人教A版高中数学必修3 统计 教材分析
人教A版高中数学选择性必修第三册 第六章 计数原理--复习与小结 (课件)
xTr 1 xC x
r
5
5 r
y C x
r
r
5
6r
y
r
和
y2
y 2 r 5 r r
Tr 1 C5 x y C5r x 4 r y r 2
x
x
在 xTr 1 C5r x 6r y r 中,令 r 3 ,可得: xT
4
C53 x 3 y 3 ,
该项中 x 3 y 3 的系数为10 ,
n+1
n+1
的二项式系数相等且最大.
两项第
项和第
+1项
2
2
③C0n+C1n+C2n+…+Cnn=2n;C0n+C2n+…=C1n+C3n+…=2n-1.
高考链接
1.(2020·海南高考真题)要安排 3 名学生到 2 个乡村做志愿者,每名学生只能
选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有(
完成一件事需要n个步骤,做第一步有m1 种不同的方法,做第二步
有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件
事有N=
m1×m2×…×mn 种不同的方法.
3.排列数与组合数公式及性质
排列与排列数
m
排列数公式 An
公
式
组合与组合数
Ann
组合数公式 Cmn =____
Amm
=n(n-1)(n
人教2019A版 选择性必修 第三册
第六章
计数原理
复习与小结
知识框图
温故知新
1.分类加法计数原理
完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,
高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)
总费用y/万元 2.2 3.8 5.5 6.5 7.0
(1)根据表格数据,画出散点图;
(2)求线性回归方程y^=b^x+a^的系数a^,b^; (3)估计使用年限为 10 年时,车的使用总费用是多少?
【解题探究】(1)利用描点法作出散点图; (2)把数据代入公式,可得回归方程的系数; (3)把x=10代入回归方程得y值,即为总费用的估计 值.
【答案】A 【解析】在A中,若b确定,则a,b,c都是常数,Δ= b2-4ac也就唯一确定了,因此,这两者之间是确定性的函数 关系;一般来说,光照时间越长,果树亩产量越高;降雪量越 大,交通事故发生率越高;施肥量越多,粮食亩产量越高,所 以B,C,D是相关关系.故选A.
两个变量x与y相关关系的判断方法 1.散点图法:通过散点图,观察它们的分布是否存在 一定规律,直观地判断.如果发现点的分布从整体上看大致在 一条直线附近,那么这两个变量就是线性相关的,注意不要受 个别点的位置的影响. 2.表格、关系式法:结合表格或关系式进行判断. 3.经验法:借助积累的经验进行分析判断.
变量之间的相关关系的判断
【 例 1】 下 列 变 量 之 间 的 关 系 不 是 相 关 关 系 的 是 ()
A.二次函数y=ax2+bx+c中,a,c是已知常数,取b 为自变量,因变量是判别式Δ=b2-4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩田施肥量和粮食亩产量
【解题探究】判断两个变量之间具有相关关系的关键是 什么?
①反映^y与 x 之间的函数关系;
②反映 y 与 x 之间的函数关系;
③表示^y与 x 之间的不确定关系;
④表示最接近 y 与 x 之间真实关系的一条直线.
A.①②
人教A版必修3数学教材分析109张PPT
输出S
结束
(7)创设问题情境,初步了解循环结构的特点
例. 设计一个计算1+2+…+100的值的算法.
判断框
开始 i=1 S=0
i=i+1 S=S+i
循环变量 i 叫做计数变量
(用于记录循环次数 )
S叫做累加变量
(用于记录累加结果 )
循环体
i≤100? 是
否
输出S
结束
循环结构可细分为两类:
(1)直到型循环结构
——估算(阅读)
九、画“程序框图”的方法.
推荐一款软件,应用玲珑程 序框图,然后截图即可。
十、提请注意
1.尽量不要将算法教学变成程序框图的解题教学, 要让学生从算理的角度多分析问题,尽量让学生自 行对问题进行算法的探究,以培养学生的数学能力; 2.请各位老师看下面的框图:
变量名=表达式 “=”叫做赋值号
赋值语句的作用: 先计算出赋值号右边表达式的值,然后把这个值赋
给赋值号左边的变量,使该变量的值等于表达式的值。
注:
①赋值号左边只能是变量名字,而不能是表达式或数; 如:2+y=x、11=x是错误的;
②赋值号左右不能对换;
如“x=A”、“A=x”的含义运行结果是不同的; ③不能利用赋值语句进行代数式(或符号)的演算;
设置情境,提高学生学习兴趣,通过问题解决 体会算法的概念
情境2:跳青蛙
体会分步,逻辑,有限算法思想特征
设置情境,提高学生学习兴趣,通过问题解决 体会算法的概念
情境3:一个人带着三只狼和三只羊过河,只有 一条船,同船可容纳一个人和两只动物,没有 人在的时候,如果狼的数量不少于羊的数量就 会吃羊。 该人如何将动物转移过河? 请设计步骤?
高中必修三数学统计教案
高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。
一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。
二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。
2.统计学的基本概念:总体、样本、抽样、数据等。
三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。
2.概率统计方法:频率分布、概率分布、期望值等。
3.推断统计方法:参数估计、假设检验等。
四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。
2.练习题:让学生做一些实践练习,巩固所学的统计方法。
五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。
六、作业
布置相关作业,让学生进一步巩固所学知识。
七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。
注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。
高中数学人教A版(2019)选择性必修第三册教材解读与教学分析
49
51
• 某地区居民的肝癌发病率为0.0004,现用甲胎蛋白法进行普查。医学研究表明,
化验结果是存有错误的。已知患有肝癌的人其化验结果99%呈阳性(有病),而
没患肝癌的人其化验结果99.9%呈阴性(无病)。现某人的检查结果呈阳性,他
真的患肝癌的概率是多少?
