入桩bored piles钻孔桩jacked-down piles静压桩screw piles螺旋桩hydraulic jack液压桩312.Piles foundations桩基础concrete pile混凝土桩steel pile钢桩timber木桩H pile H型桩313.Piles types桩型large displacement piles大量挤土桩small displacement piles少量挤土桩non-displacement piles非挤土桩bored piles钻孔桩precast piles预制桩pipe piles管桩cased有套管uncased无套管box piles箱形桩driven cast-in-place piles沉管灌注桩314.Loading conditions of piles桩的荷载情况compression受压lateral load受侧向荷载tension受拉315.Load transfer to piles桩的荷载传递friction or floating piles摩擦桩或悬浮桩end bearing piles端承桩clay粘土sand砂土rock岩石316.Timber piles木桩advantages优点difficulties难点limit bearing capacity极限承载力soft clay软粘土tip桩尖shaft桩身ground water地下水butt桩顶marine borers海生木蛀虫317.Pile splices桩的连接steel sleeve钢套steel strap钢板条318.Splices and rock points桩的连接和入岩桩尖rock point入岩桩尖319.Precast concrete piles预制混凝土桩point桩尖concrete混凝土reinforcement加筋pile diameter桩径shoe桩靴320.Lifting of piles桩的吊装pile length桩长lifting hooks吊钩moment弯矩321.Prestressed concrete piles预应力混凝土桩height strength concrete高强混凝土brittle脆性reduced cracking减少裂缝reduced ductility延展性差322.Concrete strength(CP 2004)混凝土强度(CP 2004)cube strength立方体强度hard driving难以打入normal to easy driving从正常到易于打入high capacity承载力高reduced weight重量减轻easy driving易于打入323.Installation of jacked-down piles静压桩的成桩pump泵manometer压力计steel insert钢垫片hydraulic jack液压千斤顶pile segment桩段324.Bored piles钻孔桩auger螺旋钻reinforcement钢筋笼tremmie pipe导管concreting灌注混凝土325.Examples of bored piles钻孔灌注桩的例子bored piles钻孔桩drilling of shaft桩孔钻进drilling of bell扩大头钻进concrete混凝土stiff clay硬粘土reinforcement钢筋笼326.Bored piles with bell有支盘的钻孔桩bells支盘327.Cast-in-place piles就地灌注桩casing钢管桩driving打(桩)casing filled with water套管充水casing filled with concrete套管中灌注混凝土reinforcement钢筋笼328.Necking during casting of pile shaft in soft clay 软粘土中灌注桩身混凝土时发生缩径casing套管soft clay软粘土sand or silt砂土或粉土ground water地下水329.Slurry trench wall construction泥浆连续墙施工ground water地下水surface casing地下护筒bentonite slurry膨润土泥浆chisel冲抓pouring of concrete灌注混凝土lowering of reinforcement element下放钢筋笼330.Shapes of slurry trench pile elements泥浆护壁类桩型的形状size尺寸331.Raymond step tapered pile雷蒙特锥形桩steel shell钢壳steel core钢芯light bulb小球体reinforcement cage钢筋笼casting of concrete灌注混凝土332.Franki pile弗兰基桩concrete plug混凝土塞bulb球形物internal hammer内夯桩prefabricated[pri:'fæbrikeitid] shaft预制桩身light casing薄壁套管333.Steel H-pipeH-型钢桩easy to drive易于打入easy to cut易于切断corrosion[kə'rəuʒən]腐蚀expensive昂贵splicing分段连接soil plug土塞driving shoe桩靴steel plate钢板wielding焊接334.Steel pipe piles钢管桩diameter直径closed or open ended闭口或开口soil plug土塞diameter直径335.Corrosion腐蚀steel piles钢桩concrete piles混凝土桩National Bureau['bjuərəu] of Standards国家标准局splices连接reinforcement钢筋salt water海水resistivity电阻系数salt water海水encased in concrete做混凝土外壳cathodic[kə'θɔdik] protection阴极保护painting涂刷epoxy[ep'ɔksi]环氧树脂336.Settlement around during driving in sand砂土中沉桩时桩周土发生沉降settlement沉降diameter直径compaction within this zone在此范围内压实337.Effect of pile driving in clay粘土中打桩的影响soft clay软粘土heave隆起volume体积remoulded zone重塑区pore water pressure孔隙水压力undrained shear strength不排水抗剪强度338.Redriving of piles in clay粘性土中桩的复打risen piles上抬的桩redriving复打heave隆起soft clay软粘土separation of splice接桩处脱开339.Load distribution along pile荷载沿桩身的分布sand砂土clay粘土point resistance桩尖阻力shaft resistance桩侧阻力340.Pile load as function of pile displacement桩荷载为桩位移的函数load荷载displacement位移soft clay软粘土stiff clay硬粘土sand砂土cast in place pile就地灌注桩driven pile打入桩with bell有大头341.Load deformation relationship of piles桩的荷载与变形的关系pile load桩荷载displacement位移point resistance端阻力skin resistance表面摩阻力/桩周阻力342.Direction of pile loading桩承受荷载的方向compression受压tension受拉weight of pile桩的自重factor of safety安全系数allowable load容许荷载point resistance端阻力shaft resistance侧阻力343.Determination of bearing capacity at pile point 桩端承载力的确定end bearing端承力undrained shear strength不排水抗剪强度bearing capacity factor承载力系数344.Pile bearing capacity according to Meyerhof 梅耶霍夫对桩的承载力的计算friction angle摩擦角bearing capacity factor承载力系数345.Bearing capacity factor of piles桩的承载力系数Terzaghi太沙基(人名)Berezantsev别列赞采夫(人名)Meyerhof梅耶霍夫(人名)Vesic维西克(人名)Brinch Hansen勃林奇·汉森(人名)Debeer德皮尔(人名)friction angle摩擦角346.Failure mechanism at pile point桩端的破坏机理point resistance端阻力rigidity index刚度指数failure surface破坏面compressibility可压缩性parison of cone resistance and pile point resistance 圆锥贯入阻力与桩端阻力的比较area of pile桩的截面积sand砂土parison of SPT N-value and pile point resistance标准贯入试验N值与桩端阻力的比较SPT标准贯入试验sand砂土pile diameter桩径teral pressure against pile shaft桩身的侧压力bored pile钻孔桩small displacement pile少量挤土桩large displacement pile 大量挤土桩straight shaft直身tapered shaft锥形桩身lateral earth pressure侧土压力350.Determination of capacity in sand砂土中桩承载力的确定loose松散dense密实coefficient of lateral earth pressure at rest静止侧土压力系数small Vesic小维西克(人名)displacement pile挤土桩non-displacement pile非挤土桩tapered pile锥形桩351.Pile shaft capacity in sand砂土中桩身的承载力pile type桩型sand砂土critical depth临界深度teral pressure against pile shaft桩身的侧压力Mansur & Hunter曼舍与洪特(人名)Tavenas泰凡纳斯(人名)lateral earth pressure侧土压力step taper piles多级锥形桩353.Critical depth of pile shaft resistance桩身阻力的临界深度friction angle摩擦角bearing capacity value承载值diameter直径length长度354.Estimate of pile capacity based on Weight Sounding Test(WST)重力触探试验(WST)估算桩的承载力half-turns半转timber piles木桩concrete piles混凝土桩Norwegian Pile Commission挪威桩基委员会skin area表面积355.Failure surface at pile point in clay粘土中桩端的破坏面failure surface破坏面diameter直径area of pile桩的截面356.Skin friction resistance along pile shaft摩阻力沿桩身的分布cone penetration test圆锥贯入试验friction sleeve摩阻套small displacement pile少量挤土桩large displacement pile大量挤土桩357.Bearing capacity of piles in clay粘土中的桩的承载力normally consolidated clay正常固结粘土overconsolidated clay超固结粘土undrained shear strength不排水抗剪强度reduction折减ground surface地表mbda-methodLambda方法offshore structures离岸结构物depth深度mean value平均值skin resistance桩周阻力359.Estimate of pile skin resistance in clay粘土中桩侧阻力的估算effective overburden pressure有效覆盖压力Flaate法莱特(人名)undrained shear strength不排水抗剪强度360.Load transfer from pile to soil as function of pile displacement 桩土间荷载传递为桩位移的函数t-z curves t-z曲线q-y curve q-y曲线driven pile打入桩bored pile钻孔桩361.Negative skin friction along piles桩的负摩阻力lowering of ground water level地下水位下降driven pile打入桩bored pile钻孔桩362.Failure modes of horizontally loaded piles承受水平荷载的桩的破坏模式soil failure土体破坏pile failure桩的破坏failure mechanism破坏机理teral pile resistance in sand砂土中的桩侧阻力sand砂土horizontal load水平荷载force力teral pile resistance in clay(rotational mode)粘土中的桩侧阻力(桩旋转的模式)undrained shear strength不排水抗剪强度heave隆起passive earth pressure被动土压力lateral force侧压力diameter直径depth深度teral pile resistance in clay(pile failure mode)粘土中的桩侧阻力(桩破坏的模式)undrained shear strength不排水抗剪强度diameter直径yield屈服moment力矩lateral force侧压力。
解读人工挖孔桩技术在工程中的运用中英文
解读人工挖孔桩技术在工程中的运用中英文现代社会城市化进程的不断加快,各类民用与工业修建项目也日益添加。
在每项修建工程中,都需求对修建质量和布局安全进行严厉控制,尤其是关于修建根底的处置需求更高。
人工挖孔桩施工技能比拟便利,施工速度较快,且不需求运用大型的机械设备,对其它修建物的扰动影响也较小。
一起,人工挖孔桩还能节约很多的施工本钱,其抗震才能要比木桩、混凝土打入桩强,因而在工民建工程中得到了十分广泛的运用。
Accelerating the urbanization process in modern society, all kinds of civil and industrial construction projects are also increasing. In every building project, and need to strictly control the construction quality and structural safety, especially for building foundation processing requirements are higher. Artificial dig-hole pile construction technology is more convenient, faster, and do not need to apply a large machinery and equipment, less influence on other disturbances of the building. At the same time, the artificial dig-hole pile can also save a lot of construction cost, the aseismic capability than piles driven pile, concrete strength, thus got the very extensive application in civil engineering.一、人工挖孔桩的技能关键Second, the main technical points of the artificial dig-hole pile(一)施工前的预备(a) the preparation for construction根据勘察成果编写切实可行的施工计划以及质量控制措施。
建筑工程中英文对照
