高等数学空间解析几何练习
高等数学 向量代数与空间解析几何题【精选文档】
第五章向量代数与空间解析几何5。
1。
1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。
因为=-,所以(a+b)。
图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。
(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。
从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。
2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。
解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。
5.2。
2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。
解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。
高等数学第七章向量代数与空间解析几何习题
解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
高等数学 向量代数与空间解析几何 (7.4.2)--空间的平面和直线
习题7.41. 判断下列四点是否共面:(1) (1,0,1),(2,4,6),(3,1,2),(6,2,8)A B C D -;(2) (1,2,1),(2,2,3),(1,1,2),(4,5,6)A B C D --.2. 设≠0a ,(1) 若⋅=⋅a b a c , 则是否必有=b c ?(2) 若⨯=⨯a b a c , 则是否必有=b c ?(3) 若⋅=⋅a b a c ,且⨯=⨯a b a c , 则是否必有=b c ?3. 指出下列平面对于坐标轴或坐标面的相对位置:(1) 3210x y -+=; (2) 250x +=; (3) 0x y -=; (4)0Ax Cz +=.4. 求满足下列条件的平面方程:(1) 过点0(1,2,3)M -, 法向量为(2,1,5)=--n ;(2) 在x 轴,y 轴和z 轴上的截距分别为2,3,1-;(3) 过点(5,7,4)-且在x y z 、、轴上截距相等;(4) 过点(3,6,2)P -,且垂直于OP (O 为原点);(5) 过点1(2,1,3)M -,2(5,1,4)M -和3(2,2,4)M -;(6) 过Ox 轴和点(4,3,1)--;(7) 平行于Oy 轴,且通过点(1,5,1)-和(3,2,2)-;(8) 平行于xOz 平面,且通过点(3,2,7)-;(9) 过点(1,3,2)-,且平行于平面520x y z +--=;(10) 过两点(8,3,1),(4,7,2)-,且垂直于平面35210x y z +--=;(11) 平行于平面2250x y z +++=而与三坐标面所构成的四面体的体积为15. 指出下列直线的位置性态:(1) 123102x y z -++==- (2)113100x y z +-+==; (3) 6,5,3x t y t z t =-==-;(4) 12,23,0x t y t z =-=-+=. 6. 求满足下列条件的直线的对称式方程,并将其中(1)~(4)化为参数方程和一般式方程:(1) 过点0(1,2,3)M , 方向向量为(2,1,1)=-s ;(2) 过点0(1,2,0)M -, 方向向量为3-s =i k ;(3) 过点(2,3,8)-,且平行于y 轴;(4) 过点(2,3,8)-,且平行于直线243325x y z --+==-; (5) 过点(1,3,2)-,且垂直于平面520x y z +--=;(6) 过点1(1,2,3)M ,2(2,2,7)M -;(7) 过点(1,3,2)-,且与z 轴垂直相交;(8) 过点(1,2,1)-,且平行于直线210210x y z x y z +--=⎧⎨+-+=⎩(9) 垂直于三点1(1,2,3)M ,2(2,2,7)M -和3(0,1,5)M 所在平面,且过点1M ;(10) 过点(3,4,4)-,且与坐标轴夹角分别为π3,π4,2π3的直线方程.7. 求平面4210x y z -+-=与三个坐标面的交线方程.8. 将下列直线方程化为标准式方程:(1)240,3290;x y z x y z -+=⎧⎨--+=⎩ (2)35,28.x z y z =-⎧⎨=-⎩9. (1) 求点(1,3,2)-到平面32610x y z +--=的距离;(2) 求两平行平面326350,326560x y z x y z +--=+--=间的距离;(3) 求平行于平面221x y z +-=且与其距离为2的平面;(4) 证明:两平行平面120,0Ax By Cz D Ax By Cz D +++=+++=之间的距离是d =10. 求下面各组平面的夹角, 并判断它们是否平行或垂直?(1) 1x z +=,1y z -=;(2) 86210x y z --+-=,430x y z +-=;(3) 26310x y z -+-=,3450x y z --+=;(4) 236120x y z -+-=,2270x y z ++-=.11. 求下面各组直线的夹角,并判断它们是否平行?相交?或异面?在相交情况下求出它们的交点:(1) 1451:243x y z L -+-==-,221:132x y z L -+==; (2) 111:214x y z L --==,222:123x y z L ++==; (3) 1:6,19,3L x t y t z t =-=+=-,2:12,43,L x s y s z s =+=-=;(4) 1:1,2,3L x t y t z t =+=-=,2:2,12,4L x s y s z s =-=+=+.12. 求下面各组直线与平面的夹角,并判断它们是否平行?垂直?相交?在相交情况下求出它们的交点:(1) 34:273x y z L ++==--, :42230x y z ∏---=; (2) :327x y z L ==-, :32731x y z ∏-+=; (3) 223:314x y z L -+-==-, :3x y z ∏++=; (4) 221:312x y z L +-+==,:23380x y z ∏++-=. 13. (1) 求过点(3,2,1)--且垂直于直线11413x y z -+==-的平面; (2) 求点(1,0,1)-到直线51132x y z --==-的距离;(3) 求点(2,3,1)在直线722123x y z +++==上的投影. (4) 求点(3,1,1)--在平面23300x y z ++-=上的投影.14. 证明两直线11112x y z +-==和12134x y z +-==是异面直线,并求它们之间的距离,公垂线方程,及公垂线与两直线的交点.15. 求直线1010x y z x y z +--=⎧⎨-++=⎩在平面0x y z ++=上的投影直线方程. 16. 求过两平面0,20x y z x y z +-=++=的交线l 的两个互相垂直的平面,其中一个平面过点(0,1,1)A -.17. 求满足下列条件的平面方程:(1) 过点(3,2,1)--和直线31212x y z --==. (2) 过点(1,2,3)--,且和两直线25346x y z --==-及21122x y z +-==平行; (3) 过两平行直线31212x y z --==,11212x y z +-==; (4) 包含直线10230x z y z --=⎧⎨+-=⎩且与平面21x y z +-=垂直; (5) 过Ox 轴,且与平面y x =成π3的角度; (6) 过两平面50,40x y z x z ++=-+=的交线,且与平面48120x y z --+=的夹角为π4. 18. 求满足下列条件的直线方程:(1) 在平面1x y z ++=上, 且与直线1,1y z ==-垂直相交;(2) 过点(1,0,4)-,且平行于平面34100x y z -+-=,又与直线13312x y z +-==相交; (3) 过点(1,2,1),且与直线2x y z ==-相交,又垂直于直线11321x y z -+==; 19. 一动点与两定点(2,2,1),(1,3,4)等距离,求此动点轨迹的方程.。
空间解析几何与向量代数三