解:记B为事件“被检查者患有肝癌”,A为事件“检查结果呈阳性”。由题设
例 向圆盘随机投飞镖一次,用X表示正中圆心的次数,则X 是离散型随
机变量,其分布列为
X
0
1
P
1
0
7.3 离散型随机变量的数字特征
为什么要研究随机变量的数字特征?
62
7.3.1 离散型随机变量的均值
均值是一个度量性概念,一般度量性概念因比较而产生. 通过下面的问
题情境体会均值概念引入的必要性及定义,认识均值的意义.
式。
6.1 分类加法计数原理与分步乘法计数
原理
从设计巧妙的“数法”入手,首先通过
“给一个座位编号”创设不同的情境,让
学生分析比较各自的问题特征以及解决
问题的基本环节;然后从特殊到一般,
抽象概括出两个基本原理;并且选取了
8个例题,逐步实现从原理理解到综合
应用.
6.3 二项式定理
运用多项式乘法法则和两个计数原
实例,借助于频率直方图的直观,了解正态分布的特征.
了解正态分布的均值、方差及其含义.
23
7.1 条件概率与全概率公式
本节主要研究一般交事件(非独立)的概率运算法则,进而综合运用概
率的运算法则求复杂事件的概率。核心内容是一个概念和三个公式:条件概
率、乘法公式、全概率公式和*贝叶斯公式。
实验版课标中引入条件概率为了得到两个事件相互独立,进而得出二项
2022年人教A版高中数学选择性必修第三册同步课件第八章成对数据的统计分析第3节列联表与独立性检验
学法解读
1.通过实例,理解2×2列 1.了解2×2列联表、随机变量χ2的意义.
联表的统计意义.
2.理解独立性检验中P(χ2≥xα)的具体含义.
2.通过实例,了解2×2列 3.掌握独立性检验的方法和步骤.
联 表 独 立 性 检 验 及 其 应 4.通过典型案例,学习统计方法,并能用
用.
这些方法解决一些实际问题.
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
必备知识•探新知
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
知识点1 分类变量 用来区别不同的现象或性质的随机变量,其取值可以用实数表示.
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
知识点2 2×2列联表及随机事件的概率 (1)2×2列联表:如果随机事件X与Y的样本数据如下表格形式
X=0 X=1 合计
Y=0 a c
a+c
Y=1 b d
b+d
合计 a+b c+d a+b+c+d
在这个表格中,核心的数据是中间的4个格子,所以这样的表格通 常称为2×2列联表.
返回导航
第八章 成对数据的统计分析
Байду номын сангаас
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
[规律方法] 利用等高条形图判断两个分类变量是否相关的步骤
统计 → 收集数据,统计结果 ↓ 列表 → 列出2×2列联表,计算频率,粗略估计 ↓ 画图 → 画等高条形图,直观分析
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
高三数学a版教材教材分析课件人教版选修2-3
四、对教学的几个建议
1.准确把握教学要求 • 与“大纲”比较,“课标”不要求掌握
“组合数的两个性质”(组合数恒等式题用 二项式证)。 • “课标”对本章内容的定位是:用计数原理、 排列与组合概念解决“简单的实际问题”。 所以,教学中一定要把握好这种定位,避免 在技巧和难度上做文章(排列组合的求值化 简证明题难度要控制,要重点做应用题)。
(如第10页.教材更实际实用了贴近高考要求) 5.组合数性质要求有变化 . 6.文科不学本章内容.
计数原理的课程设置意图
必修3概率 计数原理 选修2-3概率
1.必修3强调概率思想,避免复杂的组合计 算干扰学生对概率思想的领悟
2.本章为进一步研究概率做准备 3.本章学习,提供思想和工具
计数问题是数学中的重要研究对象之一, 计数原理为解决很多实际问题提供思想和 工具(分类分步思想不仅仅是解计数问题)
本章内容涉及分类、化归、从特殊到 一般、多元联系表示等众多数学思想方 法。 3.强调对基本概念的本质的理解。
4.加强用两个计数原理解决问题的基本 思想方法
案例1:二项式定理的 猜想与证明 过程
(1)在“探究”中提出如何利用两个计数原理得出 n =2,3,4的展开式的问题;
(2)详细写出用多项式乘法法则得到n=2展开式的 过程,并从两个计数原理的角度对展开过程进行 分析,概括出项数以及项的形式;
二、课时安排及说明
1.本章有三节内容,共14课时
具体分配如下(供参考):
1.1 两个计数原理
人教A版高中数学必修3 统计 教材分析
mm.
④乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的
纤维长度除一个特殊值 352 外,也大致对称,其分布较均匀.
2.直方图的识图要点
⑴通过直方图估计平均数——
平均数的估计值等于频率分布直方图中每个小矩形的面积
容大大的增加,这已经成为国际中小学数学课程发展的趋势。
2. “新课标”的新要求
第一部分 前言
……与时俱进地认识“双基”(摘录)
数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求
的新的"双基"。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把 最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;
乘以小矩形底面中点的横坐标之和. ⑵通过直方图估计中位数—— 在频率分布直方图中,中位数左边和右边的直方图的面积
应该相等.
(三)统计软件 Excel 与 SPSS.
推荐一本书——《用 Excel 与 Spss 学习统计学》毛炳寰编
1.添加“分析工具库”(平均数、中位数、众数,方差,相等)
本功能需要使用 Excel 扩展功能,如果您的 Excel 尚未安装数据分析, 请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。加载成功 后,可以在“工具”下拉菜单中看到“数据分析”选项。
分析:将直方图与加权平均数结合考查
(二)重视统计思想的理解,重视结果的解释和应用.