建筑工程中英文对照Investment and study are the most important things in life, and there is no better idea.建筑词典大全附中文详细解释 I第一节一般术语1. 工程结构 building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称.2. 工程结构设计 design of building and civil engineering structures在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求.3. 房屋建筑工程 building engineering一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体.4. 土木工程 civil engineering除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体.5. 公路工程 highway engineering为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体.6. 铁路工程 railway engineering为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体.7. 港口与航道工程 port harbour and waterway engineering为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体.8. 水利工程 hydraulic engineering为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体.9. 水利发电工程水电工程 hydraulic and hydroelectric engineering以利用水能发电为主要任务的水利工程.10. 建筑物构筑物 construction works房屋建筑或土木工程中的单项工程实体.11. 结构 structure广义地指房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的实体,狭义地指各种工程实体的承重骨架.12. 基础 foundation将建筑物、构筑物以及各种设施的上部结构所承受的各种作用和自重传递到地基的结构组成部分.13. 地基 foundation soil; subgrade; subbase; ground支承由基础传递或直接由上部结构传递的各种作用的土体或岩体.未经加工处理的称为天然地基.14. 木结构 timber structure以木材为主制作的结构15. 砌体结构 masonry structure以砌体为主制作的结构.它包括砖结构、石结构和其它材料的砌块结构.有无筋砌体结构和配筋砌体结构.16. 钢结构 steel structure以钢材为主制作的结构.其中由带钢或钢板经冷加工形成的型材所制作的结构称冷弯薄壁型钢结构.17. 混凝土砼结构 concrete structure以混凝土为主制作的结构.它包括素混凝土结构、钢筋混凝土结构和预应力混凝土结构等.18. 特种工程结构 special engineering structure指具有特种用途的建筑物、构筑物,如高耸结构,包括塔、烟囱、桅、海洋平台、容器、构架等各种结构.19. 房屋建筑 building在固定地点,为使用者或占用物提供庇护覆盖进行生活、生产或其它活动家的实体. 20. 工业建筑 industrial building提供生产用的各种建筑物,如车间、厂前区建筑、生活间、动力站、库房和运输设施等.21. 民用建筑 civil building; civil architecture指非生产性的居住建筑和公共建筑,如住宅、办公楼、幼儿园、学校、食堂、影剧院、商店、体育馆、旅馆、医院、展览馆等.22. 公路 highway联结城市和乡村,主要供汽车或其它车辆行驶并具备一定技术标准和设施的道路.23. 公路网 highway network一定区域内相互连络、交织成网状分布的公路系统.24. 高速公路 freeway具有四条或四条以上车道,设有中央分隔带,并具有完善的交通安全设施、管理设施和服务设施,为全立交、全封闭,专供汽车高速行驶的公路.25. 干线公路 arterial highway在公路网中起骨干作用的公路,分国家干线国道、省干线省道.26. 支线公路 feeder highway在公路网中起连接作用的一般公路,即县县道和乡乡道等公路.27. 铁路铁道 railway; railroad用机车牵引运货或运旅客的车厢组成列车,在一定轨距的轨道上行驶的交通运输线路.28. 标准轨距铁路 standard gauge railway在直线地段,轨距为1435mm的铁路.29. 宽轨距铁路 broad gauge railway在直线地段,轨距大于1435mm的铁路.30. 窄轨距铁路 narrow gauge railway在直线地段,轨距小于1435mm的铁路.31. 铁路枢纽 railway terminal在铁路网点或网端,由几个协同作业的车站、引入线路和联络路线组成的综合体. 32. 铁路车站 railway station设有各种用途的线路,并办理列车通过、到发、列车技术作业及客货运业务的分界点.33. 港口 port; harbour具有水陆联运条件和设施,供船舶安全进出和停泊以进行货物装卸作业或上下旅客以及军事用的交通运输枢纽.34. 港口水工建筑物 marine structure供港口正常生产作业的临水或水中建筑物.35. 通航过船建筑物 navigation structure; navigation construction在栏河闸、坝或急流卡口等所形成的水位集中落差处,为使船舶或排筏安全顺利地航驶而修建的水工建筑物.36. 灯塔 light house在海洋、江河和湖泊航线中,指引船舶安全行驶、识别方位并设有发光樗的塔形建筑物.37. 水利 water conservancy为控制或调整天然水在空间和时间上的分布,防治洪水和旱涝灾害,合理开发和利用水资源而进行的活动,如治河防洪,灌溉排水,水土保持,水力发电,内河航运与生活、工业、环境供水以及跨流域调水等.38. 水利枢纽 multipurpose hydraulic project; key water-control project; hydro-junction为治理水患和开发利用水资源,在各种水域的一定范围内修建的若干座作用不同而相互配合的水工建筑物组成的综合体.39. 水库 reservoir为治理河流和开发水资源,在狭谷或丘陵地带河流上建档水坝,利用天然地形构成的蓄水设施.40. 水工建筑物 hydraulic structure; marine structure; maritime construction为水利、水利发电、港口与航道等工程修建的承受水作用的各种建筑物总称.41. 档水建筑物 water retaining structure; retaining works栏截水流、调蓄流量、壅高水位的水工建筑物.42. 进水取水建筑物 intake structure人河流、湖泊、水库等引进水流、控制流量、阻拦泥沙及漂浮物的水工建筑物.43. 泄水建筑物 outlet structure; outlet works; sluice works在水利枢纽或输水系统中,宣泄水量的水工建筑物.44. 输水建筑物 conveyance structure向供水目标输送水量的水工建筑物.45. 整治建筑物 rcgulating structure; training structure rectification structure为整治河流、航道、具有调整河床边界、改变水流结构、影响泥沙运动、控制河床演变等作用的水工建筑物.46. 水电站 hydro-electric station; hydropower station由河河湖海的沙滩有变为电能的各种设备及配套构筑物组成的综合体.47. 水泵站抽水站、扬水站、提水站 pump station设置抽水装置及其辅助设备,将水送往高处的配套建筑物.48. 过木建筑物过木设施 raftpass facility log pass facility供输送竹、木材通过闸、坝等挡水建筑物的工程设施.49. 过钿建筑物过钽设施 fishpass facility供鱼类通过拦河闸坝等挡水建筑物的工程设施.50. 安全设施 safety device为保障人、车、行船的安全,在房屋、公路、铁路和港口、航道沿线所设置的地道、天桥、航标、灯塔、照明设备、防水设施、护栏、标柱、标志、标线等设施的总称.第二节房屋建筑结构术语1. 混合结构 mixed structure不同材料的构件或部件混合组成的结构.2. 板柱结构 slab-colume system由楼板和柱无梁组成承重体系的房屋结构,如升板结构、无梁楼盖结构、整体预应力板柱结构.3. 框架结构 frame structure由梁柱组成的能承受竖向、水平作用所产生各种效应的单层、多层或高层结构.4. 拱结构 arch structure由拱作为承承重体系的结构.5. 折板结构 folded-plate structure由多块条形或其它外形的平板组合而成,能作承重、围护用的薄壁空间结构.6. 壳体结构 shell structure由各种形状的曲面板与边缘构件梁、拱、桁架组成的大跨度覆盖或围护的空间结构. 7. 风架结构 space truss structure由多根杆件按一定网格形式通过节点连接而成的大跨度覆盖的空间结构.8. 悬索结构 cable-suspended structure由柔性受拉索及其边缘构件所组成的承重结构.9. 充气结构 pneumatic structure在以高分子材料制成的薄膜制品中充入空气后而形成房屋的结构.分气承式和气管式两种结构形式.10. 剪力墙结构墙结构 shear wall structure在高层和多层建筑中,竖向和水平作用均由钢筋混凝土或预应力混凝土墙体承受的结构.11. 框架-剪力墙结构 frame-shear wall structure在高层建筑或工业厂房中,剪力墙和框架共同承受竖向和水平作用的一种组合型结构.12. 筒体结构 tube structure由竖向箱形截面悬臂筒体组成的结构.筒体有剪力墙围成竖向箱形截面的薄壁筒和密柱框架组成竖向箱形截面的框筒.筒体由一个或多个组成;分筒中筒、单框筒、框架-薄壁筒和成束筒等四类.13. 悬挂结构 suspended structure将楼屋面系统的荷载通过吊杆传递到悬挂的水平桁架梁,再由悬挂的水平桁架梁传递到被悬挂的井筒上直至基础的结构.14. 高耸结构 high-rise structure高度大,水平横向向剖面相对小,并以水平荷载控制设计的结构.分自立式塔式结构和拉线式桅式结构两大类,如水塔、烟囱、电视塔、监测塔等.第三节公路路线和铁路线路术语1. 公路路线 highway公路中线的空间位置.2. 公路线形 highway alignment公路中线的立体形状,由若干直线段和曲线段连接而成.3. 平面线形 horizontal alignment公路中线在水平面上投影形状4. 纵面线形 vertical alignment公路中心在纵剖面上的投影形式.5. 公路选线 route selection根据自然条件、公路使用性质和技术标准,结合地形、地质条件,考虑安全、环境、土地利用和施工条件以及社会经济效益等各种因素,通过比较,选择路线走向及其控制位置的全过程.6. 公路定线 route location根据规定的技术标准和路线方案,结合技术经济条件,从平面、纵断面、横断面综合考虑,具体定出路线中心线的工作.7. 平面线 horizontal curve在平面线形中,路线转向处曲线的总称,包括圆曲线和缓和曲线8. 竖曲线 vertical curve在公路纵坡的变坡处设置的竖向曲线.9. 变坡点 grade change point路线纵断面上两相邻不同坡度线的相交点.10. 路线交叉 route intersection两条或两条以上公路的交会.11. 铁路线路 permanent way包括机车和车厢组成列车行驶的通路、轨道及支承轨道的中期、桥梁、涵洞、隧道及其它建筑物的总称.12. 铁路选线 railway location在已确定的铁路起点,经过地点和终点之间,根据国家经济发展规划、自然条件和运输任务,结合铁路动力设备,并按照列车运行规律与经济原则,选择铁路新路线和改进已有路线的最佳方案.13. 铁路定线 location对选线确定的线路进行勘测后,按照规范的技术规定,在线路地形图上,进行线路的平面和纵断面设计和布置车站、桥涵等建筑物的工作.14. 正线 main line连接并贯穿或直股伸入铁路车站的线路.只有一条正线的线路称为单线,有二条正线的线路称为双线.15. 站线 sidings铁路车站管理的线路中,除正线以外各种线路的统称,如列车到发线、调车线、货物装卸线等.16. 最小曲线半径 minimum radius of curve在全线或某一地段内规定的圆曲线最小半径.17. 坡段 grade section两相邻变坡点间的长度 .18. 最大坡度 maximum grade一条线路上容许的最大设计坡度.19. 平面交叉 grade crossing铁路和铁路,铁路和公路称道口,公路和公路在同一平面上的交叉.20. 立体交叉 grade separation铁路和铁路,铁路和公路,公路和公路在不同高程上的交叉.第四节桥、涵洞和隧道术语1. 桥 bridge为公路、铁路、城市道路、管线、行人等跨越河流、山谷、道路等天然或人工障碍而建造的架空建筑物.2. 简支梁桥 simple supported girder bridge以简支梁作为桥跨结构的主要承重构件的梁式桥.3. 连续梁桥 continuous girder bridge以成列的连续梁作为桥跨结构主要承重构件的梁式桥.4. 悬臂梁桥 cantilever girder bridge以悬臂作为桥跨结构主要承重构件的梁式桥.5. 斜拉斜张桥 cable stayed bridge以斜拉斜张索连接索塔和主梁作为桥跨结构主要承重构件的桥.6. 悬索吊桥 suspension bridge以通过两索塔悬垂并锚固于两岸或桥两端的缆索或钢链作为桥跨结构主要承重构件的桥.7. 桁架桥 trussed bridge以桁架作为桥跨结构主要承重构件的桥,有桁架梁桥、桁架拱桥等.8.框架桥 frame bridge桥跨结构为整体箱形框架的桥.9.刚构刚架桥 rigid frame bridge桥跨结构与桥墩台刚性连接的桥,有连续、斜腿刚构桥等.10.拱桥 arch bridge以拱圈或拱肋作为桥跨结构主要承重构件的桥,有双曲、箱形拱桥等.11.漫水桥 submersible bridge容许洪水漫过桥面的桥.12.浮桥 pontoon bridge上部结构架高参水中浮动支承如船、筏、浮箱等上的桥.13.正交桥 right bridge桥的纵轴线与其跨越的河流流向或公路、铁路等路线轴向相垂直的桥.14.斜交桥 skew bridge桥的纵轴线怀其跨越的河流流向或公路、铁路等路线轴向不相垂直的桥15.跨线立交桥 grade separated bridge; overpass bridge跨越公路、铁路或城市道路等交通线路和桥.16.高架桥 viaduct代替高路堤跨越深谷、洼地或人工设施的桥.17.正主桥 main span跨越河道主槽部分或深谷、人工设施主要部分的桥.18.引桥 approach span连接路堤和正主桥的桥.19.弯桥 curved bridge桥面中心线在平面上为曲线的桥,有主梁为直线而桥面为曲线和主梁与桥面均为曲线两种情况.20.坡桥 Ramp bridge设置在纵坡路段上的桥.21.公路铁路两用桥 combined bridge; highway and railway transit bridge可供汽车和火车分道分层或并列行驶的桥.22.开合桥 movable bridge桥跨结构中具有可以提升、平旋或立旋开合的桥.23.单线桥 single-track bridge铺设一条铁路线路的桥.24.双线桥 double-track bridge铺设两条铁路线路的桥.25.桥跨结构上部结构 bridge superstructure桥的支承部分以上或拱桥起拱线以上跨越桥引的结构.26.桥面系 bridge floor system为提供列车、车辆、人群通过而设置桥面所需要的结构系统.27.桥支座 bridge bearing; bridge support支承桥跨结构,并将其荷载传给桥墩、桥台的构件.28.桥下部结构 bridge substructure为桥如、桥墩及桥梁基础的总称,用以支承桥梁上部结构将上部荷载传递给地基. 29.索塔桥塔 bridge tower支承悬索桥或斜张桥的主索并将荷载直接传给地基的塔形构筑物.30.桥台 abutment位于桥的两端与中基相衔接,并将桥上荷载传递到基础,又承受台后填土压力的构筑物. 31.桥墩 pier支承两相邻桥跨结构,并将其荷载传给地基的构筑物.32.涵洞 culvert横贯并埋设在路基或河堤中用以输水、排水或作为通道的构筑物.33.隧道洞 tunnel在道路、铁路及输水、泄水线路上,遇天然障碍时,穿越地层内部的地下或水底通道. 34.隧道洞口洞门 tunnel portal为保持洞口上方及两侧边坡的稳定,在隧道洞口修筑的墙式建筑物.35.隧道洞围岩 tunnel surrounding rock隧道洞周围一定范围内,对洞身的稳定产生影响的岩土体.36.隧道洞衬砌 tunnel lining为保证围岩稳定,防止隧道围崦变形或坍塌,并保持隧洞断面尺寸大小或使洞口内有良好水流条件,沿隧道洞身周边修筑的永久性支护结构层.第五节水工期建筑物术语1.坝 dam阻拦或拦蓄水充、壅高或调节上游水位的挡水建筑物.顶部不泄水的称非溢流坝,顶部泄水的称溢流坝.2.坝轴线 dam axis代表坝位置的一条横贯河谷的线.3.重力坝 gravity dam主要依靠自身重力,抵抗壅水作用于坝体的推力以保持稳定的坝.4.拱坝 arch dam平面呈拱向上游的曲线形坝,主要依靠拱的作用将壅水作用于坝体的推力传至两岸,以保持稳定的坝.5.支墩坝 buttress dam由一系列支墩和其上游挡水结构组成的坝6.土石坝 earth-rock dam; embankment dam用土、砂、砂砾石、卵石、块石、风化岩等材料经碾压或填筑建成的坝.7.混凝土坝 concrete dam用混凝土筑成的坝.8.橡胶坝 rubber dam; flexible dam; fabric dam锚着于底板上,以聚酯或橡胶为基质合成纤维织物形成袋囊,经充水气后形成的坝. 9.丁坝 spur dike; groin一端接河岸,一端伸向整治线,在平面上形成丁字形,坝轴线与流向交角分上挑、下挑或正挑的横向整治建筑物.10.顺坝 training dike一端接河岸,一端向下游延伸,坝轴线与流向平行或成一锐角,引导水流的纵向整建筑物. 11.溢洪道 spillway从水库向下游泄放超过水库调蓄能力的洪水,以保证工程安全的泄水建筑物.12.堰溢流堰 weir在顶部溢流的挡水、泄水建筑物.13.围堰 coffer dam用于水下施工的临时性挡水设施.14.水工隧洞 hydraulic tunnel在山体中或地面以下开挖的,具有封闭形断面和一定长度的过水建筑物.15.深式进水口 deep water intake人水库水面下一定深度处引水的水工隧洞或坝下埋管的首部建筑物.16.堤坝式水电站 dam type hydropower station用筑坝集中河段落差,形成发电淼砂的水电站.17.引水引水道式水电站 diversion conduit type hydropower staion利用引水道集中河段落差,形成必电水头的水电站.18.潮汐电站 tidal power station建于港湾入口处,利用海洋潮汐的动能转烃为电能的水电站.19.抽水蓄能电站 pumped storage power station具有抽水蓄能及发电两种功能的水电站.20.水电站厂房 powerhouse of hydropower station水电站中装置水轮发电机组及其辅助设备并为其安装、检修、运行及管理服务的建筑物,分河床式、坝后式、坝内式厂房或建在地面下的地下厂房21.前池 forebay设置在引水渠道末端及压力管道进口前的水池22.压力管道 pressure nconduit承受内水压力的封闭式输水管道.23.调压室 surge chamber设置在水电站较长的有压水疲乏中,使水流具有自由水面以减小水锤压力的贮水调压设施.24.尾水渠 tailrace尾水管与下游河槽之间输送发电尾水的渠道.25.船闸 navigation lock供船舶在水位集中落差处通航的一种箱形建筑物.26.升船机 shi lift; ship elevator在通航水道上有水位集中落差的地区,用机械或水力方法驱动升隆船舶,使船舶在水位落差处通过拦河坝的一种过船建筑物.27.水闸 sluice; barrage利用闸门控制流量、调节水位,既可挡水,又可泄水的建筑物.28.渠道 caual在地面上人工建造的开敞式输水通道.29.渡槽 aqueduct; bridged flume跨越洼地、道路、水道等衔接渠道的桥式建筑物.30.陡坡 chute以大于临界坡的底坡连接高、低渠道的开敞式过水建筑物.31.跌水 drop以集中跌落方式连接高、低渠道的开敞式或封闭式建筑物.32.坝内廊道系统 gallery system设在坝体内相互连通,并有进出口通向坝外的纵向、横向及竖向通道系统,具有灌浆、排水、检查、交通等多种功用.33.消能防冲设施 energy dissipating and anti-scour facility位于泄水建筑物下游侧,用以消减水流动能,并保护河底免受冲刷的结构设施.34.防渗设施 seepage control facility为防止和减少通过建筑物或地基渗流的设施35.排水设施 drainage facility排邮建筑物及地基中渗流的设施.36. 反滤设施倒滤设施 reverse filter为防止渗流导致土粒流失,而在渗流逸出外沿渗流方向按砂石材料颗粒粒径、土工织物纪隙尺寸,以逐渐增大的原则,分层填铺的滤水设施.37.水轮泵站 turbine-pump station利用水轮泵提水的泵站.38.水锤泵站 ram station利用水锤泵提水的泵站.39.坝下埋管 under dam culvert埋设在土石坝坝底,并在进口处设控制闸门的输水管道或洞40.沉消池 silting basin沉淀和清除水中部分泥沙的池.41.堤 dike; levee沿江、河、湖、海分洪区岸边修筑的挡水建筑物.42.防波堤 breakwater; mole防御风浪侵袭港口水域,保证港内水域平稳的水工建筑物.43.码头 wharf; quay供船舶停靠、装卸货物、上下旅客用的水工建筑物.44.斜坡码头 sloped wharf岩边断面呈斜坡状,设有固定坡道,并在坡道前端有趸船的徘船码头.45.墩式码头 dolphin wharf由靠船墩及工作平台、引桥等组成的靠船码头,主要型式有重力式墩式码头和高桩墩式码头.46.重力式码头 gravity quay-wall以结构本身和填料的重力保持稳定的靠船码头,主要型式有方块、沉箱及扶壁式等. 