高等数学( B )—向量代数与空间解析几何练习题及解答1、 已知 M 11,2,3 , M 2 0,1, 2 ,M 1M 2 的坐标式? M 1M 2 ?与 M 1M 2 平行的单位向量?方向余弦?[解]:1) M 1M 20 1,1 2, 2 31,1,5M 1M 2 21 222)1 5 273) cosx 2 x 1 1,cosy 2 y 1 1,cosz 2 z 1 5M 1M 227 M 1M 227M 1M 2274)与 M 1M 2 平行的单位向量为:cos ,cos ,cos1 , 1 , 5 。
272727x 1y z 1 x y 1z 2 2、 设直线n4与直线1平行,求 n,m 。
2m3[解 ] : s 12,n,4 , s 2 m,1,3 ,因为两直线平行,r m 1 n 1 p 1 2 n 4 4 3 所以 l 1 / /l 2s 1 / / s 2s 1s 2。
m 2n 2 p 2n, m2m 1 333Ax y 2z 1 与平面: 3x y z3垂直,求 A 。
、 已知平面:[解 ] : n 1A,1, 2 , n 2 3, 1,1 ,因为两平面垂直,所以12n 1 n 2 n 1 n 2 0 A 1 A 2 B 1B 2 C 1C 2 0 A 3 1 1 210 A14、 已知平面x 1 y z 1 : x By 3z 1 0 与直线4垂直,求 B , m 。
m6[ 解 ]: n 1,B, 3 , s m,4,6 ,因为垂直,所以有n/ / s n s 0m4 6 。
1BB2, m 235、 求由 a 1,2,3 , b 1,2,4 为邻边组成的平行四边形的面积。
[ 解] :由两向量叉积的几何意义知:以a ,b 为邻边组成的平行四边行的面积S a bi j k86, 43,222,7,4a b 123,因为124故 S a b22269 。
7426、求以A x1, y1, z1, B x2, y2, z2, C x3 , y3, z3为顶点的三角形面积。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
高等数学下章节自测题(不含答案)
( x, y)→(0,1)
x2 + ( y −1)2
∫ 4、 F (x, y) =
xy sin t 0 1+ t 2 dt
,则
∂2F ∂x2
|(0,2) =
5、
u
=
(
x
)
1 z
在
(1,1,1)
的梯度为
y
二、解下列各题(每题 10 分,共 40 分)
3 / 18
1、设
z
=
x
x
y
,求
∂z ∂x
,
∂z ∂y
Σ
C、 − 3 π B、0 C、 3 π
2
2
D、 2 π
3
4、曲面 Σ 是上半球面:x2 + y2 + z2 = 1,Σ1 是 Σ 在第一卦限部分,则( )
7 / 18
C、 ∫∫ xds = 4∫∫ xds
Σ
Σ1
C、 ∫∫ zds = 4∫∫ zds
Σ
Σ1
B、 ∫∫ yds = 4∫∫ yds
Σ
Σ1
D、 ∫∫ xyzds = 4∫∫ xyzds
Σ
Σ1
5、设
f
有连续导数,I
=
∫∫
Σ
1 y
f
( x )dydz y
+
1 x
f
( x )dzdx + y
zdxdy
其中 Σ
是曲面
y = x2 + z2, y = 8 − x2 − z2 所围立体表面外侧,则 I = ( )
A、 4π B、8π
2、设
x2
+
z2
=
yϕ (
《高等数学》(一)(2)补充例题及练习题
第八章 空间解析几何与向量代数(6学时)§8.1 向 量 及 其 线 性 运 算一、补充例题例1 已知向量)1,5,3(-=a ,)3,2,2(=b ,)3,1,4(--c,求c b a 432+-。
例2 在yOz 面上,求与三点)2,1,3(A 、)2,2,4(--B 和)1,5,0(C 等距离的点。
例3 已知两点)1,3,2(-A 和)0,2,1(-B ,求与方向相同的单位向量e。
例4 已知两点)2,1,1(-A 和)3,1,0(B ,计算向量的模、方向余弦和方向角。
例5 一向量的终点在点)7,1,2(-B ,它在x 轴、y 轴和z 轴上的投影依次为4,4-和7。
求这向量的起点A 的坐标。
二、练习1312-p 习题8-1 4,5,15,17§8.2 向量的数量积与向量积一、补充例题例1 已知j i a += ,k i b += ,求b a ⋅,∧),(cos b a 及a j bPr 。
例2 已知四点)1,2,2(A 、)2,1,0(B 、)1,1,1(C 、)2,3,3(D ,求AB j CDPr ,∧),(cos 。
例3 记)0,1,3(-=a,)1,2,1(-=b,求b a⨯。
例4 已知ABC ∆的三个顶点为)2,0,3(A ,)1,3,5(B ,)3,1,0(-C ,(1)求垂直于这个三角形所在平面的单位向量;(2)求ABC ∆的面积。
解 (1)因为a ⨯= 垂直于向量与,所以a是一个垂直于三角形ABC 所在平面的向量。
而)1,3,2(-=,)1,1,3(--=,所以k j i kj i a72113132++=---=⨯=。
63712222=++=a ,)7,1,2(631=a e。
所以垂直于三角形ABC 所在平面的单位向量为)7,1,2(631±。
(2)因为ABC ∆的面积S 是以AB ,AC 为邻边的平行四边形面积的一半,所以6237122121222=++===a S 。
高等数学-第七章空间解析几何与向量代数习题课
A12
B12
C
2 1
A22
B
2 2
C
2 2
(3)直线与平面相交(夹角)
设直线 L 的方向向量为 s (m, n, p) , 平面 的法向量为
n ( A, B,C), 则它们的交角: Am Bn Cp
sin
A2 B2 C 2 m2 n2 p2
(4)线、面之间的平行与垂直
3 3
则
a 15 , b 5 a 25
17
3
17
于是
p ( 15 17 , 25 17, 0 )
【例8】已知向量 a (4, 3, 2),u 轴与三坐标轴正向构成 相等锐角,求 a 在 u 轴上的投影。
分析:先求出 u 轴上的单位向量,再利用向量投影公式。
解:设 u 轴的方向余弦分别为 cos,cos ,cos ,
解:M1M2 (1, 2,1)
| M1M2 | 2
方向余弦为
cos 1
2
, cos
2 2
, cos
1 2
方向角为 2 , 3 , 1
3
4
3
【例2】确定 , , 的值,使向量i 3 j ( 1)k 与向量
( 3)i ( ) j 3k 相等。并求此时向量的模与方向余弦。
分析: 向量相等的定义是向量坐标对应相等。
解: 由已知条件得
3
3
1 3
易得
1
4
1
即当 1, 4, 1 时两向量相等。 此时向量为
(完整版)高等数学空间解析几何练习
向量代数与空间解析几何第一部分 向量代数___线性运算[内容要点]:1. 向量的概念.2. 向量的线性运算.3. 向量的坐标,利用坐标作向量的线性运算.[本部分习题]1. 指出下列各点所在的坐标轴、坐标面或哪个卦限。
(2,3,5);(0,4,3);(0,3,0)A B C ---2. 求点(1,3,2)--关于点(1,2,1)-的对称点坐标。
3. 求点(4,3,5)M --到各坐标轴的距离。
4. 一向量的起点为(1,4,2)A -,终点为(1,5,0)B -,求AB →在x 轴、y 轴、z 轴上的投影,并求||AB →。
5. 已知两点1M 和2(3,0,2)M ,计算向量12M M −−→的模、方向余弦和方向角。
6. 已知{3,5,4},{6,1,2},{0,3,4},a b c →→→==-=--求234a b c →→→-+及其单位向量.7.设358,247,54,a i j k b i j k c i j k →→→→→→→→→→→→=++=--=--求向量43l a b c →→→→=+-在x 轴上的投影以及在y 轴上的分向量.第二部分 向量代数___向量的“积"[内容要点]:1。
向量的数量积、向量积的概念、坐标表示式及其运算规律。
2。
向量的混合积的概念、坐标表示式及其几何意义。
3.向量垂直、平行、共面的条件.[本部分习题]1. 设{3,1,2},{1,2,1},a b →→=--=-求: (1);(2);(3)cos(,);(4)Pr ;(5)Pr .a b a b a b a b j b j a →→→→→→→→⋅⨯2. 设{2,3,1},{1,1,3},{1,2,0},a b c →→→=-=-=-求: (1)();(2)();(3)();a b c a b c a b c →→→→→→→→→⨯⋅⨯⨯⨯⨯3. 利用向量证明不等式112233a b a b a b ≥++ 其中,(1,2,3)i i a b i =均为实数,并指出等号成立的条件.4.设{3,5,2},{2,1,9},a b →→=-=试求λ的值,使得:(1)a b λ→→+与z 轴垂直;(2)a b λ→→+与a →垂直,并证明此时||a b λ→→+取最大值。
高数下第九章的答案
,即 ;又 在直线 上,
联立方程 解得
从而点 到直线 的距离为 .