1.茎叶图的识图要点
例 1 (2009 安徽)某良种培育基地正在培育一种小麦新品种 A.将其与原有的一个优良品
种 B 进行对照试验.两种小麦各种植了 25 亩,所得亩产数据(单位:千克)如下: A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,
高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)
高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)普通高中数学必修3(A版)学案 2.3. 变量间的相关关系2.3.1变量之间的相关关系授课时间:年月日【学习目标】通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。
【重点难点】1. 通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系。
2. 变量之间相关关系的理解。
【学习过程】一、学习引导在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、合作交流(教师可做点拨)相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系。
(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)三、随堂练习思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:商品销售收入与广告支出经费之间的关系。
(还与商品质量,居民收入,生活环境等有关)四、能力提升1. 上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?2. 对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?3. 相关关系与函数关系的异同点?【小结反思】1. 变量具有不确定性,需要通过收集大量的数据(通过调查或试验)在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系做出正确的判断。
人教A版高中数学必修三笔记(全册)
第一章 算法初步(略)第二章 统计2.1 随机抽样1、总体和样本(1)总体:在统计学中 , 把研究对象的全体叫做总体. (2)个体:把每个研究对象叫做个体.(3)总体容量:把总体中个体的总数叫做总体容量.(4)样本容量:为了研究总体x 的有关性质,一般从总体中随机抽取一部分:1x ,2x ,3x , ……,n x 研究,我们称它为样本...其中个体的个数称为样本容量..... 2、简单随机抽样(1)定义:一般地,设一个总体包含有N 个个体,从中逐个不放回地抽取n 个个体作为样本)(N n ≤,如果每次抽取时总体内的各个个体被抽到的机会相等,就称这样的抽样方法为简单随机抽样.(2)特点:① 被抽取样本的总体个数N 是有限的;② 样本是从总体中逐个抽取的; ③ 是一种不放回抽样;④ 每个样本被抽中的可能性相同(概率相等);⑤ 总体单位之间差异程度较小和数目较少时,采用简单随机抽样. (3)常用的方法⎩⎨⎧.②;①随机数法抽签法3、系统抽样(等距抽样或机械抽样):(1)定义:当总体中的个体较多时,可将总体分为均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样叫做系统抽样.(2)步骤:① 编号:先将总体的N 个个体编号;② 分段:确定分段间隔k ,对编号进行分段,当n N 是整数时,取n N k =(当nN 不是整数时,要先剔除零头);③ 确定第1个编号:在第1段用简单随机抽样确定第一个个体编号l ;④ 成样:按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(k l +),再加k 得到第3个个体编号(k l 2+),依次进行下去,直到获取整个样本.4、分层抽样:(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.(2)步骤:① 分层:根据题意,将总体分成互不交叉的层;② 定抽样比:根据总体中的个体数N 和样本容量n 计算抽样比Nn k =; ③ 定各层抽取的数目:确定第i 层应该抽取的个体数目k N n i i ⨯=; ④ 抽取个体:在各层中随机抽取该层确定的个体数目.5、三种抽样方法的异同点:2.2 用样本估计总体1、频率、样本容量、频数的关系2、作频率分布直方图的步骤(1) 求极差,即计算最大值与最小值的差; (2) 决定组距与组数; (3) 将数据分组;(4) 计算各小组的频率,列频率分布表; (5) 画频率分布直方图.3、众数、中位数、平均数4、平均数、方差、标准差(1)平均数:nx x x x x n++++=321(2)方 差:nx x x x x x x x s n 22322212)()()()(-++-+-+-=(3)标准差:[]22322212)()()()(1x x x x x x x x ns s n -++-+-+-==. 5、从频率分布直方图中估计众数、平均数、中位数(1)众 数:最高矩形所在组的组中值即为众数的估计值. (2)平均数:每个小矩形的面积乘以小矩形底边中点的横坐标之和. (3)中位数:中位数左边和右边直方图的面积相等.2.3 变量间的相关关系1、散点图将样本中的n 个数据点),(11y x ,),(22y x ,…,),(n n y x 描在直角坐标系中,所得到的图形叫做散点图.2、正相关与负相关(1)正相关:从散点图上看,点分布在从左下角到右上角的区域内. (2)负相关:从散点图上看,点分布在从左上角到右下角的区域内.3、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.【重要结论】散点可能在回归直线上,也可能不再回归直线上,但样本点的中心),(y x 必在回归直线上.