47.板桩码头 sheet-pile quay-wall由板桩、帽梁或胸墙、导梁和锚碇结构等所组成的靠船码头.48.高桩码头 open pier on piles; high-pile wharf主要是由部分桩身露出地面的桩和桩台组成的高桩承台式靠船码头.其特点是通过桩台将施加在码头上的荷载由桩传递到地基.49.浮趸船码头 floating pier; pontoon wharf由随水位涨落而升隆的趸船、支撑设施、引桥及护岸等组成的靠船码头.50.船坞 dock用于建造或检修航船的水工建筑物.由坞首、坞门、坞室、灌泄系统、拖系缆设备、动力和公用设施以及其它附属设备等组成,主要型式有干船坞和浮船坞.51.船台 ship-building berth在船舶上墩、下水构筑物中专门为修、造船舶有物场地.有露天船台、开敞船台和室内船台三种.52.滑道 slipway船舶上墩、下水用的轨道.第六节结构构件和部件术语1.构件 member组成结构的单元.2.部件 component; assembly parts结构中由若干构件组成的组合件,如楼梯、阳台、楼盖等.3.截面 section设计时所考虑的结构构件与某一平面的交面.当该交面与结构构件的纵向轴线或中面正交时的面称正截面,斜交时的面称斜截面.4.梁 beam; girder一种由支座支承的直线或曲线形构件.它主要承受各种作用产生的弯矩和剪力,有时也承受扭矩.5.拱 arch一种由支座支承的曲线或折线形构件.它主要承受各种作用产生的轴向压力,有时也承受弯矩、剪力,或扭矩.6.板 slab; plate一种由支座支承的平面尺寸大,而厚度相对较小的平面构件.它主要承受各种作用产生的弯矩和剪力.7.壳 shell一种曲面构件,它主要承受各种作用产生的中面内的力,有时也承受弯矩、剪力或扭矩. 8.柱 column一咱竖向直线构件.它主要承受各咱作用产生的轴向压力,有时也承受弯矩、剪力或扭矩. 9.墙 wall一种竖向平面或曲面构件.它主要承受各咱作用产生的中面内的力,有时也承受中面外的弯矩和剪力.10.桁架 truss由若干杆件构成的一种平面或空间的格架式结构或构件.各杆件主要承受各种作用产生的轴赂力,有时也承受节点弯矩和剪力.11.框架 frame由梁和柱连接而构成的一种平面或空间,单层或多层的结构.12.排架 bent frame由梁或桁架和柱铰接而成的单层框架.13.刚架刚构 rigid frame由梁和柱刚接而构成的框架.14.简支梁 simply supported beam梁搁置在两端支座上,其一端为轴向有约束的铰支座,另一端为能轴向滚动的支座. 15.悬臂梁 cantilever beam梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端.16.两端固定梁 beam fixed at both ends梁的两端均为不产生轴向、垂直位移和转动的固定支座.17.连续梁 continuous beam具有三个或三个以上支座的梁.18.叠合梁 superposed beam截面由同一材料若干部分重叠而成为整体的梁.19.桩 pile沉入、打入或浇注于地基中的柱状支承构件,如木桩、钢桩、混凝土桩等.20.板桩 sheet pile全部或部分打入地基中,横截面为长方板形的支承构件,如钢板桩、钢筋混凝土板桩. 21.路面 pavement用筑路材料铺筑在公路路基上面,供车辆行驶的结构层,括面层含磨耗层、基层和垫层. 22.行车道 carriageway公路上代各咱车辆行驶部分的总称,包括快车行车道和慢行车道.23.变速车道 speed-change lane高等级公路上的加速度车道和减速车道的总称.。
建筑基桩检测技术常用术语和符号
建筑基桩检测技术常用术语和符号1.1术语2.1.1基桩Foundation pile桩基础中的单桩。
2.1.2桩身完整性Pile integrity反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标。
2.1.3桩身缺陷Pile defects在一定程度上使桩身完整性恶化,引起桩身结构强度和耐久性降低,出现桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等不良现象的统称。
2.1.4静载试验Static load test在桩顶部逐级施加竖向压力、竖向上拔力或水平推力,观测桩顶部随时间产生的沉降、上拔位移或水平位移,以确定相应的单桩竖向抗压承载力、单桩竖向抗拔承载力或单桩水平承载力的试验方法。
2.1.5钻芯法Core drilling method用钻机钻取芯样,检测桩长、桩身缺陷、桩底沉渣厚度以及桩身混凝土的强度,判定或鉴别桩端岩土性状的方法。
2.1.6低应变法Low–strain integrity testing采用低能量瞬态或稳态方式在桩顶激振,实测桩顶部的速度时程曲线,或在实测桩顶部的速度时程曲线同时,实测桩顶部的力时程曲线。
通过波动理论的时域分析或频域分析,对桩身完整性进行判定的检测方法。
2.1.7高应变法High–strain dynamic testing用重锤冲击桩顶,实测桩顶附近或桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
2.1.8声波透射法Cross–hole sonic logging在预埋声测管之间发射并接收声波,通过实测声波在混凝土介质中传播的声时、频率和波幅衰减等声学参数的相对变化,对桩身完整性进行检测的方法。
2.1.9桩身内力测试Internal force testing of pile shaft通过桩身应变、位移的测试,计算荷载作用下桩侧阻力、桩端阻力或桩身弯矩的试验方法。
1.2符号2.2.1抗力和材料性能c——桩身一维纵向应力波传播速度(简称桩身波速);E——桩身材料弹性模量;f cor——混凝土芯样试件抗压强度;m——地基土水平抗力系数的比例系数;Q u——单桩竖向抗压极限承载力;R a——单桩竖向抗压承载力特征值;R c——由凯司法判定的单桩竖向抗压承载力;R x——缺陷以上部位土阻力的估计值;Z——桩身截面力学阻抗;ρ——桩身材料质量密度。
建筑行业专用术语 中英对照
一、施工术语1、表面处理 surface treatment,surface preparation为改善加固材料与原构件之间,或新旧基材之间的粘合能力,而对其表面进行的物理或化学处理。
在结构加固工程中以物理处理为主。
2、平整度 degree of plainness原结构构件经修整、处理后,尚允许表面存在的起伏、凹凸程度。
3、垂直度 degree of gravity vertical在设计规定的高度范围内,加固后构件表面轴线偏离重力线的程度。
4、轴线位移 displacement of axies结构或构件加固后的轴线实际位置对设计位置的偏差。
5、尺寸偏差 dimensional errors结构、构件实际几何尺寸与原设计尺寸之间的差值。
6、缺陷 defect结构加固工程施工质量检查中发现的不符合规定要求的检验项或检验点,按其程度可分为严重缺陷和一般缺陷,前者对加固后结构、构件的受力性能或使用功能有决定性影响,后者则无决定性影响。
7、返修 repair对施工质量不符合现行规范规定的结构加固工程部位采取的整修、补救措施。
8、返工 rework对施工质量不合格且无法返修的结构加固工程部位采取的重新制作、重新施工的措施。
二、材料术语1、结构胶粘剂 structural adhesives用于承重结构构件胶接的,能长期承受设计应力和环境作用的胶粘剂。
在土木工程中,基于现场条件的限制,其所使用的结构胶粘剂,主要指室温固化的结构胶粘剂。
注:在早先碳纤维复合材体系中,曾称为浸渍-粘结树脂;现已统一称为结构胶粘剂。
2、底胶 primer为改善胶接性能并防止基材表面处理后受污染或腐蚀,而先在基材粘合面上涂布的,与结构胶粘剂和基材均有良好相容性和粘附能力的一种室温固化的胶粘剂。
3、裂缝修补胶 repairing adhesive for concrete crack以低粘度改性环氧类胶粘剂配制的用于填充、封闭混凝土裂缝的胶粘剂,也称裂缝修补剂。
桩基试桩工程施工技术方案(英文对照)
Catalogue第一章Chapter One Explanation & References (1)一、Explanation (1)二、References (1)三、General Situation (2)3.1Basic Condition (2)3.2Design Condition (2)3.3Surrouding Environment (2)3.4 General Geological Condition (3)四、Difficulties and Countermeasures (3)4.1 The filled earth is thick and will influence on pile foundation construction. (3)4.2 The site exist underground silt, which affects the pile quality. (3)五、Construction Deployment (4)5.1Construction Layout (4)5.2Temporary Electricity (4)5.3Labor Plan (4)5.4Material Management (4)5.5Construction Organization and Human Resource (5)六、Project schedule and assurance measures (6)6.1Schedule Goals (6)6.2 Plan for Trial Piling Stage (6)6.3Project Schedule (7)Chapter Two Main construction process and technical measures (8)一、Bored Pile Construction Scheme (8)1.1Construction Technology Process (8)1.2Main construction technical measures (8)Chapter Three Main Construction Measures (13)一、Seasonal Construction Measures (13)1.1Construction Measures in Winter (13)二、Quality Control Measure (13)2.1Quality Abject (13)2.2Quality Responsibility System (13)2.3Quality Control (13)三、Safety and Civilized Measures (14)3.1 Civilized Measures (14)3.2 Safety Measures (15)四、Environmental Protection Measures (16)4.1 Environmental Protection Purpose (16)4.2 Continuous Improvement and Pollution Prevention. (16)4.3 Regulation of Environmental Protection. (16)五、Fire Management Measures (17)六、Relevant Cooperation Measures (17)七、Project Acceptance Scheme (17)八、Appendix (18)1-Construction schedule2-Layout of construction site3-List of main equipments附件4-《拟投入劳动力计划表》Labor schedule 4-《其他文件》Other DocumentsChapter One Explanation & References一、ExplanationThis scheme is for the trial piling direct contract works of XXXXproject .The main content for the project is the prophase test pile construction.二、ReferencesThis technology scheme based primarily on the tender drawings ,engineering investigation material and technical specification. It is edited refer to the technical specification in reference and in combination with our company in the successful experience of similar project construction. The project objectives is around to ensure safety ,quality of the construction ,period and reduce cost.主要依据的文件如下:The main references is as follows:2.1 Bidding document and drawings ;2.2 Related technical document and the construction technical codes on current.2.3 The main codes executed in construction:《Code for design of building foundation》(GB50007-2011)《Code for engineering survey》(GB50206-2007)《Code for acceptance of construction quality of building foundation》(GB50202-2002)《Code for acceptance of congstructional quality of concrete structures》(GB50204-2011)《Hot rolled plain steel bars for the reinforcement of concrete》(GB1499.1-2008)《Hot rolled ribbed bars for the reinforcement of concrete》(GB1449.2-2007)《Unified standard for constructional quality acceptance of building engineering》(GB50300-2001)《Standard for evaluation of concrete compressive strength 》(GB/T50107-2010)《The code of construction project management by enterprises of construction industry》(GB/T50326-2006)《Specification for Construction of Bored Cast-in-Place Pille》(DB/TJ08-202-2007)《Specification for welding and acceptance of reinforcing steel bars》(JGJ18-2012)《Specification for mix proportion design of ordinary concete 》(JGJ-55-2011)2.4 The Geological investigation report of this project.2.5 Other information provided by the tenderee.三、General Situation3.1Basic Condition3.2Design Condition前期试验桩主要设计概况如下:3.3Surrouding Environment3.3.1 Project SiteThis project is located in ChangNing disteict of Shanghai.eastto XXXRoad , South to XXXXRoad, west to XXXXRoad, north toXXXXRoad.Project Location3.3.2 The Surrounding EnvironmentAccording to the bidding document, combining with the site survey, the site environment of the project is described as follows:Proposed site is north to XXXXRoad, it is about 35.0 meters between the road and the foundation pit edge . The other three sides are all adjacent to the road .The roads, residentialand commercial buildings around the proposed site, lots of pipelines underground etc. On the whole ,the surrounding environment of this project is complicated.3.4 General Geological ConditionRefer to the Geotechnical investigation report.四、Difficulties and Countermeasures4.1 The filled earth is thick and will influence on pile foundation construction.4.1.1 DifficultyBase on the Geotechnical investigation report,the proposed site has thick filled earth,the average thickness is about 1.50 to 3.70m.The filled earth is loose and has complicated composition,uneven quality.4.1.2 Countermeasure(1) Deviation between the center of pile casing and the center of pile should not be greater than 50 mm , the clay should be filled outside of the pile casing and packed in layers.(2) During drilling, control the drilling parameters, expecially control the drilling speed and prevent the drilling inclination.