9.5空间曲面
P.31.习题9.5
1.指出下列方程在平面解析几何和在空间解析几何中分别表示什么图形.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
解:(1) 在平面解析几何中表示平行于y轴的直线,在x轴上的截距为2; 在空间解析几何中表示平行于yoz面的平面,在x轴上的截距为2;
.
(3)已知非零向量a、b、c且满足 ,证明 .
(4)设向量 ,证明三向量a、b、c共面.
证明:(1)
(2)
相加得 .
(3)已知 ,右乘b得 ,即 ;同理 ;
所以 .
(4)因为 ;
所以设向量 ,证明三向量a、b、c共面.
南阳理工学院高等数学(下)课后答案选解
第九章向量代数与空间解析几何
9.1向量及其坐标表示
P.9习题9.1
2.已知一边长为a的正方体,现取正方体下底面的中心为原点,正方体的顶点在x轴、y轴上,求此正方体各顶点的坐标.
解:下底面的四个顶点分别是:
对应的上底面的四个顶点分别是:
3.求出点 到原点、各坐标轴及坐标面的距离.
;所求直线为 .
(5)过点 且与直线 垂直相交的直线方程为
;则 ;联立
解得
所以,过点 且与直线 垂直相交的直线方程为
.
2.用点向式方程及参数方程表示直线
解:设直线的方向向量为 ;在直线
上任取一点 ,则 解得
所以,点向式方程为 ;参数方程为
3.求直线 与平面 之间的夹角.
解:因为
第八章答案
第八章 空间解析几何与向量代数第一节 向量及其线性运算一、填空题1.点(1,2,3)-在第Ⅴ卦限,点(2,3,1)--在第Ⅲ卦限.2.点(,,)x y z 到xoy 面、yoz 面、xoz 面的距离分别为z ,x ,y ;到x 轴、y 轴、z.3.点(,,)a b c 关于yoz 面的对称点是(,,)a b c -;与(,,)a b c -关于xoz 面对称;关于原点的 对称点是(,,)a b c ---.4.点M 的向径与x 轴成45角,与y 轴成60角,长度为6,若在z 轴上的坐标是负值,则点M的坐标为3)-.提示:设(,,)OM x y z =,cos 6x xr α===,x =1cos 26y y r β===,3y =;由222coscos cos 1αβγ++=,有1cos 2γ=-,3z =-.5.与向量(16,15,12)a =-平行,方向相反且长度为75的向量为(48,45,36)--.6.设()()11112222,,,,,M x y z M x y z ,则12M M=7.与向量(6,7,6)a =- 平行的单位向量为676,,111111⎛⎫±- ⎪⎝⎭.8.向量AB在x 轴、y 轴、z 轴上的投影依次为44-,,7,它的终点坐标为(2,1,7)B -, 则起点坐标(2,3,0)-.提示:若(,,)A x y z ,则AB(4,4,7)(2,1,7)x y z =-=----.9. 若()(),,,,,,x y z x y z a a a a b b b b ==则a b ± =(,,)x x y y z z a b a b a b ±±±. b a ⇔ ∥y x z x y za a ab b b ==.10.在xoy 面上,与三点(3,1,2),(4,2,2),(0,5,1)A B C --等距离的点为3821,,055⎛⎫-- ⎪⎝⎭.提示:设点(,,0)D x y ,由222AD BD CD ==得26108142x y x y -=⎧⎨-+=⎩.二、单项选择题1.设向量,a b互相平行,但方向相反,当0a b >> 时,必有 A .A.a b a b +=- B.a b a b +>- C.a b a b +<- D.a b a b +>+2.下列各组角可以作为某向量的方向角的是 A .A .90,150,60αβγ===B .45,135,60αβγ===C .60αβγ===D .60,120,150αβγ===三、计算题1.已知两点()1M 和()23,0,2M .计算向量12M M的模、方向余弦和方向角.解:()1M ,()23,0,2M ,∴()121,M M =-,122M M = .∴1212M M M M11,222⎛⎫-=- ⎪ ⎪⎝⎭,方向余弦为12-,,12,方向角为0120,0135,060. 2.设()()()3,5,8,2,4,7,5,1,4m n p ==--=- ,求向量43a m n p =+-在x 轴上的投影及在y 轴上的分向量.解:()()()3,5,8,2,4,7,5,1,4m n p ==--=-,∴ 43(13,7,15)a m n p =+-= , 故在x 轴上的投影为13,在y 轴上的分向量为7j . 3.向量a 与三坐标轴的正向构成相等的锐角,其模长为3,求a .解:设 (,,)a x x x = ,且0x >,由3a = ,有239x =,得x =∴a =.第二节 数量积 向量积一、填空题1.a ⇔ ⊥b 0b a ⋅= ;a b ⇔ ∥0a b ⨯=.2.向量()(),,,,,x y z x y z a a a a b b b b ==,若两向量夹角为θ,则 cos θa b a b a b ++3.向量()()3,1,2,1,2,1a b =--=- ,则()23a b -⋅= 18-,2a b ⨯= 10214i j k ++.4.已知点()()()2,4,,3,7,5,,10,9A n B C m 三点共线,则m = 4 ,n = 1 .5.已知点()()()1231,1,2,3,3,1,3,1,3M M M -,与,M M M M 1223同时垂直的单位向量为2,2)--. 提示:与,M M M M 1223 同时垂直的单位向量为M M M M M M M M ⨯±⨯12231223.6.设()()2,5,1,1,3,2a b ==- ,a b λμ+与z 轴垂直,则λ与μ的关系2λμ=. 提示:()0a b k λμ+⋅=.7.,,a b c 为三个非零向量,a b ⊥,a 与c 的夹角为π3,b 与c 的夹角为π6,且a =1,2,3bc == ,则a b c ++=提示:2()()a b c a b c a b c ++=++⋅++ . 二、单项选择题1. 已知()()0,3,4,2,1,2a b ==- ,则ab =Pr j C . A .3 B.13-C.-1 D.1提示:515a a b b a⋅-===-Prj . 2.已知向量,a b的模分别为4,2a b ==,且a b ⋅= ,则a b ⨯= C .A.2B...2 提示: cos(,)a b a b a b ⋅= ,cos(,)2a b = , sin(,)a b a b a b ⨯==三、计算题1.()()()2,3,1,1,1,3,1,2,0a b c =-=-=-,求()a b c ⨯⋅ .解:23185113i j ka b i j k ⨯=-=--+-,所以()(8,5,1)(1,2,0)2a b c ⨯⋅=--⋅-= .2.求向量()4,3,4a =- 在向量()2,2,1b =上的投影.解:6Pr j 23b a b a b ⋅====. 3.已知3,26,72a b a b ==⨯=,求a b ⋅ .解:∵sin 72a b a b θ⨯== ∴7212sin 32613θ==⨯,5cos 13θ==±,从而5cos 3263013a b a b θ⎛⎫⋅==⨯⨯±=± ⎪⎝⎭.4.化简:()()()a b c c a b c b b c a ++⨯+++⨯--⨯.解:()()()a b c c a b c b b c a ++⨯+++⨯--⨯a cbc a b c b b a c a =⨯+⨯+⨯+⨯-⨯+⨯ a c b c a b b c a b c a =⨯+⨯+⨯-⨯+⨯-⨯2()a b =⨯ .第三节 曲面及其方程一、填空题1.xoy 面上双曲线224936x y -=分别绕x 轴、y 轴旋转一周所得旋转曲面的方程依次 为36)(94222=+-z y x 和369)(4222=-+y z x .2.曲面2221x y z --=是由xoy 面上的曲线221x y -=绕x 轴旋转一周所得或由xoz 面上 曲线122=-z x 绕x 轴旋转一周所得.3.2221484x y z ++=表示的曲面为 旋转椭球面 . 4.2235x y z +=表示的曲面为 椭圆抛物面 .5.z =表示的曲面为 圆锥面的上半部分 .6.22y x =表示的曲面为 母线平行于z 轴的抛物柱面 .二、计算题1.一动点与两定点()2,3,1A 和()4,5,6B 等距离,求这动点的轨迹方程. 解:设动点为),,(z y x P ,则由题意知:22||||PB PA =,从而222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x即 0631044=-++z y x ∴动点的轨迹方程为:0631044=-++z y x . 2.将xoz 坐标面上的曲线z x a =+分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程. 解:在xoz 面上的a x z +=绕x 轴旋转一周,所得旋转曲面为:a x z y +=+±22即222)(z y a x +=+,同理,绕z 轴旋转一周后,得旋转曲面方程为:a y x z ++±=22, 即222)(y x a z +=-.3.说明下列旋转曲面是怎样形成的:⑴2221499x y z ++= ⑵22214yx z -+= 解:(1) xoy 面上的曲线19422=+y x (或xoz 面上的曲线19422=+z x )绕x 轴旋转一周所得;(2) xoy 面上的曲线1422=-y x (或yoz 面上的曲线1422=-y z )绕y 轴旋转一周所得. 4.画出由曲面4z =22z x y =+及221x y +=所围立体(含z 轴部分).解:4z =)4,0,0(的下半圆锥面,22z x y =+表示旋转抛物面,221x y +=表示圆柱面,从而三者所围立体即可得到,如图所示.第四节 空间曲线及其方程一、填空题1.母线平行于y 轴且经过曲线2222222160x y z x z y ⎧++=⎨+-=⎩的柱面方程为223216x z +=. 2.球面z =z =xoy 面上的投影方程为221x y z ⎧+=⎨=⎩. z 22z x y =+ 221x y +=4z =图8-1x yO3.旋转抛物面()2204z x y z =+≤≤在xoy 面上的投影为224x y z ⎧+≤⎨=⎩,在yo z 面上的投 影为240y z x ⎧≤≤⎨=⎩.4.圆锥面z =22z x =所围立体在xoy 面上的投影为2220x y xz ⎧+≤⎨=⎩,在xoz面上的投影为0x z y ⎧≤≤⎪⎨=⎪⎩ 二、单项选择题1.曲线2221:1645230x y z x z Γ⎧+-=⎪⎨⎪-+=⎩关于xoy 面的投影柱面的方程是 A . A .2220241160x y x +--= B .22441270y z z +--=C .22202411600x y x z ⎧+--=⎨=⎩D .224412700y z z x ⎧+--=⎨=⎩2.曲线22203y z x z ⎧+-=⎨=⎩在面xoy 上的投影曲线的方程是 B .A .220y x z ⎧=⎨=⎩B .2290y x z ⎧=-⎨=⎩C .2293y x z ⎧=-⎨=⎩D .223y xz ⎧=⎨=⎩三、将曲线方程22222443812y z x zy z x z ⎧++=⎨+-=⎩化成母线分别平行于x 轴及z 轴的柱面的交线方程. 