(其中x 、y 分别为变量x 和y 的平均数.)4、最小二乘法(1)定义:使得样本数据的点到回归直线的距离的平方和最小...............的方法叫做最小二乘法. (2)求法:设线性回归方程为a x b yˆˆˆ+=,则 ⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====.ˆˆ,)())((ˆ1221121x b y ax n x yx n y x x x y y x x b ni i ni ii n i i ni i i例1:根据上表得到回归直线方程为a x yˆ7.0ˆ+=,据此可预测,当x =15时,y 的值为( ) A . 7.8 B . 8.2 C . 9.6 D . 8.5例2:为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天根据上表得到回归直线方程为9.5467.0ˆ+=x y,由于表中一个数据模糊不清,请你推断该数据的值为( )A . 67B . 68C . 68.3D . 71 例3:【2014全国2卷理18】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:∑∑==---=ni ini iix x y yx x b121)())((ˆ,x b y aˆˆ-=. 解:(1)方法一(利用第一个bˆ的公式):根据题意,列表如下:所以,∑∑==---=ni ii iix x y yx x b121)())((ˆ5.02814==,x b y aˆˆ-=3.245.03.4=⨯-=. 所以,线性回归方程为3.25.0ˆ+=x y. 方法二(利用第二个bˆ的公式):根据题意,列表如下: 所以,∑∑==--=ni ii ii x n xyx n yx b1221ˆ5.0471403.4474.1342=⨯-⨯⨯-=,x b y a ˆˆ-=3.245.03.4=⨯-=. 所以,线性回归方程为3.25.0ˆ+=x y.(2)由于线性回归方程3.25.0ˆ+=x y是增函数,所以,2007年至2013年该地区农村居民家庭人均纯收入逐年增加.2015年对应的x =9,此时8.63.295.0ˆ=+⨯=y,即该地区2015年农村居民家庭人均纯收入约为6.8千元.第三章 概率3.1 随机事件的概率1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例nn A f An =)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率)(A f n 稳定在某个常数上,把这个常数记作)(A P ,称为事件A 的概率.(6)频率与概率的关系:频率是概率的近似值,概率是频率的稳定值.2、事件的关系与运算【注】:互斥事件不一定是对立事件,但对立事件一定是互斥事件.3、概率的基本性质(1)任何事件的概率0≤P (A )≤1;(2)必然事件的概率为1,不可能事件的概率为0;(3)当事件A 与B 互斥时,满足加法公式:P (A ∪B )= P (A )+ P (B );(4)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )=1,P (A )=1—P (B ).3.2 古典概型 3.3 几何概型1、基本事件(1)概念:一次试验中可能出现的每一个结果称为一个基本事件,它是试验中不可再分的最简单的随机事件,在一次试验中只能有一个基本事件发生.(2)特点 ⎩⎨⎧.基本事件的和件)都可以表示成几个任何事件(除不可能事②斥的;任何两个基本事件是互①2、古典概型(1)定义:我们将具有以下两个特点的概率模型称为古典概率模型,简称为古典概型. ① 试验中所有可能出现的基本事件只有有限个; ② 每个基本事件出现的可能性都相等. (2)古典概型概率公式 基本事件的总数包含的基本事件的个数事件A A P =)(.3、几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点 ⎩⎨⎧.事件发生的概率都相等等可能性,即每个基本②限个;结果(基本事件)有无无限性,即每次试验的①(3)计算公式: 积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(.。
人教A版高中数学必修3《二章统计2.2用样本估计总体阅读与思考生产过程中的质量控制图》优质课教案_4
阅读与思考:生产过程中的质量控制图》教学设计阅读与思考:生产过程中的质量控制图——正态分布[ 教材分析]本节课选自人教A 版必修3第二章“统计”第2.2节“用样本估计总体”课后的“阅读与思考”部分。
在第2.1节通过抽样收集数据之后,第2.2节给出了两种用样本估计总体的方式,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征(如平均数、标准差等)估计总体的数字特征。
本节课是在这基础上,结合前面所学的总体密度曲线、平均数和标准差的概念,通过生产过程中的产品质量控制图引出正态分布,利用具体的生活应用介绍正态分布密度曲线的特点以及期望、标准差对整个正态分布的影响。
正态分布无论是在理论上还是应用上都是极其重要的一个分布,将正态分布的这些特点应用到质量控制中,可使学生进一步加强对标准差的认识。
由于正态分布的随机变量是连续型随机变量,这也让学生对随机变量由离散型到连续型有一个初步的认识。
从教材编排上来看,“阅读与思考”内容是对频率分布直方图、标准差认识的深化,是统计知识体系的一种承接和完善,也是后续选修2-3 中第2.4“正态分布”一课的铺垫。
[学情分析]学生在之前章节的学习中,已经掌握如何通过抽样来收集数据,能够画出所收集数据的频率分布直方图、折线图,会根据图表初步分析数据的分布规律,会计算平均数与标准差,这为本节课的探究学习打下了坚实的基础。
但学生仍存在一些知识短板和理解缺口。