(3) During drilling, strictly control performance of the mud to ensure the effect of borehole protection and prevent the borehole collapse in loosed filled earth.4.2 The site exist underground silt, which affects the pile quality.4.2.1 DifficultyAccording to geotechnical investigation report, the proposed site exist underground silt, the depth is about 2.20 to 4.20 m, the underground silt contains filled soil ,organic matter, plant roots ,cinder gravel etc.,ash black and have bad smell,the underground silt may affect the quality of pile.4.2.2 Countermeasure(1)The measure of replace and back fill soil will be taken in the underground silt.In order to reduce the amount of work and unnecessary mechanical construction, the slope should be reduced. If the local slope is large, it will be taken to make two or three steps, the steps are easy to lower down, each step has enough width, convenient to excavate the construction work.(2)Use the excavator to desilt the underground silt, and the mud will be transported after.(3) Clean soil backfill will be carried out in the area after dredging.When backfilling, the packing elevation is controlled by the stratified control of the pavement.The thickness of the packing layer should not greater than 1m.五、Construction Deployment5.1Construction LayoutAccording to the project bidding documents , the actual situation and progress requirements , construction site must be reasonable deployed , the specific principles are as follows:(1)According to the construction schedule of this project, the site layout will be adjusted in different construction stages.(2)The layout of production facilities should be convenient for construction and production arrangement, and meets the requirements of fire protection and labor protection.(3)Meet the requirements of the construction unit for the layout of the construction, adjust the shift of the warehouse yard in the construction area when it is necessary .(4)The layout for the construction should not damage the surveying markers and shall not affect the pass-through conditions of the surveying markers.(5)Effective drainage system will be established in the construction, daily maintenanc is necessary to prevent surrounding road surface contamination.5.2 Temporary ElectricityDuring the trial piling work, the power will be supplied by generator power, power transmission is completed by five core cable with rubber sleeve, the electricity will be transfered through the generator to fixed 200 a ~ 250 a electricity box which are decorated in the construction site .All of the electricity using in construction is connected from fixed electricity box to each electricity location.5.3 Labor PlanThe personnel configuration of the main construction of test pile construction is shown in schedule 4- labor schedule.5.4Material ManagementIn order to ensure the quality of the materials required for the project,the material management regulations are as follows:5.4.1Material plan and procurementMaterial plan will be established according to the approved construction schedule plan, in the plan the name of material ,the specification ,the quantity and roughly entry date will be noted. Materials with special quality requirements should be reported to the supervisor and the constructors.5.4.2Acceptance of Material(1)In the process of materials acceptance, the material manager shall first verify the quality certificates of materials, including the factory certification , production certification and the copy of the permit for production license.(2)The materials need to be retested should be checked and accepted strictly.5.5Construction Organization and Human Resource5.5.1Construction OrganizationOur company will form a out-standing project department,the project department follow the principle of the project manager responsibility system, equipped with enough managers for different aspects.The organization chart is as follows:The organization chart5.5.2 The Main Manager Responsibilities(1)Project Manager1)Responsible for the construction and manage the the project to ensure project construction be completed.2)Allocate project resources,review qualified material supplier, audit qualification and sign purchase contract.3)Establish the target of quality and safety, take certain organizational management measures to ensure the realization of the target.4)Manage the other managers of the project department.(2)Poject Engineer1)Responsible for the daily management of project technical quality, and coordinate construction technology management.2)Work out construction organization design.3)Solve technical problems during construction.4)Responsible for the quality monitoring during the construction process.(3)Construction Worker1)Carry out all-round and whole-process management during the construction process.2)Arrange construction reasonably to ensure the quality of each process.3)Guide the construction work to ensure the smooth construction.4)Reasonable allocation of labor resources to make the project construction carry out as planned.5)Prepare budget and cost control plan, provide basis for project manager.(4)Material Manager1)Review material supplier, audit qualification.2)Provide qualified materials and equipment according to the construction plan.3)Strengthen the quality management of raw material semi-finished products, improve the equipment's completion rate and utilization rate.4)The materials without warranty documents and technical specifications , equipment with diseases will not be allowed to accesess to the site.(5)Safety Officer1)Be responsible for the work of the safety production ,civilization of the project.2)Be responsible for the safety inspection in the construction site, and investigate and deal with the safety hazards in time.3)To rectify and punish the safety violations.4)Be responsible for the construction site safety.5)Be responsible for safety data filling, accomplish safety diary every day.六、Project schedule and assurance measures6.1 Schedule GoalsAccording to the bidding documents, our company plans to complete the trial piling work within 50 calendar days (XXXXX toXXXX, including Saturday and Sunday).6.2 Plan for Trial Piling StageThree GPS-10 drilling rigs will be put into this project to carry out the construction of 15 trialpiles. The layout chart of the trial pile construction stage is as follows:Site layout chart6.3Project ScheduleAccording to the construction arrangement in every stage, the schedule of construction is arranged according to the resources and enviriment surrounding ,the schedule is shown in attached tables in the end .Chapter Two Main construction process and technical measures一、Bored Pile Construction Scheme1.1 Construction Technology ProcessConstruction Technology Process Chart1.2 Main construction technical measuresChapter Three Main Construction Measures一、Seasonal Construction Measures1.1 Construction Measures in Winter1.1.1When temperature below 0℃ the concrete pouring is not suitable.1.1.2In winter the concrete mixture ratio should be adjusted, and mixed with antifreeze to improve the frost resistance .1.1.3When welding under negative temperature conditions, it is necessary to set up the windshield and extend the heat preservation time according to the temperature conditions at that time.1.1.4On the snowy day, the surface of the road should be cleaned in time.二、Quality Control MeasureIn order to strengthen the quality management of the project, and clear the responsiblity for the quality of the project, ensure this project is completed as planned, the quality control measure are made.The ISO 9001:2008 quality management guarantee system will be carried out the whole construction process of this project.2.1 Quality AbjectStrive to create first-class engineering, ensure that the quality of the project meets the inspection requirements of the relevant quality department, and ensure that the quality of the project is qualified once and for all.2.2 Quality Responsibility SystemIn order to strengthen the project quality management, clear the responsibility of the engineering quality, and the project quality responsibility system is implemented, and the project manager shall be responsible for the quality of the project.2.3 Quality Control2.3.1 When prepare technical construction plan ensure that the quality of engineering construction as one of the main content, take necessary construction technical measures to ensure the quality of the difficult and special point, and list the specific chapters content and implementing rules to clarify technical measures.2.3.2 Before the beginning of the project,make the technical disclosure to all of staff , and organized the project engineer ,quality engineer ,other quality managers and team members to participate in the construction and control quality management, clear quality responsibility, pay special attention to the quality of this projects.2.3.3During the project, construction shall be carried out strictly with the constructiontechnology plan which approved by the chief engineer of the company . Each procedure should be strictly according to the construction.2.3.4 Every technical staff must hold relevant certificates, and take part in regular technical education and the quality consciousness education, continuously improve the technical level and quality consciousness to ensure engineering quality.2.3.5 Actively carry out total quality management, the difficult and special points can be choosed as QC group projects, mobilize the public ideas, check on the quality of each working procedure, make the best to meet requirements and quality standards in design drawing and codes.2.3.6 According to the prescribed form and requirement, fill in all kinds of original report and "concealed engineering check and accept list", and blind the original report into a book, as the completion data after the project is accomplished.