解:将22222443812y z x z y z x z ⎧++=⎨+-=⎩分别消去,x z ,得 224y z z += ① 240y x += ②再将①②联立得交线方程:222440y z zy x ⎧+=⎨+=⎩.第五节 平面及其方程一、填空题1.设一平面经过点()000,,x y z,且垂直于向量(),,A B C ,则该平面方程为000()()()0A x x B y y C z z -+-+-=. 2.平面260x y z -+-=与平面250x y z ++-=的夹角为π3.3.平行于xoz 面且经过点()2,5,3-的平面方程为50y +=.4.经过x 轴和点()3,1,2--的平面方程为20y z +=. 提示:过x 轴的平面方程设为0By CZ +=.5.点()1,2,1到平面22100x y z ++-=的距离为 1 .提示:d =.二、求平行于x 轴且经过两点()4,0,2-和()5,1,7的平面方程.解:设所求平面方程为0By Cz D ++=, 又平面过()4,0,2-()5,1,7两点2070C D B C D -+=⎧∴⎨++=⎩, 29D CB C=⎧∴⎨=-⎩, ∴所求平面方程为:920y z --=. 三、一平面过点()1,0,1-且平行于向量()2,1,1a = 和()1,1,0b =-,试求该平面方程.解:设平面的法向量为n ,则n a b =⨯ ,2113110i j kn i j k ∴==+--,从而(1,1,3)n =-. 又 平面过点(1,0,1)-,∴所求平面方程为(1)3(1)0x y z -+-+=,即340x y z +--=.四、求平面2250x y z -++=与各坐标面夹角的余弦.解:平面2250x y z -++=的法向量(2,2,1)n =-,设平面与,,yoz xoz xoy 面的夹角分别为,,αβγ, 又yoz 面的法向量(1,0,0)i =2c o s .3n i n i α⋅∴== 同理.21cos ,cos .33βγ== 第六节 空间直线及其方程一、填空题1.设直线经过点()000,,x y z ,且平行于向量(),,m n p ,则该直线的对称式方程为00o x x y y z z m n p ---==,参数方程为000x x mty y nt z z pt=+⎧⎪=+⎨⎪=+⎩. 2.直线124x y z x y z -+=⎧⎨++=⎩的对称式方程为302213x y z --+==-. 3.过点()0,2,4且与两平面21x z +=和32y z -=平行的直线方程为024231x y z ---==-. 4.直线30x y z x y z ++=⎧⎨--=⎩与平面10x y z --+=的夹角为 0 .5.点()3,1,2-到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离为. 提示:过(3,1,2)A -与10:240x y z L x y z +-+=⎧⎨-+-=⎩垂直的平面为1y z +=,该平面与直线L 的交点131,,22B ⎛⎫-⎪⎝⎭,则A 到直线L 的距离即为AB .6.过直线1:L 4020x z y +-=⎧⎨-=⎩且平行于直线221:211x y zL +-==的平面方程为 320x y z -++=.提示:过1L 的平面束:(4)(2)0x z y λ∏+-+-=, 2∥L ∏20n s ∴⋅= ,2(1,,1),(2,1,1)n s λ==210λ∴++=,得3λ=-.∴平面为43(2)0x z y +---=,即320x y z -++=..7.直线326040x y z x y z D -+-=⎧⎨+-+=⎩与z 轴相交,则D = 3 .二、单项选择题1.两直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩的夹角为 C . A .π6 B .π4 C .π3 D .π22.直线111x x y y z z m n p---==与平面0Ax By Cz D +++=的夹角θ满足 C . A .sin θ=B .cos θ=C .sin θ=D .cos θ=3.过点()2,0,3-且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程是 A .A .16(2)14(0)11(3)0x y z --+-++=B .(2)2(0)4(3)0x y z ---++=C .3(2)5(0)2(3)0x y z -+--+=D .16(2)14(0)11(3)0x y z -++++-= 4.设直线3210:21030x y z L x y z +++=⎧⎨--+=⎩及平面:4220x y z ∏-+-=,则直线L C .A .平行于∏B .在∏上C .垂直于∏D .与∏斜交提示:判断直线的方向向量与平面的法向量的关系.三、计算题1.求过点()4,1,3-且与直线230:510x y L y z --=⎧⎨-+=⎩平行的直线方程.解:设直线L 的方向向量12025051i j ks i j k =-=++-,∴所求直线的方向向量(2,1,5)s '=,从而直线方程为:413215x y z -+-==. 2.求直线2403290x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解:过已知直线的平面束方程为:329(24)0x y z x y z λ---+-+=,即(32)(14)(2)90x y z λλλ+-++--=.要使其与平面41x y z -+=垂直,则满足4(32)1420,λλλ++++-= 11.13λ=-1731371170.x y z ∴+--= ∴投影直线方程为 41.1731371170x y z x y z -+=⎧⎨+--=⎩ 3.求过直线20:4236x y L x y z +=⎧⎨++=⎩且切于球面2224x y z ++=的平面方程.解:设所求平面方程为:4236(2)0x y z x y λ++-++=即(42)(2)360x y z λλ++++-= 由题意知:(0,0,0)到平面的距离为22=即2440λλ++=2λ∴=-∴所求平面方程为:2z =.第八章 自测题一、填空题(每小题3分,共24分)1.设a =()2,5,1-,b =()1,3,2,问λ与μ有怎样的关系2λμ=,λa +μb 与z 轴垂直. 2.若已知向量a =()3,4,0,b =()1,2,2,则a ,b夹角平分线上的单位向量为.提示: a ,b 夹角平分线上的单位向量为a b a b a ba b+±+.3.若两个非零向量a ,b的方向余弦分别为111cos ,cos ,cos αβγ和222cos ,cos ,cos αβγ, 设a ,b夹角为ϕ,则cos ϕ=122112cos cos cos cos cos cos ααββγγ++.4.过直线122232x y z -+-==-且与平面3250x y z +--=垂直的平面方程为 81390x y z -++-=.提示:L :122232x y z -+-==-,化为一般方程12232232x y y z -+⎧=⎪⎪-⎨+-⎪=⎪-⎩, 即32102320x y y z ++=⎧⎨+-=⎩,过L 的平面束为:321(232)0x y y z λ++++-= ① (3,22,3)n λλ=+ ,(3,2,1)s =-,由0n s ⋅= 得13λ=-,代入①,可得平面方程.5.直线1l :158121x y z --+==-与直线2l :623x y y z -=⎧⎨-=⎩的夹角θ=1arccos 6. 6.点()3,-4,4到直线452221x y z ---==-的距离为 提示:过()A 3,-4,4与L :452221x y z ---==-垂直的平面为:2(3)2(4)(4)0x y z --++-=,与L 的交点为(8,1,4)B ,A 到L 的距离即为AB . 7.曲线22210x y z x y z ⎧++=⎨++=⎩在xoy 面上的投影曲线为2222210x y xy z ⎧++=⎨=⎩.8.与两直线112x y t z t=⎧⎪=-+⎨⎪=+⎩及121121x y z ++-==都平行,且过原点的平面方程为 0x y z -+=.二、单项选择题(每小题3分,共12分)1.点()3,2,2P -在平面32210x y z -+-=上的投影点是 B . A .()3,1,2- B .301720,,777⎛⎫-⎪⎝⎭ C .()7,2,1 D .()2,21,3--提示:过()3,2,2P -与平面 垂直的直线为322312x y z -+-==-,其与平面∏的交点即为投影点. 2.直线224213x y z -+-==-与平面4x y z ++=的关系是 A . A .直线在平面上 B .平行 C .垂直 D .三者都不是 3.两平行平面23490x y z -++=与234150x y z -+-=的距离为 C .A .629 B .2429 CD提示:两平行平面的距离为平面上任一点到另一平面的距离 4.xoz 平面上曲线e xz =绕x 轴旋转所得旋转曲面方程为 A .Ae x = B .22e x y z += C .22e xy z += D.z =三、计算题(共64分)1.求与坐标原点O 及点()2,3,4A 距离之比为1:2的点的全体所组成的曲面方程,它表示 怎样的曲面?(本题6分)解:设所求曲面上的点为(,,)x y z ,则由题意知:2222221(2)(3)(4)4x y z x y z ++=-+-+-, ∴ 曲面方程为:222333468290x y z x y z +++++-=,表示一球面.2.将空间曲线方程222160x y z x z ⎧++=⎨+=⎩化为参数方程.(本题5分)解:把z x =-代入22216x y z ++=,得22216x y +=,令x t =,4sin y t =,则z t =-,∴空间曲线方程的参数方程为:4sin x ty t z t⎧=⎪=⎨⎪=-⎩.3.求中心点在直线247045140x y z x y z +--=⎧⎨++-=⎩上且过点A ()0,3,3和点B ()1,3,4-的球面方程.(本题6分)解:把247045140x y z x y z +--=⎧⎨++-=⎩化为对称式方程:7002322x y z ---==-,设球心坐标为 73,2,22O t t t ⎛⎫- ⎪⎝⎭,则OA OB =,从而 ()()()222227932233423222t t t t t ⎛⎫⎛⎫-+-=-+-+- ⎪ ⎪⎝⎭⎝⎭,∴32t =, ∴(1,3,3)O -,1OA =,所以球面方程为222(1)(3)(3)1x y z ++-+-=.4.求通过直线0230x y z x y z ++=⎧⎨-+=⎩且平行于直线23x y z ==的平面方程.(本题7分)解:设所求平面的方程为:(23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=,(12,1,13)n λλλ=+-+ ,又∵直线11123x y z==平行于平面, ∴1112(1)(13)023λλλ++-++=, ∴1115λ=-, ∴所求平面方程为:726180x y z -+=.5.点()2,1,1P --关于平面∏的对称点为1P ()-2,3,11,求∏的方程.(本题7分)解:设1PP 的中点为0P ,则0(0,1,5)P ,1(4,4,12)PP =- ,∵1//PP n ,取(1,1,3)n =-,由题意知所求∏的方程为:(0)(1)3(5)0x y z --+-+-=,即3160x y z -++-=.6.