其一,本节课学习的正态分布的随机变量是连续型随机变量的分布问题,学生一直以来接触的都是离散型随机变量,这在概念接受与理解上会有一定困难,可以通过信息技术辅助理解;其二,由于学生在此之前还未学习过定积分、随机事件的概率以及二项分布,只在初中接触过简单的概率定义,因而对本节课正态分布的本质理解会显得生涩;其三,正态分布的密度曲线函数较为复杂,学生对抽象且陌生的公式会存在惧怕心理,需要通过一些函数模型及实际应用帮助学生体会其参数的作用。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
高中数学新版教科书必修二“统计”内容对比分析及教学建议——以人教A版和苏教版为例
2024年3月上半月㊀教材点击㊀㊀㊀㊀高中数学新版教科书必修二 统计内容对比分析及教学建议以人教A版和苏教版为例◉福建省邵武第四中学㊀饶锦芳㊀㊀摘要:数学教科书是课程的重要依托和主要载体,是教学的基本单位.教科书的编写,直接影响高中学生的 学 和中学教师的 教 .本文中通过对新课程标准下,两个新版教科书(人教A版和苏教版)中必修部分 统计 课程的研究,从教学内容的结构安排㊁栏目设置等方面进行了较为深入㊁细致的对比,并进一步提出教学建议,以期高中数学教师在教学中充分利用各版本教科书,优化教学资源,提升教学效果.关键词:高中数学教科书;统计;对比分析;教学建议㊀㊀统计学是通过收集数据和分析数据来认识未知现象的一门科学,它可以为人们制定决策提供依据.按照«普通高中数学课程标准(2017年版2020年修订)»(以下简称 «课程标准» )的要求,在高中数学课程中,统计是必修课程和选择性必修课程的主题之一.从统计研究的内容来看,必修课程主要学习收集数据的方法和单变量的统计问题.目前,我国出现了 一标多版 的情况,不同版本教科书在编写风格㊁课程标准㊁课程精神等方面存在着一定的差异.因此,本文中选取了当前我国高中使用范围较广的两个版本的数学教科书,即人教A版与苏教版的必修 统计 课程进行研究,并通过对教学内容的结构与安排㊁栏目设置等方面进行深入细致的对比分析,为高中数学教师理解和整合不同版本教材中 统计 模块的优缺点,提供了借鉴和参考.1教科书内容比较长期以来,高中数学课程标准为教科书的编制提供重要的指导意见,因此,在研究教科书内容之前,教师应该先研读课程标准.当前实行的«课程标准»指出: 统计单元的学习,可以帮助学生进一步学习数据收集和整理的方法㊁数据直观图表的表示方法㊁数据统计特征的刻画方法;通过具体实例,感悟在实际生活中进行科学决策的必要性和可能性;体会统计思维与确定性思维的差异㊁归纳推断与演绎证明的差异;通过实际操作㊁计算机模拟等活动,积累数据分析的经验. [1]在这一内容指导下,本文所关注的人教A版与苏教版教材,在 统计 这一章节的内容安排上,具有明显的异同.下面笔者对两个不同版本教科书中的课程内容进行比较和分析.人教A版教材本章内容分为三节:9.1随机抽样,9.2用样本估计总体,9.3统计案例.苏教版则分为四节:14.1获取数据的基本途径及相关概念,14.2抽样,14.3统计图表,14.4用样本估计总体.从每个小节的内容呈现可以看出,两个版本的教科书都体现了«课程标准»的要求.教学内容的安排上也存在较大的差异:(1)人教A版在数据收集这部分先复习基本概念,再介绍抽样方法,提出了放回和不放回简单随机抽样,最后学习获取数据的4种主要途径;苏教版则是先介绍获取数据的主要途径,再到抽样方法的学习.(2)人教A版在内容安排上注意突出数据分析的基本过程,在 随机抽样 这节会因为研究需要介绍总体平均数与样本平均数以及它们之间的关系,注重根据实际需要选择正确的统计图表,在理解集中趋势参数的统计含义之下,用样本集中趋势参数估计总体,以及如何从图表中估计出集中趋势参数.苏教版把统计图表与集中趋势参数分为两节内容介绍: 14.3 节分别用实际案例回顾了初中学习的统计图表并总结各自特点,接下来着重学习频率分布直方图; 14.4 节分别用不同的案例介绍集中趋势参数及它们的统计含义.苏教版更加注重每个知识点的学习.(3)人教A版 9.3 节通过一个完整案例让学生经历利用统计学解决问题的全过程,并给出了任务与要求;苏教版在应用与建模栏目设置了 阶梯电价的设计 的作业.2栏目设置比较教科书的编写不仅要体现教科书的知识结构,还要传递数学思想㊁数学文化.而教科书的栏目设置是知11教材点击2024年3月上半月㊀㊀㊀识内容呈现的重要方式,能够体现编者的思想和编写的特色.针对这一模块,«课程标准»指出: 通过 统计 课程的学习,学生能提升获取有价值信息并进行定量分析的意识和能力;适应数字化学习的需要,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质;积累依托数据探索事物本质㊁关联和规律的活动经验. [1]下面笔者就两个不同版本教科书中栏目设置的对比,作出分析.2.1相同设置在两个版本的栏目设置中,有诸多相似之处:(1)章头都有图㊁表㊁问题提出;(2)都采用了生活中的案例,通过案例讲授新的知识,对统计中的基本概念引入严格的定义;(3)问题型及注释型的内容较为丰富,例题能够体现知识点的实际应用;(4)每一个知识点都有针对的练习㊁习题与复习题;(5)都有设置额外的知识点,如对数学家㊁数学史料的介绍,对信息技术应用的介绍,等等.2.2不同设置在两个版本的栏目设置中,也存在明显的差异:(1)人教A 版在每一节都设置了 引言 环节,主要是为了对上一部分进行内容总结,并引出接下来要学习的内容.由此可见,人教A 版较为注重学习的连贯性,强调知识点之间的连接与内在关系,循序渐进,体现数学知识的逻辑性㊁系统性.(2)人教A 版较为注重设置合适的教学情境,在 统计 这一章节中, 探究 思考 问题 类的栏目非常多,共计出现了26处.由此可见,该版本强调以问题串联教学的环节,引导学生分析问题㊁解决问题,培养学生独立思考的能力.(3)人教A 版的案例较少,许多知识点会使用相同的案例,这说明,此版本教科书在具体案例的处理中,倾向于按数据处理的基本过程展开内容,而不是 就头论头,就尾论尾 地把统计过程割裂开来,帮助学生建立对统计的整体认知.