三、Safety and Civilized Measures3.1 Civilized MeasuresWe will strictly abide by the regulations on civilized construction management in Shanghai and accept the supervision and inspection of relevant departments.3.1.1 Civilized construction targetTo organize civilized construction management strictly according to the requirements of the state and Shanghai, to meet the requirements of district civilization site.3.1.2 Civilized Responsibility System.In order to meet the requirements of civilized construction site, the project implements a civilized construction responsibility system, and the project manager is responsible for the civilized of the project.3.1.3 Measures for Civilized Construction(1)PublicityThe site shall be equipped with propaganda positions, such as the blackboard, etc., to reflect all kinds of dynamics inside and outside the site.(2)Site LayoutIn accordance with the regulations of Shanghai civilized construction management, we will take effective measures to divide the construction area and the non-construction area obviously, and the surrounding wall should be closed continuously.(3)Field management1)The construction management system will be implemented, all kinds of temporary construction facilities are in accordance with the approved construction technology plan andthe general layout plan implementation;If site condition change, the layout and draw should be adjusted.2)The construction area or danger area has the conspicuous safety warning sign, and check regularly.3)Traffic instruction signs and warning lights are set up at the main entrance to ensure the safety of vehicles and pedestrians.4)In the construction site, the temporary drainage system is set up in the open ditch drainage, and the sewage is discharged into the sewer indirectly after the sewage is filtered and cleared.5)The engineering materials and products are arranged orderly;Machines are maintained to keep the high performance.6)Strengthen mud management to prevent pollution;The waste mud is discarded by tankers, and it is strictly prohibited to drain into the sewer or the surrounding area, so as to prevent dripping from the road.7)Set up a full-time environmental cleaning post, responsible for checking the sludge on the exit vehicles, cleaning the polluted roads, and doing the cleaning work inside and outside the construction site.(4)Noise Control1)During the time of selecting construction facilities, equipment and construction methods, the noise generated and its impact on the labor in the surrounding area should be considered.2)It is necessary to control the noise below the ambient noise level during the construction period.3)The equipment should be overhauled in advance, and a certain amount of spare equipment will be provided on site, and the abnormal noise should be replaced in time.3.2 Safety Measures3.2.1 Safety TargetEnsure no casualties and prevent unsafe construction.3.2.2 System of Safety ResponsibilityIn order to carry out the safety policy, strengthen the principle, the project implementation safety responsibility system.(1)The project manager is the total responsible person for the safe construction.(2)The project engineer is responsible for the preparation and review of safety technicalmeasures, the disclosure of safety technologies and the safety technology education.(3)The construction worker is responsible for the safety construction within the scope of the construction and carry out the safety technical measures.(4)Full-time security management is responsible for safety management and supervision and inspection.3.2.3Safety EducationSafety education is divided into two stages: general safety education and requirements on safety.(1)Engineering project manager construction site construction worker safety personnel through safety post training, assessment qualified, certificate holders.(2)New workers enter the construction site should accept the safe education.(3)Safety education to workers in construction site.(4)Special operations woekers safety education.四、Environmental Protection Measures4.1 Environmental Protection PurposeEnvironment problem is becoming the common concern of the whole society ,in order to adapt to the trend in today's society, realize the sustainable and healthy development of social economy, in the whole process of engineering construction, we will adopt and implement a series of environmental protection management system, in order to get optimal results4.2Continuous Improvement and Pollution Prevention.In the whole process of construction, according to the objective existence of environmental factors such as dust sewage noise and solid waste, we will implement the whole process of pollution prevention and control, as far as possible to reduce or prevent adverse environmental impacts.Prevention first, strengthen propaganda, comprehensive planning, rational distribution, improvement process, save resources, strive for the best economic and environmental benefits for enterprises.Strictly observe the environmental management laws and regulations promulgated by the state and local government departments and relevant regulations.4.3Regulation of Environmental Protection.In the preparation of the construction technology plan, the effective environmental protection measures are put forward.五、Fire Management Measures5.1The fire control work should follow the policy of "prevention first, prevent and eliminate combined", implement the responsibility system of fire fighting, and integrate fire control safety into the management scope of this unit.5.2The relevant provisions of fire control a must be wrote when preparing the construction technical plan.5.3Set up a fire control group with the project manager as the first person responsible.5.4Everyone should sign the fire responsibility letter,and the fire responsibility should be put in place to the key work position.5.5Before construction team entering in site,they must go through the formalities of fire fighting qualification examination and sign the public security fire agreement.5.6The construction site shall be equipped with adequate firefighting equipment, all of the equipments should be managed and regular updated..5.7Formulate the plan of fire fighting and rescue, if there is a fire, call the police at the same time.六、Relevant Cooperation MeasuresDuring the construction, our company will strengthen coordination with relevant units and allocate the construction resources reasonably, so as to ensure the realization of the requirements of the owner.(1)Our company will strengthen the construction of cooperation and coordination with other units,unified coordination and management will be carried out in the construction process.(2)Before the measurement work and site layout, the supervision unit will be invited to review and proofread .七、Project Acceptance Scheme7.1 Covert and Intermediate Acceptance Plan(1)All working procedures must be checked and accepted by the quality inspector, and after the inspection of the supervision engineer, the following procedure can be entered.(2)The inspection and acceptance procedures in the construction process shall be submitted to the supervision engineer for acceptance by the quality inspector according to the real-time progress of the site.(3)For the reinforcement cage, the supervision engineer should be submitted in advance for concealed acceptance inspection. Generally, at least 2 hours in advance, the inspection shall be qualified and the identification can be placed in the hole.(4)The acceptance of other concealed work and intermediate processes will be implemented in accordance with the relevant regulations.八、Appendix1Construction schedule2-Layout of construction site3-List of main equipments4-Labor schedule5-Other Documents。
工程中常用词汇中英文对照表,不知什么原因,英文显示不出来,请免费下载下来使用