直线10:10x y z L x y z +--=⎧⎨-++=⎩在平面:0x y z ∏++=上投影直线L 0的方程.(本题7分)解:设所求平面方程为:1(1)0x y z x y z λ+--+-++=,即(1)(1)(1)10x y z λλλλ++-+-+-=,1(1,1,1)n λλλ=+--, 又∵2(1,1,1)n = ,22n n ⊥, ∴1110λλλ++-+-= ∴1λ=-,∴ 10y z --=, ∴ 投影直线L 0的方程为:10y z x y z -=⎧⎨++=⎩.7.求过直线5040x y z x z ++=⎧⎨-+=⎩且与平面48120x y z --+=成π4角的平面方程.(本题7分)解:设所求平面的方程为:5(4)0x y z x z λ+++-+=,即(1)5(1)40x y z λλλ+++-+=,1(1,5,1)n λλ=+- ,又∵2(1,4,8)n =--,1212πcos 4n n n n ⋅==,=即,解得34λ=-, 又平面40x z -+=与平面48120x y z --+=的夹角余弦cos ==θ π.4∴=θ ∴所求平面方程为:207120x y z ++-=及40x z -+=.8.求过点()P 2,1,3且与直线l :11321x y z+-==-垂直相交的直线方程.(本题7分) 解:由题意知,过点P ()2,1,3且垂直与l 的平面方程为:3(2)2(1)(3)0x y z -+---=即3250x y z +--=,令3121x t y t z t=-⎧⎪=+⎨⎪=-⎩,代入上述平面方程,解得37t =.所以平面与l 的交点为02133,,777P ⎛⎫- ⎪⎝⎭,由于所求直线的方向向量0//s P P ,所以取(2,1,4)s =- , 所以直线方程为213214x y z ---==-. 9.直线过点()3,5,9A --且和直线1l :3523y x z x =+⎧⎨=-⎩,2l :47510y x z x =-⎧⎨=+⎩相交,求此直线方程.(本题7分)解:设所求直线为l ,则l 与1l ,2l 分别相交,1l :5332y z x -+==,2l :71045y z x +-==, 所以取11(0,5,3)P l -∈,1(1,3,2)s = ,1(3,0,6)AP = ;22(0,7,10)Pl -∈,2(1,4,5)s =, 2(3,12,19)AP =- ,令111(18,0,9)n s A P =⨯=-,222(136,4,24)n s AP =⨯=--,过l 与1l 的平面方程为:2(3)(9)0x z +-+=,即230x z --=;过l 与2l 的平面方程为:34(3)(5)6(9)0x y z +---+=,即346530x y z --+=;所以直线l 的方程为:230346530x z x y z --=⎧⎨--+=⎩.。
专转本高等数学向量代数和空间解析几何随堂练习题含答案
D 、两个点。
⎧ 2 y2 z2
⎪ 19、⎨
x
4
9
1在空间直角坐标系里表示(
);
⎪⎩ x 1
A、一个点;
B 、平面 x 1 ; C 、椭圆 y2 z2 1 49
D 、椭圆面。
⎧ F (x, y, z) 0
20、空间曲线 ⎨ ⎩
其方程表示式(
G(x, y, z)
);
A、是惟一的; B 、不是惟一的; C 、很难判断双方惟一; D 、应该有两种。
为
;半径 R 为
;
25、 yoz 平面上曲线 y z2 绕 z 轴旋转一周的旋转曲面方程为
;绕 y 轴
旋转一周的旋转曲面方程为
;
26、 x2 0, x2 y2 0, x2 y2 z2 0 和 xyz 0 在空间直角坐标系里分别表示
为
;
;
;
;
5
三、计算题
1、 设向量 a 3i k b 2i 4 j k
17、求过原点且垂直于平面1 : x y z 7 0 及 2 : x 2 y 12z 5 0
的平面方程。
18、求过点(1, 3, 4)且垂直于平面1 : z 0 及 2 : 2x 3y z 1的平面方
程。
19、在通过直线 L :
x 1 y 1 z 3 的所有平面中找出一个平面,使它与
2
C 、 ax 1bx, ay 2by , az 3bz (1 2 3 );
D 、 1axbx 2ayby 3azbz 0;
15、单位向量的坐标在数值上就是(
);
A、向量的方向角;
B 、向量的方向余弦;
C 、下向量所在直线的方向数;
D 、向量的模。
第四章 解析几何与向量代数(厦门理工作业答案)
高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 向量及其线性运算(1)一.选择题1.定点)1,3,2(--A 与)1,3,2(-B 对称的坐标面为 [ C ] (A )xOy 坐标面 (B )yOz 坐标面 (C )zOx 坐标面 (D )y 轴对称 2.两点)2,2,1(A 与)1,0,1(-B 的距离为 [ B ] (A )1 (B )3 (C )13 (D )4 3.非零向量 a 和b ,若满足| a –b |=| a | + |b | ,则 [ C ] (A )a , b 方向相同 (B )a , b 互相垂直 (C )a , b 方向相反 (D )a , b 平行4.已知向量 a = }1,5,3{-, b ={2 ,2 ,3 },则2a –3b 为 [ C ] (A ){0,12,11} (B ){16,12,3} (C ){11,4,0-} (D ){11,14,4} 二.填空题:1.求出点)5,3,4(-A 到坐标y 2.一个向量的终点在点)7,1,2(-B 它在坐标轴上的投影顺次是4, 4- 和 7,这个向量的起点A 三.解下列各题:1.求向量a =21M M 的模、方向余弦和方向角。
已知M 1(1,2,4 ) , M 2(3 ,0 ,2 )。
解:)1,2,1(1221--=-==OM OM M M a 2121=++=∴cos x a α==-12,cos y a β==-22,cos z a γ==12 所以方向角为 3,43,32πγπβπα===2.求向量a =→→→+-k j i 532的模,并用单位向量 a o 表达向量a 。
解: (=+=22a ∴=038a a3.设向量r 的模是4,它与轴u 的夹角是60o , 求r 在轴u 上的投影。
解: ()cos u r r •ϕ=⋅=⨯=1422所以r 在轴u 上的投影为2。
4.证明以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形 解: )3,2,6(--=-=OA OB AB )6,3,2(--=-=OA OC AC )3,5,8(--=-=OB OC BC2792564,79436==++==++==∴所以以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 数量积 向量积 (2)一.选择题1.判断向量→a =→→→++k j i 23和→b =→→-j i 32位置是 [ B ] (A )平行 (B )垂直 (C ) 相交 (D )以上都不是。
高等数学(同济大学第五版)第七章 空间解析几何与向量代数()
习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形. 证明 ; ,→→→OA OB AB −=→→→OD OC DC −=而, ,→→OA OC −=→→OB OD −=所以.→→→→→→AB OA OB OB OA DC −=−=+−=这说明四边形ABCD 的对边AB =CD 且AB //CD ,从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A 3、A4.→c =AB →a =BC →A D 1→A D 2→D D →解 →→→a c 5111−−=−=BD BA A D , →→→a c 5222−−=−=BD BA A D , →→→a c 5333−−=−=BD BA A D , →→→a c 5444−−=−=BD BA A D . 4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.→→21M M 212M M −→)2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21−−=−−=M M )4 ,4 ,2()2 ,2 ,1(2221−=−−−=−M M 解 , .→ 5. 求平行于向量a =(6, 7, −6)的单位向量.解 11)6(76||222=−++=a ,平行于向量a =(6, 7, −6)的单位向量为6 ,7 ,6(1−=a 111111||a 或)6 ,7 ,6(1−−=−a 111111||a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标. 解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0). 在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标.解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,2(a −, )0 ,0 ,2(a , )0 ,2 ,0(a −, )0 ,2 ,0(a , ) ,0 ,22(a a −, ) ,0 ,22(a a , ) ,22 ,0(a a −, ) ,22 ,0(a a . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+−=x d .点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即415422=+=y d .点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=−+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,→2222)2()1(3||−+−+=z y PA ,→2222)2()2(4||++++=z y PB .→222)1()5(||−+−=z y PC 由题意, 有, →→→222||||||PC PB PA ==即 ⎩⎨⎧−+−=++++−+−=−+−+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =−2, 故所求点为(0, 1, −2).14. 试证明以三点A (4, 1, 9)、B (10, −1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为→7)96()11()410(||222=−+−−+−=AB ,→7)93()14()42(||222=−+−+−=AC ,→27)63()14()102(||222=−+++−=BC ,所以, .