(4)人教A 版的习题数量较少,在习题及复习题中进行了分层设计,包含 复习巩固,综合运用,拓广探索 这三个层次的内容,其中拓展栏目内容较少.相对而言,苏教版教材一方面注重直接提出本节要学习的问题,用问题引出要讲授的知识,以问题型旁白拓展思考.另一方面,苏教版的例题较多,注重知识的实际应用以及学生对数学知识与数学思想方法的吸收;题量较大,包含 感受 理解,思考 运用,探究 拓展 三个层次的内容,拓展栏目容较为丰富.总体而言,这两版教科书都有非常丰富的栏目设置,但也是神肖酷似,同中有异.3教学建议作为一线教师,笔者认为教学要能激发学生学习的兴趣,站在学生思维的最近发展区由浅入深教授知识,利用实际情境精选内容,优化课程结构,注重现代化教学手段的应用,强化利用数学知识解决实际问题的能力.鉴于上述分析,以下是笔者结合实际教学中遇到的问题,对必修 统计 教学的一些建议.3.1关于引言关于人教A 版 统计 章节的引言,笔者提出三个教学建议:(1)教师可以结合现实生活的统计指标举例,让学生感受统计就在身边,拉近学生与统计概念之间的距离,凸显统计知识的必要性,激发学生对统计的兴趣.在教学中,教师可以根据实际需要,举出学生身边的一些例子,用总量㊁比例(率)㊁平均数㊁百分位数等多元化的统计指标来阐述.(2)教师可以通过概括描述统计的学科特点,阐述统计解决问题的一般过程,让学生了解统计学习的基本思路和逻辑.(3)教师可以通过介绍统计解题过程中的常见困难,来联结不同的知识模块.总体而言,在教学中,笔者建议使用人教A 版的章引言作为本单元起始课的教学.3.2关于初高中内容的衔接统计 在逻辑上呈一条主干,开枝散叶的架构.小学㊁初中㊁高中都有统计内容的教学,如全面调查㊁抽样调查㊁总体㊁个体㊁样本量㊁简单随机抽样等重要概念,在义务教育阶段就曾多次出现.但是,高中阶段的统计学习,与义务教育阶段有着明显的差异.具体而言:(1)在抽样方法模块,初中只要求了解简单随机抽样,高中阶段需要进一步学习分层随机抽样以及设计抽样方法,以解决具体的问题.(2)在图表的制作与处理模块,小学 统计 处于 基于图象的直观判断 阶段,让学生学会把原始数据直接转化为图形,并能从图中获取关键信息;初中作图识图依然是重点,但作图需要先对数据进行处理,让学生在实例中感知数据处理的必要性与重要性,开始用 数字特征 进行统计分析;而高中的 统计 处于 基于数据处理与分析的推断 阶段. 需要通过一些典型案例,使学生了解较为系统的数据处理全过程,在此过程中进一步学习数据收集和整理的方法,数据直观图表的表示方法和数据统计特征的刻画方法.[1]因此,基于前文的分析,笔者认为,在初中与高中内容的衔接上,苏教版更为适用.例如,在苏教版教材14.3统计图表的第一部分内容中,用实际案例回顾了初中阶段学习的统计图表,并总结了这些统计图表各自的特点以及每种统计图表在数据分析中的作用.进一步而言,在用频数直方图进行数据分析的过程中,编写者发现某些图形容易给人造成错觉,为了避212024年3月上半月㊀教材点击㊀㊀㊀㊀免误解,苏教版将频数直方图改良为频率直方图,以引导学生通过频率分布直方图观察数据的分布规律.3.3关于知识点的编排方式在知识点的编排方式上,人教A版在编写时注意突出数据分析的基本过程,更为适用.例如,在 9.1.1简单随机抽样 这一节,内容编排如图1所示.典型案例:树人中学高一年级有712名学生,如果要调查高一年级学生的平均身高,应该怎么抽取样本?⇩抽样方法:抽签法㊁随机数法⇩平均数的计算⇩用样本平均数估计总体平均数图1在 9.1.2分层随机抽样 这一节,人教A版也采用了相同的编排方式.这种编排方式能帮助学生建立对统计的整体认知,实现知识点之间的紧密联结,有助于学生进行连贯的学习和思考.但是,在学生作业中,笔者发现, 怎样安排抽样? 设计调查方案 这类的题目完成效果不理想,说明学生对知识点的学习不够深入.在这一背景下,教师对于学习内容的总结提升是非常关键的.例如,在讲授完分层抽样后,教师可以利用苏教版分层抽样的步骤,总结出一个清晰的逻辑线,具体如图2所示.图2与此同时,教师还可以对两种不同抽样方法进行列表对比,明确不同抽样方法的适用范围,如表1所示.表1㊀简单随机抽样与分层抽样的对比类别特点相互联系适用范围共同点简单随机抽样从总体中逐个抽取总体中的个体数相对较少分层抽样将总体分成几层,按各层的个体数之比抽取各层抽样时,可以采用简单随机抽样总体由差异明显的几部分组成抽样过程中每个个体被抽到的可能性相同㊀㊀总体而言,教师可以把学习的重点内容以更加清晰的图表形式展现在学生面前,这样有利于学生对知识点的深入学习和理解.3.4关于应用与建模数学建模活动与数学探究活动是课程标准的主题之一,强调发挥学生的主体作用, 对现实问题进行数学抽象,用数学语言表达问题㊁用数学方法构建模型解决问题[1]. 高考也非常重视强化利用统计解决实际问题的能力.在这一模块,苏教版设置了应用与建模栏目 阶梯电价的设计 ,人教A版在学习完必修 统计 相关知识后,提供了一个 公司员工的肥胖情况调查分析 统计案例,让学生深入探究,独立设置为一个章节.人教A版的案例指引学生从 背景与数据 任务与要求 统计分析报告的组成部分(标题㊁前言㊁主题㊁结尾) 这三方面进行探究.人教A版教材恰时恰当地引导学生明确关心的问题,说明数据蕴含的信息;根据数据分析的需要,说明如何选择统计图表描述和表达数据;从样本数据中提取能刻画其特征的量;通过样本估计总体的统计规律,分析案例的整体情况.所以,学生遇到实际问题时,不会无从下手,而是懂得如何把所学统计知识应用于实际生活解决问题.因此,在教学中,建议教师利用人教A版 9.3统计案例 让学生了解利用统计学解决问题的全过程.3.5关于信息技术的应用人教A版和苏教版都有对信息技术应用的介绍,只是位置不同.在教学中,笔者认为苏教版在每一个知识点的结尾介绍电子表格软件及G e o G e b r a软件在这个知识点中的应用较为合理.此外,笔者建议,首先,教师在 统计案例 的教学中,让学生应用统计软件展示如何快速获取数据的频率分布直方图㊁扇形图,着重让学生回答从图表中提取的数据信息;其次,在学生已经知道如何计算的情况下,引导他们用统计软件快速计算平均数㊁方差等特征量,进而把更多精力花在理解特征数的统计含义上[2].