1管道组成件1.1管子管子(按照配管标准规格制造的)管子(不按照配管标准规格制造的用管)钢管铸铁管衬里管复合管碳钢管合金钢管不锈钢奥氏体不锈钢管铁合金钢管轧制钢管锻铁管无缝钢管焊接钢管电阻焊钢管电熔(弧)焊钢板卷管螺旋焊接钢管镀锌钢管热轧无缝钢管冷拔无缝钢管水煤气钢管塑料管玻璃管橡胶管直管1.2管件弯头异径弯头带支座弯头长半径弯头短半径弯头长半径180度弯头短半径180度弯头带侧向口的弯头双支管弯头三通异径三通等径三通带侧向口的三通异径三通(分支口为异径)异径三通(一个直通口为异径)带支座三通异径三通(一个直通口及分支口为异径)异径三通(两个直通口为异径)(双头式)45度斜三通45度斜三通(支管为异径)45度斜三通(一个直通口为异径)45度斜三通(一个直通口及分支口为异径)Y型三通(俗称裤叉)四通等径四通异径四通异径四通(一个分支口为异径)异径四通(一个直通口及分支口为异径)异径四通(两个分支口为异径)异径四通(一个直通口及两个分支口为异径)异径管同心异径管偏心异径管锻制异径和螺纹支管台焊接支管台承插支管台弯头支管台斜接支管台镶入式支管嘴短管支管台支管台,插入式支管台管接头半管接头异径管接头活接头内外螺纹缩接(俗称补芯)管帽堵头短节异径短节1.3弯管预制弯管跨越弯管偏置弯管90度弯管环形弯管单侧偏置90度弯管S型弯管单侧偏置U形膨胀弯管U形弯管双偏置U膨胀弯管斜接弯管三节斜接弯管折皱弯管圆度1.4法兰整体管法兰钢管法兰螺纹法兰滑套法兰(包括平焊法兰)承插焊汉兰松套法兰对焊法兰法兰盖孔板法兰异径法兰盘座式法兰松套带径法兰焊接板式法兰对焊环平焊环突缘短节翻边法兰松套板式法兰压力级压力-温度等级法兰密封面;法兰面突面凸面凹面榫面槽面环连接面全平面;满平面光滑突面法兰面加工粗糙度光滑的齿形有均方根算术平均粗糙高度配对法兰螺栓圆1.5垫片垫片的型式平垫片环形平垫片平金属垫片夹棉织物的橡胶夹石棉织物的橡胶夹石棉织物及金属丝加强的橡胶无石墨压缩白石棉垫片天然白橡胶垫片压缩石棉垫片夹石棉的缠绕金属垫片内环外环;外定位环波纹金属垫片波纹金属包嵌石棉垫片双夹套波纹金属包石棉垫片双夹套垫片金属包石棉平垫片整体金属齿形垫片槽形金属垫片环形连接金属垫片八角环形垫片椭圆环形垫片透镜工垫片非金属垫片1.6阀门1.6.1阀门结构、零件阀轭外螺纹阀杆及阀轭阀杆内螺纹阀轭套阀杆环阀座阀座环、密封圈整体(阀)座堆焊(阀)座阀芯(包括密封圈、杆等内件)阀盘阀盖衬套螺纹阀帽螺纹阀盖螺栓连接的阀盖活接阀盖(帽)螺栓连接的阀帽焊接阀盖本体阀杆密封石棉安全密封倒密封压力密封的阀盖动力操纵器电动操纵器气动操纵器液压操纵器快速操纵器滑动阀杆正齿轮传动伞齿轮传动板手操作链轮手轮手柄气缸(或液压缸)操纵的链条操纵的等径孔道异径孔道短型紧凑型(小型)笼式环压盖阀杆填料阀盖垫片升杆式(明杆)非升杆式(暗杆)指示器/限位器注油器可更换的阀座环1.6.2常用阀(1)闸阀平行双闸板开口楔形闸板挠性整体楔形闸板整体楔形闸板塞型闸阀直通型闸阀(2)截止阀球心型阀盘塞型阀盘可转动的阀盘节流闪阀针阀角阀Y型阀(Y型阀体截止阀)三通球阀装有底轴的耐火型浮动球型防脱出阀杆蝶阀对夹式(薄片型)凸耳式偏心阀板蝶阀斜阀盘蝶阀连杆式蝶阀柱塞阀旋塞阀三通旋塞阀四通旋塞阀旋塞衬套旋塞隔膜阀橡胶衬里隔膜阀直通式隔膜阀堰式隔膜阀夹紧式胶膜阀止回阀升降式止回阀旋启式止回阀落球式止回阀弹簧球式止回阀双板对夹式止回阀无撞击声止回阀底阀切断式止回阀活塞式止回阀斜翻盘止回阀蝶式止回阀1.6.3其它用途的阀安全泄气阀安全泄液阀安全泄压阀杠杆重锤式引导阀操纵的安全泄气阀复式安全泄气阀罐底排污阀波纹管密封阀电磁阀电动阀低温用阀蒸汽疏水阀机械式疏水阀浮桶式疏水阀浮球式疏水阀倒吊桶式疏水阀自由浮球式疏水阀恒温式疏水阀金属膨胀式蒸汽疏水阀液体膨胀式蒸汽疏水阀压力平衡式恒温疏水阀热动力式疏水阀脉冲式蒸汽疏水阀放气阀(自动放气阀)平板式滑动闸阀盖阀换向阀热膨胀阀自动关闭阀自动排液阀管道盲板阀挤压阀呼吸阀风门、挡板减压阀控制阀膜式控制阀执行机构背压调节阀差压调节阀压力比例调节阀1.6.4未指明结构(或阀型)的阀切断阀调节阀快开阀快闭阀隔断阀三通阀夹套阀非旋转式阀排污阀集液排放阀排液阀放空阀卸载阀吸入阀多通路阀取样阀手动阀锻造阀铸造阀(水)龙头抽出液阀(小阀)旁路阀软管阀混合阀破真空阀冲冼阀第一道阀;根部阀根部阀总管阀事故切断阀1.7管道特殊件1.7.1管道特殊件(组件)粗滤器过滤器临时粗过滤器(锥型)Y型粗过滤器y型粗过滤器永久过滤器丝网粗滤器洗眼器及淋浴器视镜阻火器喷头;喷咀取样冷却器消声器膨胀节波纹膨胀节单波双波多波压力平衡式膨胀节带铰链膨胀节轴向位移型膨胀节自均衡膨胀节(带外加强环)带接杆膨胀节万向型膨胀节球形补偿器填函式补偿器单向滑动填料函补偿器1.7.2管道特殊元件软管接头快速接头金属软管橡胶管挠性管鞍形补强板特殊法兰漏斗排液漏环排液漏斗插板垫环8 字盲板限流孔板爆破片法兰盖贴面费托立克接头1.8端部连接法兰端坡口端对焊端平端承插焊端螺纹端承口焊接端法兰连接(接头)对焊连接(接头)螺纹连接;管螺纹连接锥管螺纹密封焊连接承插焊连接(接头)承插连接(接头)捍接接头环垫接头万向接头软钎焊连接(接头)搭接接头;松套连接外侧厚度切斜角内侧厚度切斜角内外侧厚度切斜角法兰式的对焊式的螺纹的承插焊的小端为平的大端为平的两端平小端带螺纹大端带螺纹两端带螺纹一端带螺纹支管连接焊接支管2管道用紧固件及螺纹2.1紧固件螺栓六角头螺栓方头螺栓螺柱、双头螺栓环头螺栓沉头螺栓地脚螺栓松紧螺旋扣(花兰螺丝)U形螺栓T形螺栓圆头螺钉机螺栓;机螺钉顶开螺栓;顶起螺栓自攻螺钉膨胀螺栓粗制的精制的螺母六角螺母蝶形螺母扁螺母锁紧螺母垫圈平垫圈球面垫圈弹簧垫圈方垫圈斜垫圈销轴销开口销定位销圆锥销铆钉键2.2螺纹左螺纹右螺纹管螺纹锥管螺纹直管螺纹梯形螺纹螺距粗芽螺纹细牙螺纹特细牙螺纹通长螺纹惠氏螺纹公制螺纹美国标准锥管螺纹螺孔3材料、型钢及填料3.1金属材料3.1.1黑色金属碳素钢低碳钢中碳钢高碳钢普通碳素钢优质碳素钢普通低合金结构钢合金结构钢合金钢低合金钢中合金钢高合金钢耐热钢高强度钢复合钢工具负钢弹簧钢钼钢镍钢铬钼钢铬钢铬镍钢奥氏体不锈钢马氏体不锈钢司特来合金(钨铬钴合金)耐蚀耐热镍基合金铬镍铁合金耐热铬镍铁合金20合金平炉钢(马丁钢)镇静钢半镇静钢沸腾钢生铁熟铁,锻铁铸铁高硅铸铁渗铬钢,镀铬钢镀铬的镀层锻造、型钢锻造的、锻造轧制热轧冷轧挤压冷加工热加工拔制3.1.3有色金属铝铜、紫铜黄铜青铜铝青铜磷青铜铝镁合金锰青铜蒙乃尔(注:镍及铜合金)镍铜 合金非铁合金钛铅硬铅3.1.4材料性能极限强度屈服极限屈服点延伸率抗压强度抗弯强度弹性极限冲击值疲劳极限蠕变极限持久极限布氏硬度洛氏硬度维氏硬度蠕变断裂强度断面收缩率韧性脆性延性冷脆冷流3.2非金属材料塑料丙烯腈-丁二烯-苯乙烯聚乙烯聚氯乙烯苯乙烯橡胶聚丁烯聚丙烯聚苯乙烯氯化聚醚聚酰胺聚碳酸酯聚甲基丙烯酸甲酯醋酸丁酸纤维素氯化聚氯乙烯聚偏二氟乙烯缩醛塑料尼龙塑料聚烯烃石墨酚醛塑料聚四氟乙烯纤维增强热塑性塑料热塑性塑料热固性塑料胶粘剂树脂环氧树脂聚酯树脂聚酯纤维氟塑料聚氨基甲酸酯丙烯酸树脂脲醛树脂呋喃树脂乙烯丙烯二烃单体合成橡胶橡胶丁腈橡胶氯丁橡胶天然橡胶乙丙橡胶玻璃硼硅玻璃耐火砖陶瓷搪瓷木材3.3型材型钢角钢槽钢工字钢宽缘工字钢或H钢T型钢方钢扁钢六角钢圆钢钢带钢板网纹钢板腹板(指型钢的立板)翼缘(指型钢的缘)3.4填料及填料函填料石棉绳O形环自密封四氟带带铬镍合金丝的石棉绳浸聚四氟乙烯的石棉填料金属填料填料箱;填料函填料函压盖4管道等级及材料统计4.1管道材料规定管道等级管道等级号公称直径公称压力压力级;等级;类别低压中压高压大气压真空工作压力设计压力工作温度设计温度环境温度腐蚀裕量管道附件管道元件壁厚壁厚系列号加厚的;加强的双倍加厚的;双倍加强的通用连接组分组(类)形式(如管道等级表)数据库文件4.2材料统计汇总表材料表综合管道材料表统计材料准确度材料情况报告散装材料编钨号的代码短代码数量重力毛重5设备布置及管道布置5.1设备名称5.1.1容器塔洗涤塔吸收塔冷却塔精馏塔蒸馏塔再生塔造粒塔汽提塔脱气塔合成塔反应器聚合釜转化器;变换器脱硫反应器甲烷化器气柜螺旋式气柜湿式气柜干式气柜槽罐贮罐缓冲罐球罐罐接受槽计量槽加料槽排污罐汽包溶液贮槽地下槽其它设备分离器旋风分离器分子筛脱氧器搅拌器干燥器混合器结晶器澄清器净化器汽化器吸附器融解槽减解槽升压器喷射器喷头消声器换热器、加热器、冷却器换热器空冷器水冷却器冷凝器螺旋板式换热器蒸发器再沸器急冷器深冷器预热器加热器电加热器过热器给水加热器中间冷却器后冷却器5.1.2工业炉及锅炉炉子烧咀锅炉烟囱废热锅炉辅助锅炉省煤器回热炉辐射段对流段裂化炉焚烧炉回转窑炉管吹灰器观察孔5.1.3转动机器泵涡轮泵涡流泵离心泵喷射泵转子泵;旋转泵管道泵真空泵柱塞泵往复泵计量泵深井泵齿轮泵手摇泵锅炉给水泵轴流泵压缩机往复式压缩机多级压缩机螺杆压缩机离心式压缩机循环压缩机涡轮压缩机冷冻机驱动机、发电机汽轮机;蒸汽透平燃气轮机电动机发电机风扇、鼓风机风机鼓风机罗茨鼓风机其它机器挤压机造粒机离心机离心分离机离心过滤机压滤机5.1.4贮运、装卸及起重机械起重机桥式起重机手动葫芦装卸臂料仓料斗输送机皮带输送机5.2辅助用房名称5.2.1生产用房分析室变压器室配电室;变电所蓄电池室控制室通风室贮藏室维修间办公室5.2.2生活用房更衣室盥洗室;厕所5.3图名管道布置平面管道布置轴测图分区索引图初版设备布置图(A 版)内部审查版设备布置图("B"版)用户审查版设备布置图("C"版)确认版设备布置图("D"版)研究版设备布置图("E"版)设计版设备布置图("F"版)施工版设备布置图("G"版)5.4厂房、站、单元压缩机房泵房洗眼站泡沫站软管站;公用工程站成套设备设施罐区空分装置5.5设备布置设备位号工厂工厂区界项目区界内侧项目区界区界区域边界界外东西南北上下工厂北向实际北向道路小过道走道;过道污水坑(井)集水池沟槽预留区场地铺砌区非铺砌区碎石铺面橡皮铺面面积;区域体积;容积5.6管道布置管道设计管道研究走向研究重要管道地上管道地下管道管网管廊管沟管间距管道跨距总管旁路排液放空上升管;垂直和导管裸管管件直接管段;接口取样接口集液包伴热管热水伴热电伴热夹套管全夹套的平面详图"X"视图"A-A"剖视连续图接续图接续线比例图例符号管口表方位管口方位定位相交水平的垂直的;立式的垂直;正交;垂直的平行;平行的水平安装垂直安装对称的相反(的);对面(的)顺时针方向逆时针方向计算机辅助设计5.7图面标注绝对标高海平面标高标高;立面混凝土顶面架顶面钢结构顶面梁顶面支撑点管顶管底沟底管子内底底平顶平工作点面至面中心至端面中心至面中心至中心;中至中坐标坐标原点出口中心线入口中心线中心线入口出口排出口距离直径半径外径内径净空间隙尺寸高度高度;海拔厚度长度宽度深度坡度相当的;当量的最大最小大约管线号等级分界隔热分界未经允许不得开启未经允许不得关闭在关闭状态下锁定在开启状态下锁定由买方供货由卖方供货由制造厂供货标记号公差允差误差直度5.8相关专业的专业词汇5.8.1工艺1图及表流程图工艺流程图管道及仪表流和图公用工程流程图管线表命名表;管道表设备表2流体空气仪表空气工艺空气低压蒸汽中压蒸汽高压蒸汽伴热蒸汽饱和蒸汽过热蒸汽氧气氢气氮气燃料气天然气火炬气酸性气液化石油气氨气冷却水循环水锅炉给水热水蒸汽冷凝水盐水工艺水化学污水重油石脑油燃料油润滑油密封油冷冻剂载热体溶剂溶液母液单体聚合物均聚物共聚物工艺液体工艺气体硫酸盐酸硝酸烧酸流体特性蒸汽压临界温度临界点临界压力比热粘度闪点熔点凝固点浓度爆炸极限有毒的可燃的;易燃的其它回收再生循环再循环补充制备蒸汽吹扫吹扫抽空;排空吹出排污大气腿备用化学清洗净正吸入压头进料成品污染大气污染环境温度5.8.2建筑、结构建筑物钢结构已有钢结构钢筋混凝土结构楼面平台地面栏杆楼梯直梯柱基础梁斜撑;支撑桁架;主梁构件隔墙墙篦子板吊装孔吊梁棚窗天窗门防火门地漏防火层总图路肩桩灌浆风荷载雪荷载动力荷载活荷载风速主导风向5.8.3仪表盘(操作盘)就地盘仪表盘常开常闭电缆槽(架)压力计热电偶温度计液位计玻璃液位计温度计保护管流量计孔板变送器联锁仪器;设备仪器分析自动分析气体分析化学分析气相色谱仪液相色谱仪质谱分析5.8.4电气危险区划分危险区平面图电气盘配电盘电缆沟电流直流交流频率相位功率因数电压电阻电容静电照明避雷针电话电线接线箱(盒)导线管5.8.5设备固定鞍座滑动鞍座管口人孔手孔检查孔吊柱切中国焊接线件号椭圆形封头加强圈接地板吊耳气缸轴轴承附件,附属设备编位号设备无位号设备5.8.6水道流体原水硬水软水饮用水循环冷却水给水循环冷却水回水脱盐水苦咸水(碱性水)生活污水工业废水雨水污染雨水消防水装置、设施软化装置沉淀池脱盐装置水处理冷却塔中和池化粪池渗滤井井阀井清扫口消防消火栓水炮洒水器水喷淋灭火器消防水泵消防车泡沫消防泡沫栓泡沫炮消防软管接头6管道支吊架6.1管架零部件管托管卡U形夹(卡)锻制U形夹支耳;吊耳耳轴止动挡块托座托架带状卡夹板,导向板可调夹板角板;连接板筋;肋支承环加强板底板顶板翅片式导向板预埋件垫板(安装垫平用)锚固件;生根件预焊件(设备上)聚四氟乙烯滑动板连接板连接杆限制杆带环头拉杆连接杆杠杆支撑杆定位块间隔管(片、块)滑动吊板(吊架顶部用)滑轮组钢索,电缆木块鞍座裙座软管卷盘(筒)管部附着件6.2管支架形式支承架滑动架固定架导向架限制性支架;约束限位架限位器定值限位回二维限位架往复定值限位架定向限位架吊架弹簧架弹簧托架弹簧吊架恒力吊架重锤式吊架弹簧恒力吊架弹簧恒力托架滚动支架弹簧支撑架减振器减压减振器减振装置缓冲筒刚性吊架6.3标准及通用型支架标准管架通用管架悬臂架三角架支腿II型管架L型管架柱式管架墙架可调支架管墩,低管架特殊管架管道支吊架图6.4管架安装背至背钻孔长孔放气孔;通气孔灌浆;水泥砂浆填平组装;装配攻螺孔自由滑动跨度对中心;找正切割使适合修饰使适合伸出长度(指预埋螺栓)7应力计算热应力分析管道柔性分析荷载工况力反力力矩弯曲力矩扭矩外载荷载冷态荷载工作荷载外力内力力偶管系位移附加位移角位移冷拉自拉方向元件节点节点号自由固定点刚性的柔性塑性热循环剧烈循环条件应力弯曲应力扭转应力轴向应力剪切应力拉应力压应力一次应力二次应力位移(热胀)应力范围许用应力范围位移应力柔性应力内压应力外压应力纵向应力;许用应力主应力圆周应力峰值应力脉动应力应变应力残余应力热应力回转半径泊松比;横向变形系数弹性模量:惯性矩极惯性矩断面系数应力集中系数应力范围减少系数应力增大系数面内面外柔性系数柔度特性弹簧系数热膨胀系数安全系数应变;变形弯度;饶度地震耐震等级临时荷载地震荷载地震系数冲击荷载超载集中质量推力设计振度设计响应谱谱分析动态分析谐振分析固有震动型式阻尼震动机械震动音响震动自由震动共振湍振脉动激振;激发衰减系数固有频率周期波谷波峰振幅;波幅水锤8隔热.隔声玻璃棉岩棉聚氨酯;聚氨基甲酸酯泡沫玻璃沥青油毛毡镀锌铁丝镀锌铁丝网石棉板石棉布石棉织品管壳棉毡硅酸钙硅酸铝纤维珍珠岩泡沫混凝土蛭石矿渣棉保温块硅藻土碳酸镁软木泡沫聚苯乙烯硬泡沫橡胶填颖材料玛帝脂保护层水泥抹面金属保护层玻璃布镀锌铁皮铝板油毛毡;沥青毡发毡发泡导热系数隔热;融热层保温保冷人身保护隔声防结露防冻线规伯明翰线规美国线规支承环环箍钢环吸声分贝声源声强声压值噪声值9防腐/涂漆及腐蚀种类防腐漆涂漆涂层/覆盖层底漆面漆清漆瓷漆防锈漆醇酸瓷漆酚醛漆沥青漆聚氨脂漆有机硅漆漆酚树脂漆还氧树脂漆过滤乙烯漆无机富锌漆耐酸漆耐碱漆耐热漆测温漆颜色淡色的;轻的深色的红色的蓝色的黄色的绿色的紫色的棕色的;褐色的灰色的表面处理阴极保护耐蚀性腐蚀点蚀缝隙腐蚀晶间腐蚀电化腐蚀接触腐蚀气蚀应力腐蚀气相腐蚀氢脆10焊接10.1焊接种类电弧焊电熔焊气熔焊电阻焊有保护的金属电弧焊手工或自动惰性气体保护钨极电弧焊自动埋弧焊金属极惰性气体保护电弧焊氩弧焊气体保护电弧焊气焊等离子焊硬钎焊电渣焊爆炸焊10.2焊接形式角焊间断焊点焊对焊搭焊塞焊珠焊槽焊堆焊电板焊坡口V形坡口单面U形坡口K形坡口X形坡口双面U形坡口U-V组合坡口根部间隙焊接符号错边量10.3焊接位置仰焊现场焊封底焊立焊平焊工厂(车间)焊接定位焊跳焊节距10.4焊接缺陷焊接裂纹根部裂纹微裂纹错位弧坑焊穿夹渣咬边;咬肉焊瘤气孔砂眼针孔严重飞溅未熔和根部未焊透10.5其它母材;基层金属预热热影响区焊条焊丝焊药(剂)11热处理11.1普通热处理退火局部退火中间退火球化退火等温退火极软退火回水正火淬火水淬火油淬火等温淬火断绪淬火高温淬火水冷淬火调质时效处理可淬性过热敏感性回火脆性11.2表面热处理火焰表面淬火感应(高频)硬化渗碳渗氮渗铬渗铝12检验及试验12.1检验焊接检验无损检验肉眼检验;外观检验着色渗透检验液体渗透检验X射线照相Y射线照相射线检验涡流探伤超声波探伤磁粉探伤荧光渗透检验12.2试验压力试验水压试验气压试验气密试验泄露试验卤气泄露试验盛水试验真空试验拉伸试验弯曲试验冲击试验硬度试验疲劳试验压扁试验扩口试验金相试验腐蚀试验焊接工艺评定试验13设计阶段及管理分析设计阶段规划布置阶段成品设计阶段详细设计基础设计工作程序界区条件开工会议项目审核会议项目进展情况报告厂商协调会用户变更通知先期确认最终确认设计基础数据数据表设计文件设计注释工程规定设计规定汇总表资料;文件附件技术说明索引;目录工程手册;设计手册计算书批准用于规划布置批准用于设计批准用于施工详细设计版参考;基准标准标准图图草图参考图工程图竣工图说明待定版次修改审核提纲审定校核制图标题栏图号会签工时工日人月项目项目经理设计经理状态报告安装建设试车开车运行中仃车大修模型部门专业;学科14询价.报价及采购14.1询价管道询价单厂商报价报价书报价估价估算投标评标14.2采购采购说明定货单;订购单采购说明汇总表请购交货单装箱单预制的备品备件供应者制造者;制造厂顾客承包商业主用户包装防潮包装防水包装板条箱木箱超尺寸运输催货检验运输船上交货;离岸价格敞车上交货码头交货15单位单位制米毫米英尺英寸弧度度摄氏华氏磅/平方英寸百万帕斯卡巴千克(公斤)克牛顿吨Ton千磅平方米立方米升转/分百万分之一焦耳千瓦伏特安培欧姆小时分秒。
勘察技术要求-中英文
马来西亚槟城第二跨海大桥工程地质详细勘察技术要求Technical requirement for site investigation for Penang Second Crossing Bridge, Malaysia1 目点与任务在调查收集桥位区地质资料的基础上,查明桥址区的工程地质条件, 为施工图设计方案提供依据。
根据目前确定的桥位及桥型方案,结合前期的勘察资料,开展工程地质详细勘察工作,查明桥址区地形地貌、地层岩性、地质构造、水文地质、不良地质等问题。
1 ObjectiveThe objective of the proposed geological investigation works is to identify the subsurface soil conditions and obtain the relevant geological information along the proposed bridge alignment in order to provide basis for engineering design of the foundation. Based on the tentative confirmed location and alignment of the bridge proposal, the detailed geological investigation works shall be carried out, in combination with the existing soil investigation information, to identify the subsurface soil profile, bedrock geology, ground water condition and the presence of any unfavourable soil conditions, etc., along the bridge alignment.2 依据规范(1)Code of practice for site investigations BS5930:1999(2)British Standard Methods of test for Soils for civil engineering purposes BS1377:1999(3)参考马来西亚当地与本工程相关的标准、规范等2 Code of PracticeThe geological investigation works shall be carried out in accordance to the British Standards BS5930-1999 “Code of Practice for Soil Investigations” and BS1377-1999 “Code of Practice for Method of Test for Soil for Civil Engineering Purposes” and any other relevant technical standards.3 总体技术要求本项目的勘察承包商应具有符合马来西亚国家法律规定的勘察资质证明文件以及执业注册资格,勘察承包商应在最终勘察报告的成果署名,并承担全部的工程勘察及岩土工程分析工作的法律责任,其勘察技术成果报告需满足马方政府部门的审批要求,并负责该审批与上报等工作。