→→→222||||||AC AB BC +=→→||||AC AB = 因此ΔABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量的模、方向余弦和方向角. →21M M 解 →)1 ,2 ,1()12 ,20 ,43(21−=−−−=M M ;→21)2()1(||22221=++−=M M ;21cos −=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1; (3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60°, 求r 在轴u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, −1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, −4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得,⎪⎩⎪⎨⎧=−−=−−=−774142z y x 解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k ,所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,k j i kj i b a 75121 213++=−−−=×. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18,a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0, 于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.→21M M →32M M 解 , . →)1 ,4 (2,2)1 ,13 ,13(21−=−+−=M M →)2 ,2 ,0()13 ,31 ,33(32−=−−−=M M →→k j i k j i n 446 220 1423221−−=−−=×=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e −−±=−−±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), . →)6 ,3 ,2()82 ,14 ,31(21−−=−−−==M M S W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ→1OP 1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ→2OP 1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=×+×−×=⋅−++=⋅=⋅=⋅=b a b b b a e a a b b .7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .→→OA OB −=→→||||OA OC = 因为,→→→→→→→→→→→→0||||)()()()(22=−=+⋅−=−⋅−=⋅OA OC OA OC OA OC OB OC OA OC BC AC 所以, ∠C =90°.→→BC AC ⊥ 9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c );(3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k .(2)a +b =3i −4j +4k , b +c =2i −3j +3k ,k j k j i c b b a −−=−−=+×+332443)()(. (3)k j i k j i b a +−−=−−=×58311132, (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.→j i 3+=OA →k j 3+=OB 解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为→→||OB OA ×→OA →OB →→|21OB OA S ×=.因为→→k j i k j i +−−==×33310301OB OA , →→191)3()3(||223=+−+−=×OB OA , 所以三角形ΔOAB 的面积为→→1921|21=×=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅于是 ||332211232221232221b a b a b a b b b a a a ++≥++++, 其中当=1时, 即a 与b 平行是等号成立.) ,cos(^b a习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2,即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=−++=R ,球面方程为(x −1)2+(y −3)2+(z +2)2=14,即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++−z y x ,所以此方程表示以(1, −2, −1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=−+−+−++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(−−−为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+−;(2)19422=+−y x ;(3)14922=+z x ;(4)y 2−z =0;(5)z =2−x 2.9. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:析几何中, x =2表示平行于y 轴的一条直线; 在空间解析几何中, x =2表示一析几何中, y =x +1表示一条斜率是1, 在y 轴上的截距也是1的直线; 在空几何中, x 2+y 2=4表示中心在原点, 半径是4的圆; 在空间解析几何中, 几何中, x 2−y 2=1表示双曲线; 在空间解析几何中, x 2−y 2=1表示母线平行旋转曲面是怎样形成的:(1)x =2;解在平面解张平行于yOz 面的平面.(2)y =x +1;解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面.(3)x 2+y 2=4;解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面.(4)x 2−y 2=1.解 在平面解析于z 轴的双曲面.10. 说明下列 (1)1222=++z y x ; 994 解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的. (2)122=+−z y ; 42x 这是xOy 面上的双曲线1422=−y x 解 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线142=+−z y 绕y 轴旋转一周而形 z 1面上的双曲线x 2−y 2=12成的. (3)x 2−y 2−2=; 解 这是xOy 绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线而形成的.a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线而形成的.( (3x 2−z 2=1绕x 轴旋转一周 (4)(z −a )2=x 2+y 2 .解 这是zOx 面上的曲线(z −(z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面:(1)4x 2+y 2−z 2=4;2)x 2−y 2−4z 2=4; )94322y x z +=.习题7−41. 画出下列曲线在第一卦限内的图形:(1 (2)⎩⎨⎧==21y x ;)⎩⎨⎧=−−−=0422y x y x z ;(3) =+222az x .2. 下方程组在平面解析几何中与在空间解析几何中分别表示什么图形:⎩⎨⎧=+222a yx 指出(1)⎧+=15x y ; ⎩⎨−=32x y 解 在平面解析几何中, 表示直线y =5x +1与y =2x −3的交点⎩⎨⎧−=+=3215x y x y )317 ,34(−−; 在空间解析几何中, 表示平面y =5x +1与y =2x −3的交线, 它表示过点⎩⎨⎧−=+=3215x y x y )0 ,317 ,34(−−, 并且行于z 轴.(2)⎪⎩⎪⎨⎧22y x ==+3194y . 解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 解 把方程组中的x 消去得方程3y 2−z 2=16, 这就是母线平行于x 轴且通过曲线y z x z y 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线y z x z y 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.行于z 轴, 准线为=0z 列曲线的一般方程化为参数方程:(1; ⎩⎨⎧=−+=++0162222222y z x z y x ⎩⎨⎧=−+=++0162222222x ⎩⎨⎧=−+=++0162222222x 解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为⎧=+−82222y x x . ⎩⎨ 5. 将下)⎩⎨⎧==++x y z y x 9222解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x . 令t x cos 23=, 则z =3sin t . 故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t . (2). ⎩⎨⎧==+++−04)1()1(222z z y x 解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3.令t x cos 31+=, 则t y sin 3=,于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为. ⎩⎨⎧==+0222z a y x 由第三个方程得bz =θ代入第一个方程得 b z a x cos =, 即ax b z arccos =, 于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a x b z . 由第三个方程得bz =θ代入第二个方程得 b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==a y b z x arcsin 0. 7. 求上半球2220y x a z −−≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z −−≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax . 为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程222y x a z −−=, 得ax a z −=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z −≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程.