具体而言,高一学生在信息技术课上已经学习了编程,教师可以建议学生设计一款软件,输入身高和体重,敲回车键便可以得到偏瘦㊁正常㊁偏胖㊁肥胖中的一个结论,并给出建议的体重范围,帮助员工控制体重.通过一个完整案例,学生可以体会信息技术的应用带来的便利,把更多精力集中于统计概念和方法的理解上.不同版本的教科书都符合«课程标准»的理念与要求,内容与栏目的设置各有优缺点,有许多可以相互借鉴的地方.教师在备课时,不必拘泥于某一版本的教科书,可以对多个版本的教科书进行研究学习,结合本校的招生层次㊁本班学生的认知水平,根据实际教学环境需要,完善教学设计.参考文献:[1]中华人民共和国教育部.普通高中数学课程标准(2017年版2020年修订)[S].北京:人民教育出版社,2020.[2]吴雅楠.翻转课堂教学模式下高中统计教学设计研究[D].北京:中央民族大学,2020.Z31。
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
8.3分类变量与列联表-人教A版高中数学选择性必修第三册(2019版)教案
8.3 分类变量与列联表-人教A版高中数学选择性必修第三册(2019版)教案一、教学目标1.能够理解分类变量的概念,了解分类变量的应用场景;2.能够计算两个相关性变量的列联表,并且能够根据列联表进行数据分析;3.能够使用SPSS软件进行数据分析,并且能够解释分析结果。
二、教学内容本节课的主要内容包括分类变量的概念、列联表的计算、列联表的应用、SPSS数据分析等。
2.1 分类变量分类变量指的是有限个数的离散数据,也称为定性数据。
例如,性别、国籍、教育程度等都属于分类变量。
区别于数量变量,分类变量无法进行数值上的计算,而只能进行频数或频率的计算。
2.2 列联表的计算在研究两个相关性变量之间的关系时,可以使用列联表来进行计算。
列联表是一种基于频数统计的表格,主要用于分析两个分类变量之间的关系。
例如,可以使用列联表来分析性别和职业之间的相关性。
2.3 列联表的应用列联表可以用于分析两个分类变量之间的关系,例如,可以用列联表来分析不同人群中饮食习惯与身体健康的关系。
此外,列联表还可以用于人口统计学研究、政治学研究、医学研究等领域。
2.4 SPSS数据分析SPSS是一种流行的统计软件,主要用于数据分析、数据挖掘、预测分析等领域。
在本节课中,我们将介绍如何使用SPSS进行列联表的计算和分析,以及如何使用SPSS对分类变量进行数据可视化。
1.理解分类变量的概念,能够区分量变量和分类变量;2.能够计算两个相关性变量的列联表;3.能够运用列联表进行数据分析,并且能够进行数据可视化;4.能够使用SPSS软件进行数据分析。
四、教学方法本节课采用三种教学方法:1.讲授法:通过讲解、示范等形式介绍分类变量和列联表的基本概念和计算方法;2.模拟法:通过模拟实际场景,让学生体验到列联表的应用;3.实践法:通过使用SPSS软件进行数据分析,让学生体验到数据分析的全过程。
五、教学过程5.1 导入知识本节课首先对分类变量和列联表进行介绍,让学生了解分类变量的概念、列联表的应用场景和计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽取 40 名职工作样本.用系统抽样法,将全体职工随机按 1~200 编号,并按编号顺序平 均分为 40 组(1~5 号,6~10 号,…,196~200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的号码应是________.若用分层抽样方法,则 40 岁以下年龄段应抽取________人.
普通高中课程标准实验教科书
数学③
1
必 修 3311111111111
A 吉林大学附属中学 吴普林
版
□必修 3 集体备课
第二章 《统计》
一、课时分配及变化
2.1 随机抽样 2.2 用样本估计总体 2.3 变量间的相关关系 实习作业 小结
二、地位及考情分析
5 课时 5 课时 4 课时 1 课时 1 课时——共 16 课时
容大大的增加,这已经成为国际中小学数学课程发展的趋势。
2. “新课标”的新要求
第一部分 前言
……与时俱进地认识“双基”(摘录)
数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求
的新的"双基"。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把 最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;
(三)知识点的增减
课程 数学 3
教学内容 统计
增加知识点 删减知识点 茎叶图
(四)能力要求的调整
课程 数学 3
教学内容 统计
提高要求
降低要求
知道最小二
乘法的思想
三、教学问题及建议
提纲
(一)作好初高中知识的衔接,了解初中数学课程标准及教 材 (二)重视统计思想的理解,重视结果的解释和应用. (三)统计软件 Excel 与 SPSS. (四)认真完成教学,不可有侥幸心里.
(2)通过丰富的实例,感受抽样的必要性,能指出总体、个体、 样本,体会不同的抽样
可能得到不同的结果。[参见例 1]
(3)会用扇形统计图表示数据。 (4)在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表
示数据的集中程度。
(5)探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的Fra bibliotek用样本估 计总体
(如平均数、标准差),并.给.出.合.理.的.解. 释..
字特征估计总 体的数字特征, 多以选择、填空
4.会用样本的频率分布估计总体分布,会 形式出现.
用样本的基本数字特征估计总体的基本2. 注 意 茎 叶 图 的
数字特征,理解用样本估计总体的思想. 应用,这是新增
5.会用随机抽样的基本方法和样本估计总 的考点.