建筑工程灌注桩中英文对照外文翻译文献
(文档含英文原文和中文翻译)中英文资料外文翻译文献Bored pileSummaryDrill ( flushing, dig ) pile from the nineteen sixties, beginning in Henan province Nanyang region since the development application, because of its many advantages, has been widely used in soft soil, loess, including soil, expansive soil and other special types of foundation and industrial, civil, municipal, railway, highway, port andother types of Engineering practice. And precast pile, bored pile construction of no noise, no vibration, on the surrounding buildings and small environmental impact, pile diameter, buried deep, large bearing capacity. China's drilling pile maximum diameterof pile has reached 4000mm, maximum deep pile has reached 104m, and the steel pipe pile maximum diameter of 1200mm, the largest pile of prestressed concrete pipe pile with deep 83m, maximum diameter of 1300mm, the biggest pile depth 40m.Along with our country socialist construction is booming, with high-rise buildings, large span bridges on the rise, the bearing capacity of pile foundation with higher requirements. Large diameter bored pile therefore gets rapid development, pile length and pile diameter also do bigger more. However, in the existing various methods of pile, bored pile has many advantages and is widely used in construction, but it is hard to avoid the impact of mud, which not only reduces the bearing capacityof pile expectations, but also caused a serious waste of materials. Manual hole digging pile is difficult to achieve greater depth, its bearing capacity is also difficult to just as one wishes. In view of bored pile in this situation, how to improve the pile construction technology level, make the input material to be more reasonable to use,so as to greatly increase the bearing capacity of single pile in engineering field, have become hot issues in recent years.The introduction of bored cast-in-place pilePerfusion pile refers to the construction site by mechanical drilling, steel pipe soil compaction or human mining method in the foundation pile hole in form, and onits inner placed reinforcement cage, concrete made with different pile, drilling method, grouting pile can be divided again for cast-in-place pile, bored pile and digging several types of piles. Bored pile by pile into the definition and classification of a kindof pile.The characteristics of bored cast-in-place pile1、And sinking pile of hammering method, construction noise and vibration is smaller2、To construct than the precast pile of large diameter of pile3、In all kinds of ground can be used4、The construction quality of the pile bearing capacity influence5、Because the concrete is in the mud perfusion is difficult to control, so the quality of concreteBored pile construction methodPercussion drilling, punching grabbing drilling and rotary drilling hole can adoptslurry wall construction method. The construction process is: site formation, slurry preparation, buried tube and laying work platform rig and positioning, drilling, hole cleaning and inspection of hole quality and lower steel cage, underwater concrete perfusion to pull out the barrel to check quality. Construction sequence:(1) the construction preparationConstruction preparation comprise: selecting drill, drill, layout. Construction of bored pile drilling rig is the main equipment, according to the geological conditions and various drilling machine applied to select conditions(2) drilling machine installation and positioningIstallation of drilling machine based if not stable, easy to produce in the drilling machine construction, pile and pile inclined inclined eccentric and other adverse effects, therefore requires the installation of foundation stability. On the formation of softer, sloping ground, be bulldozed, the pad plate or tie reinforcement.In order to prevent the pile position allowed, construction is very important to the set the center position and the correct installation of drilling machine, the rig drilling machine, first use of the power drill and near the cage with the drill pipe, moving roughly position, and then Jack rack jacking, accurate positioning, so that the lifting pulley, drill bit or fixed drill hole cards and casing center in a vertical line, in order to ensure the verticality of the drilling rig. Drilling position deviation is not more than 2cm. Aligned with the pile location, with sleeper flat drill beam at the top of the tower, and symmetrical to the drill axis pulling cable wind rope.(3) buried tubeUnderground water level below the Kong Bitu under the hydrostatic pressure to the hole collapse, and even the phenomenon of flow of sand. If you can keep the borehole wall high underground water head, increase the hole hydrostatic pressure, to prevent collapse hole, hole wall. Casing in addition to play this role, at the same time, good isolation of surface water, ground, protecting the orifice pile hole drill guide fixed(4) slurry preparationDrilling mud is composed of water, clay ( bentonite ) and an additive composition. A floating drilling waste slag cooling the drill bit, drill, lubrication, increasing hydrostatic pressure, and in the hole wall to form a slurry, partition within the bore to prevent seepage, the hole collapse effect. Modulation of the drilling mud and circulating purifying mud, should be based on the drilling method and formation conditions to determine the slurry consistency, slurry consistency should beconsidered stratigraphic changes or operational requirements of motor control, the mud is too thin, small, poor effect of elimination of slag wall; slurry is too thick will weaken bit impact function, reduce drilling speed.(5) drillingThe borehole is a key working procedure, in construction must strictly according to the operating requirements, in order to ensure drilling quality, attention must be given to the hole quality, must be opposite for this good midline and verticality, and pressed well casing. Must pay attention in the construction are continuously added and pumping the slurry slag ( impact type ), but also at any time to check whether there is deviation phenomenon into hole. Using the impulse or clamshell type drilling machine construction, soil due to vibration and impact near the adjacent hole stability. So the drilled hole should be timely cleaning hole, decentralization and pouring underwater concrete reinforcing cage. Drill order should also be practical to plan, should not only guarantee a pile hole construction does not affect the last pile hole drill, and the moving distance of not too far and mutual interference.(6) the hole cleaningThe drilling depth, diameter, location and shape of hole is directly related to the quality of pile and pile body black. Therefore, in addition to drilling process close observation supervision, to meet the design requirements in drilling hole depth, with deep, hole, pore shape, pore size and other inspections. In the end hole inspection in full compliance with the design requirements, shall immediately proceed to bottom hole cleaning, avoid it too long that mud settling, caused by borehole collapse. For friction pile when the hole wall is easy to collapse, in underwater concrete perfusion before the sediment thickness of not more than 30cm; when the hole wall is not easy to collapse, not more than 20cm. For the post, in water or shoot the breeze, sediment thickness less than 5cm. Hole cleaning method is to use different and flexible application of drilling rig. Usually you can use normal circulation rotary drilling rig, reverse circulation rotary machine vacuum suction machine and slag pumping cylinder hole cleaning. The mud suction machine hole cleaning, required equipment, convenient operation, hole cleaning is thorough, but unstable in the soil should be used cautiously. Its principle is to use compressor generates high pressure air into a suction dredge pipeline will mud blowing.