解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为k j i k j i n n n 69301332021++−=−=×=, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.4. 指出下列各平面的特殊位置, 并画出各平面:(1)x =0;解 x =0是yOz 平面.(2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2.(4)03=−y x ;解 03=−y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x −2z =0;解 x −2z =0是通过y 轴的平面.(7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦.解 此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+−+=⋅⋅==i n i n i n α; 此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^−=+−+−=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+−+=⋅⋅==k n k n k n γ. 6. 一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程. 解 所求平面的法线向量可取为k j i k j i b a n 3011112−+=−=×=, 所求平面的方程为(x −1)+(y −0)−3(z +1)=0, 即x +y −3z −4=0.7. 求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解 解线性方程组⎪⎩⎪⎨⎧=++−=−−=++3220213z y x z y x z y x 得x =1, y =−1, z =3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, −5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5.(2)通过z 轴和点(−3, 1, −2);解 所求平面可设为Ax +By =0.因为点(−3, 1, −2)在此平面上, 所以−3A +B =0,将B =3A 代入所设方程得Ax +3Ay =0,所以所求的平面的方程为x +3y =0,(3)平行于x 轴且经过两点(4, 0, −2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n 1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n 是垂直的, 即b +9c =0, b =−9c ,于是 n =(0, −9c , c )=−c (0, 9, −1).所求平面的方程为9(y −0)−(z +2)=0, 即9y −z −2=0.9. 求点(1, 2, 1)到平面x +2y +2z −10=0的距离.解 点(1, 2, 1)到平面x +2y +2z −10=0的距离为1221|1012221|222=++−×+×+=d .习题7−61. 求过点(4, −1, 3)且平行于直线51123−==−z y x 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124−=+=−z y x . 2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为112243−=+=−−x y x . 3. 用对称式方程及参数方程表示直线. ⎩⎨⎧=++=+−421z y x z y x 解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++−=−=×=. 在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.⎩⎨⎧=++=+−421z y x z y x ⎩⎨⎧=+=+421z x z x 所求直线的对称式方程为32123+==−−z y x ; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程. ⎩⎨⎧=+−+=−+−012530742z y x z y x 解 所求平面的法线向量n 可取为直线的方向向量, 即 ⎩⎨⎧=+−+=−+−012530742z y x z y x k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++−=−−=−×−=. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦. ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y xk j i k j i s −+=−−=431233351, k j i k j i s 105101831222+−=−=. 两直线之间的夹角的余弦为010)5(10)1(4310)1()5(4103||||) ,cos(2222222121^21=+−+−++×−+−×+×=⋅×=s s s s s s . 6. 证明直线与直线平行. ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x k j i k j i s 531121211++=−−=, k j i k j i s 15391123632−−−=−−−=. 因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++−=−=32310201. 所求直线的方程为14322−=−=−z y x . 8. 求过点(3, 1, −2)且通过直线12354z y x =+=−的平面方程. 解 所求平面的法线向量与直线12354z y x =+=−的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, −2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521−−=−=×=. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角. ⎩⎨⎧=−−=++003z y x z y x解 直线的方向向量为 ⎩⎨⎧=−−=++003z y x z y x )2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s −+=−+=−−=−−×=, 平面x −y −z +1=0的法线向量为n =(1, −1, −1).因为s ⋅n =2×1+4×(−1)+(−2)×(−1)=0,所以s ⊥n , 从而直线与平面x −y −z +1=0的夹角为0. ⎩⎨⎧=−−=++003z y x z y x 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =−+=−+和4x −2y −2z =3; 解 所给直线的方向向量为s =(−2, −7, 3), 所给平面的法线向量为n =(4, −2, −2).因为s ⋅n =(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(−3, −4, 0)不满足平面方程4x −2y −2z =3, 所以所给直线不在所给平面上.(2)723z y x =−=和3x −2y +7z =8; 解 所给直线的方向向量为s =(3, −2, 7), 所给平面的法线向量为n =(3, −2, 7). 因为s =n , 所以所给直线与所给平面是垂直的.(3)431232−−=+=−z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, −4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3×1+1×1+(−4)×1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, −2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和 ⎩⎨⎧=−+−=+−+01012z y x z y x ⎩⎨⎧=+−=+−002z y x z y x 平行的平面的方程.解 直线的方向向量为 ⎩⎨⎧=−+−=+−+01012z y x z y x k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1−−=−−=−×−=, 直线的方向向量为 ⎩⎨⎧=+−=+−002z y x z y xk j k j i s −−=−−=−×−=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n −+−=−−−−=×=11032121, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为12211−=−=+z y x . 将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得(−1+t )+2(2+2t )−(−t )+1=0, 解得32−=t . 再将32−=t 代入直线的参数方程, 得35−=x , 32=y , 32=z . 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点32 ,32 ,25(−. 13. 求点P (3, −1, 2)到直线的距离. ⎩⎨⎧=−+−=+−+04201z y x z y x 解 直线的方向向量为 ⎩⎨⎧=−+−=+−+04201z y x z y x k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(−−=−−=−×−=. 过点P 且与已知直线垂直的平面的方程为−3(y +1)−3(z −2)=0, 即y +z −1=0.解线性方程组,⎪⎩⎪⎨⎧=−+=−+−=+−+0104201z y z y x z y x 得x =1, 21−=y , 23=z . 点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点⎩⎨⎧=−+−=+−+04201z y x z y x )23 ,21 ,1(−间的距离, 即 23)32()11()13(22=−++−+−=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ×=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为 →MN =s →M M 0→MN ,→→→||||00s ×=×M M MN M M 又以和为邻边的平行四边形的面积为. 因此→M M 0→MN →||||s ⋅=⋅d MN d , →||||0s s ×=⋅M M d →||||0s s ×=M M d . 15. 