例 1 100 位居民的月平均用水量(单位:t)
3.1 2.5 2
2
1.5 1
1.6 1.8 1.9 1.6
3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4
律,如何利用这些规律提高生活质量。数据处理能力成为现代人的基本能力。 在高中学习中,有必要掌握基本数据处理能力:收集数据,整理数据, 分析数据,从数据中提取信息,利用信息说明问题等等。
(二)考情分析
知识点
考纲及考试说明
考情分析
1.理解随机抽样的必要性和重要性.
多以选择、填空
随机抽样 2.会利用简单随机抽样方法从总体中抽取题考查分层抽样,
(一)课时的增加反映出地位的加强
大纲(旧)
课程标准(新)
内容
课时
内容
课时 课时增减
统计:选修 I、 9 统 计:必修 3 16 (必修)+16
选修Ⅱ
统计案例: 14 (选修)+5
选修 1—2(文)
选修 2-3(理)
1.专家解读——(首都师范大学——王尚志)
在传统的大学概率统计课程中,概率的分量大于统计,或者说在这些课程中是重概率。
同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服"双基异化" 的倾向。
第二部分 课程目标
……提高空间想像、抽象概括、推理论证、运算求解、数据处理等基 本能力。(五大基本能力) 数据处理的能力(首都师范大学——王尚志)
随着社会发展,人们对于数据、信息的关注越来越大,处理数据,已经成为百姓生活 不可回避的问题。生活中的很多数据都是“杂乱”的,但并非“无章”,如何发现其中的规
(3)通过观察茎叶图,对品种 A 与 B 的亩产量及其稳定性进行比较,写出统计结
论.
分析——
⑴(略)
(2)由于每个品种的数据都只有 25 个,①样本不大,画茎叶图很方便;此时茎
叶图不仅清晰明了地②展示了数据的分布情况 ,便于比较,③没有任
何信息损失,而且还④可以随时记录新的数据.
(3)通过观察茎叶图可以看出:①品种 A 的亩产平均数(或均值)比品种 B 高;②品种 A 的
(一)作好初高中知识的衔接,了解初中数学课程
标准及教材.
1.数字特征——加权平均数、众数、中位数被引入教材. 2.初中数学课程标准——摘录
统计与概率
在本学段中,学生将体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的 方法,进一步体会概率的意义,能计算简单事件发生的概率。 在教学中,应注重所学内容与日常生活、自然、社会和科学技术领域的联系,使学生体会统 计与概率对制定决策的重要作用;应注重使学生从事数据处理的全过程,根据统计结果作出 合理的判断;应注重使学生在具体情境中体会概率的意义;应加强统计与概率之间的联系; 应避免将这部分内容的学习变成数字运算的练习,对有关术语不要求进行严格表述。 (一)具体目标 1.统计, (1)从事收集、整理、描述和分析数据的活动,能用计算器处理复杂的统计数据。
平均值为
h.
分析:将分层抽样与加权平均数结合考查
980× 1 +1020× 2 +1032× 1 =1013
4
4
4
例 3 (2009 宁夏)某工厂有工人 1000 名,其中 250 名工人参加过短期培训(称
为 A 类工人),另外 750 名工人参加过长期培训(称为 B 类工人),现用分层抽样方法(按 A 类、B 类分二层)从该工厂的工人中共抽查 100 名工人,调查他们的生产能力(此处生产能 力指一天加工的零件数)。 ⑴求甲、乙两工人都被抽到的概率,其中甲为 A 类工人,乙为 B 类工人; ⑵从 A 类工人中的抽查结果和从 B 类工人中的抽插结果分别如下表 1 和表 2. …………(表略)
根据茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:
分析——
①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长
度普遍大于甲品种棉花的纤维长度).
②甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较
甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维 长度的分散程度更大).
③甲品种棉花的纤维长度的中位数为 307 mm,乙品种棉花的纤维长度的中位数为 318
mm.
④乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的
纤维长度除一个特殊值 352 外,也大致对称,其分布较均匀.
2.直方图的识图要点
⑴通过直方图估计平均数——
平均数的估计值等于频率分布直方图中每个小矩形的面积
离散程度。[参见例 2]
(6)通过实例,理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布 表,画频数分布直方图和频数折线图,并能解决简单的实际问题。 (7)通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估
计总体的平均数和方差。
(8)根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己 的观点,并进行交流。 (9)能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法。 (10)认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。
样本,了解分层抽样和系统抽样的方法. 难度较低.
1.了解分布的意义和作用,会列频率分布
表,会画频率分布直方图、频率折线图、1. 以 实 际 问 题 为
茎叶图,理解它们各自的特点.
载体,考查用样
2.理解样本数据标准差的意义和作用,会 本 的 频 率 分 布
计算标准差.
估计总体分布.
3.能从样本数据中提取基本的数字特征 用 样 本 的 数
随着时代的发展,统计在社会发展中的作用越来越大,在大学
的概率统计课程又发生了新的变化,近年来,在数学与应用数
学专业中,统计概率课已经成为基础课,它与数学分析、高等代数、解
析几何、普通物理、数学建模、计算机基础都成为基础课。在概率统计课程中,
课程内容的结构也发生了变化,统计的分量大大的加强了。
这种变化也影响到了中小学的课程,现在中小学的课程中统计概率的内
(i)先确定 x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A 类工人中 个体间的差异程度与 B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方 图直接回答结论)
(ii)分别估计 A 类工人和 B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数
(同一组中的数据用该组区间的中点值作代表).
430,430,434,443,445,445,451,454 B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,
406,407,410,412,415,416,422,430 (1)完成数据的茎叶图;
(2)用茎叶图处理现有的数据,有什么优点?
分析:将直方图与加权平均数结合考查