(7) pouring underwater concreteAfter finishing hole, can be prefabricated reinforcement cage hanging vertically into the hole, positioning to be fixed, and then using a perfusion catheter concrete,pouring concrete don't interrupt, or prone to the phenomenon of broken pile.Effect of bored pile bearing performance factorsIn the construction process, construction machinery, due to geological effects, often caused by pile soil ( weak layers ), the thickness of 0.2 ~ 0.5m, thick and up to 1m. Especially in soft soil with mud, drilling, hole bottom sediment is inevitable; even after careful cleaning hole, the hole cleaning after and before concrete, will precipitate some sediment, and in drilling process, widespread presence on the hole wall and the hole bottom soil disturbance. All of these affect the bearing capacity of bored pileplay.Pile static load test show that, bored pile end bearing capacity of only the ultimate load of the 15% ~ 35%, the side resistance and tip resistance of the existing synchronization phenomenon. Give full play to the role of lateral friction resistance is only a few millimeters of the displacement of pile top, to give full play to the role of tip resistance of pile diameter, needed to reach 10% - 30% of the displacement of pile top. Such a large displacement in engineering is not allowed. Pile side friction resistance to damage, and the damage limit is reached, and the end resistance cannot get sufficient play, its potential is great. This is the ultimate bearing capacity of bored pile is not to cause.Research shows that, at the bottom of pile soil exists, not only affects the tip resistance of the play, also make the side friction resistance loss. The existence of weak interlayer of pile, the pile body and the soil friction between the nature of the change, the friction between pile and soil by load transfer, is very bad. This is the bored pile bearing not tall benefit is another reason.Improve the bearing capacity of Bored PilesAccording to the bearing capacity of bored pile is not to cause analysis, engineering and some improving bearing capacity of pile foundation of the method, mostly around the elimination of pile bottom sediment, a pile of weak interlayer.(1)pre loading method in advance of the pile bottom for preloading, the pile soil compaction, improve the bearing capacity of piles. But time-consuming, costly, and not easy to implement.(2) extending end bearing area. The belled pile, in the past used in engineering is more, but on the bottom of pile soil are still incapable of action.(3) sand lining pile technology : the method for cast-in-place pile, construction, use double sleeve around the pile in sand filling, become sand set of about 3 ~ 10cm,sand set can improve the lateral wall of the friction resistance of pile.(4)Grouting technology:routing technology grouting method can be divided into the first grouting and grouting method. The first method of grouting is drilled in the Kong Zhuangcheng hole and before concrete grouting, the nozzle pipe into the hole bottom is inserted into the soil, spraying slurry, so that at the bottom of pile soil mixed with cement, then pile concrete.Pile capCap refers to bear, distribution from pier to carry the load on pile top, set toconnect all the top of the pile of reinforced concrete platform.Cap is piles and columns or piers contact part. The root cap, even ten piles are linked with the formation of the pile foundation. Cap for high pile cap and pile caps: low pile cap generally buried or partially buried in the earth, high pile cap generally above the ground or water. High rise pile cap having a free length, the surrounding supporting body to withstand horizontal load. Pile stress situation is extremely unfavorable. Pile internal force and displacement under the action of external force than the same level of low pile cap to be big, the stability is poor because of low pile cap.High rise pile cap is generally used for port, wharf, marine engineering and bridge engineering. Low pile cap is generally used in industrial and civil buildings. Pile head generally into platform 0.1 meters, and a reinforced anchor into the cap. Platform to build on the columns or piers, forming a complete power transmissionsystem.In recent years due to the large diameter bored pile, pile rigidity, strength is big, so high pile in bridge foundation construction has been widely used.灌注桩概述钻(冲、挖)孔灌注桩,从20世纪60年代初在河南省南阳地区研制应用以来,因其具有众多的优点,因其具有众多的优点,已广泛应用于包括软土、已广泛应用于包括软土、已广泛应用于包括软土、黄土、黄土、黄土、膨胀土等特殊土在内的各膨胀土等特殊土在内的各类地基和工业、民用、市政、铁路、公路、港口等各类工程实践中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑工程中桩基检测技术问题分析中英文对照Analysis and testing technology of pile foundation construction in Chinese and English.桩基是影响工程质量的基础因素,并且桩基这一影响因素还是隐性的影响因素。
作为地面建筑的一种支撑,好的桩基会让结构的基础更加的稳定,而质量劣质的桩基,会对结构的安全造成恶劣的影响。
因此,对于基础施工,桩基的检测是一个不可或缺的技术环节。
并且随着现代工程的进步,对于质量和安全系数的要求越来越高,对于特殊的结构群体,诸如高层建筑以及铁路建筑的建设中桩基技术不断的发展,因而建设工程单位所面临的要求也越来越高,越来越严格,这个时候桩基的检测技术就可以发挥出应有的作用报这个桩基质量。
Pile foundation is the basic factors influencing the engineering quality, influencing factors and the influencing factors of pile or recessive. As a supporting ground buildings, the pile will make structure more stable, and the quality inferior pile foundation, will cause bad influence on the safety of structure. Therefore, for the foundation construction, pile foundation detection is an indispensable link. And with the development of modern engineering progress, growing demand for quality and safety factor, the structure of special groups, such as the development of high-rise building pile foundation construction and railway construction in technology, so the construction units are facing the increasingly high demand, more and more strict, the pile foundation detection technology can play a role on the quality of pile foundation should be.1 桩基的检测技术分析Analysis and testing technology 1 pile foundation1.1 成孔的质量检测Quality inspection of 1.1 into the hole在对成孔的质量进行检测时,主要的检测部位有桩孔的位置检测、孔径以及孔深的监测。
底沉渣的厚度监测和垂直度的监测等等。
成孔的质量直接归决定桩基的柱体的成桩质量,过时桩孔在孔径上的直径偏小,那么整个桩的承载力就会有所下降;而若是孔径扩大,那么整个桩在上部的侧阻力优惠随之增大,下部就不能发挥侧阻力应有的作用;另外,桩孔的垂直程度也会对承载力造成影响,偏斜的基桩会阻碍桩基的作用发挥;最后若是底部的沉渣太多就会令桩体的有效长度减少,那么也会对桩体的质量造成影响。
因此,这些问题的检测工作就尤为重要了。
/ /On the test of the quality of pore, position detection, detection part mainly have the pile hole diameter and hole depth monitoring. Thickness monitoring and verticality of bottom sediment monitoring etc.. The quality of the pile hole quality directly to the cylinder pile decision, outdated pile hole in aperture of the diameter is small, so the bearing capacity of the pile will decrease; and if the size, then the whole pile side resistance concessions in the upper part of the increase, the lower part can not play the role of side resistance due; in addition, the vertical extent of pile hole can also impact on the bearing capacity of the pile deflection, play will hinder the pile foundation; finally, if the effective length of the bottom sediment too much will make the pile decreases, it will affect the quality of pile body. Therefore, detection of these problems is particularly important.1.2 承载力检测分析1.2 bearing capacity analysis1.2.1 静荷载试验法。
这种方式在对于桩基的检测上主要是检测承载力,桩基在水平上的承载力以及在竖直方向上的承载力是桩基质量的衡量标准,同时也是对建筑的影响最大的因素,这里就需要用到静荷载实验的方式。
一般的工程检测中大多都是对竖直方向上的承载力较为重视。
这种检测方式的有点就是利用了和桩基实际会承受的力度去模拟实验对其受理的条件进行试验。
这种方式一般都应用在对于工程试桩的检测上,在不破坏桩基的基础上对其进行检测。
并且精度很高,误差低于10%。
1.2.1 static load test method. In this way for pile foundation detection is detection of bearing capacity, bearing capacity of pile foundation in the level and capacity in the vertical direction is a standard measure of quality of pile foundation, but also the impact on building the biggest factor, here we need to use the static load experiment method. The general engineering detection mostly has attached more importance to the bearing capacity of the vertical direction. This detection method is a little use and actual pile foundation will bear the efforts to simulate the experimental test of the admissibility condition. This is generally used in the detection for engineering test pile, the pile foundation detection without destroying the. And the precision is very high, the error is less than 10%.1.2.2 高应变动法。
这种方式是通过对桩体在接近极限承载力的时候的状态分析,这就需要利用到重锤这一机械方式的瞬间冲击力,令桩体周围的土产生变形。
在结合其实际测量力度以及速度时,通过数据的曲线分析,结合应力波的理论以及桩体的有关参数,对桩体的极限工作能力进行分析。
/ /1.2.2 high strain method. This way is through the analysis of the status of pile body when approaching the limit bearing capacity, it will need to use the weight that a mechanical means of instantaneous impact force, the pile surrounding soil deformation. In combination with the actual measurement of strength and speed, through the analysis of data curve, combined with the relevant parameters of the stress wave theory and the analysis of pile, ultimate working capacity of piles.1.3 完整性的检测分析Detection and analysis of 1.3 integrity1.3.1 低应变动的测法。
这种测法就是通过波动理论以及机械阻抗理论进行试验分析,在桩顶是假一个较低振幅的激振能量。
通过这种能量对土体的周围进行环境改变,引起桩身以及土体在桩身周围的微幅振动。
同时使用仪表对加速度以及振动的速度进行记录以及分析,并通过分析达到控制和检验桩基的目的,对桩基的质量进行保障,对桩身的完整性进行保证以及达到对桩基承载力的预测目的。
1.3.1 low strain dynamic testing. This method is tested through the analysis of the wave theory and the mechanical impedance theory, on top of the pile is a low amplitude vibration energy. Environmental change through the energy of soil around the pile and the soil, causing the micro-amplitude vibration around the pile shaft. At the same time, the use of instrument for recording and analysis of vibration acceleration and velocity, and achieve the control and inspection of pile foundation through the analysis of the objective, for the guarantee of the quality of the pile foundation, guarantee and the purpose of prediction of bearing capacity of pile integrity of pile body.1.3.2 声波透射检测法。