求直线在平面4x −y +z =1上的投影直线的方程. ⎩⎨⎧=−−−=+−0923042z y x z y x 解 过直线的平面束方程为 ⎩⎨⎧=−−−=+−0923042z y x z y x (2+3λ)x +(−4−λ)y +(1−2λ)z −9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0. 解之得1113−=λ. 将1113−=λ代入平面束方程中, 得 17x +31y −37z −117=0.故投影直线的方程为. ⎩⎨⎧=−−+=+−011737311714z y x z y x 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;4y z =; (2)x =0, z =0, x =1, y =2, (3)z =0, z =3, x −y =0,03=−y x , x 2+y 2=1(在第一卦限内);2, y 2+z 2=R 2(在第一卦限内).(4)x =0, y =0, z =0, x 2+y 2=R总习题七1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量的坐标为___________.→OM 解 M (x −x 0, y −y 0, z −z 0), .→) , ,(z y x OM = 提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23−. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________.解36.提示: c =−(a +b ),a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b ,|a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(−=+−−+. 所求中线的长度为 30)23()11()14(222=−+−−++=d .4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、→a =BC →b =CA →c =ABb 、c 表示→AD 、、, 并证明→BE →CF.→→→0=++CF BE AD 解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+−=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE −=−=, ,→→→→→AB AC AC BA BC −=+=所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以222222)8()6(4)8()4(2z z −+−+=++−+, 解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a −b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^ b )16cos 3213=−+=π. 设向量a +b 与a −b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅−=−⋅+−=−⋅+−⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 .) ,(^b a 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b ,所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0,即 7|a |2+16a ⋅b −15|b |2 =0, 7|a |2−30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值. ) ,(^b a 解 2^2321||||) ,cos(z z +−=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, 为单调减函数. 求的最小值也就是求) ,cos(^b a ) ,(^b a 22321)(z zz f +−=的最大值.令0)2(431)(2/32=+−−⋅=′z z z f , 得z =−4. 当z =−4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a .以a +2b 和a −3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=×=−×+b a a b a b b a b a . 11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x −3y +z =0, x −2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组,⎪⎩⎪⎨⎧=++=+−=+−4222032032z y x z y x z y x 得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a −−−=−−=×57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7×2+5×1+1×2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为k i k j i b a 36432231−−=−−−=×, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6),即有方程组,⎪⎩⎪⎨⎧=−=−−=+−642123332μλμλμλ解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||−+++−=z y x z ,或 z 2=(x −1)2+(y +1)2+(z −2)2,化简得(x −1)2+(y +1)2=4(z −1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=−−z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=−y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).→)1 ,0 ,3(−=BA 按要求有, →0=⋅BA n 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=−2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±−z y x ,即 3326=++z y x , 或3326=+−z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.⎩⎨⎧==+−001x z y 解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1). ⎩⎨⎧==+−001x z y 设点(1, −1, 1)到直线的垂线交于点(x ⎩⎨⎧==+−001x z y 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+−001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0, 210−=y . 从而)21 ,21 ,1() ,1 ,1(001−−=+−=y y s . 所求平面的法线向量可取为j i k j i k s k n −−=−+−×=×=21)2121(1, 所求平面的方程为0)1()1(21=+−−−y x , 即x +2y +1=017. 求过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0, 又与直线21311z y x =−=+相交的直线的方程.解 过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0的平面的方程为3(x +1)−4(y −0)+(z −4)=0, 即3x −4y +z −1=0.将直线21311z y x =−=+化为参数方程x =−1+t , y =3+t , z =2t , 代入平面方程3x −4y +z −1=0, 得3(−1+t )−4(3+t )+2t −1=0,解得t =16. 于是平面3x −4y +z −1=0与直线21311z y x =−=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为28419161−==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使ΔABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则, .→) ,0 ,1(z AC −=→)1 ,2 ,0(−−=z BC 因为 →→k j i k j i 2)1(212001+−+=−−−=×z z z z BC AC , 所以ΔABC 的面积为→→4)1(421|2122+−+=×=z z BC AC S . 令04)1(4)1(284122=+−+−+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线在三个坐标面上的投影曲线的方程. ⎩⎨⎧−+−=−−=2222)1()1(2y x z y x z 解 在xOy 面上的投影曲线方程为, 即. ⎩⎨⎧=−−=−+−02)1()1(2222z y x y x ⎩⎨⎧=+=+022z y x y x 在zOx 面上的投影曲线方程为⎩⎨⎧=−−−±+−=0)12()1(222y z x x z , 即. ⎩⎨⎧==+−−++002342222y z x z xz x 在yOz 面上的投影曲线方程为⎩⎨⎧=−+−−−±=0)1()12(222x y z y z , 即. ⎩⎨⎧==+−−++002342222x z y z yz y 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即, ⎩⎨⎧=+=0222z y x x ⎩⎨⎧==+−01)1(22z y x 所以, 立体在xOy 面上的投影为. ⎩⎨⎧=≤+−01)1(22z y x 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+−01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+−01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为和⎩⎨⎧==0||y x z ⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:1224===z y x ; (1)抛物柱面2y 2=x , 平面z =0及 0及x +y =1;(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥面22z y x +=2−x −y =及旋转抛物面z 22;(y 2=x , 平面z =0及x =1.4)旋转抛物面x 2+y 2=z , 柱面。
第三章高等数学基础知识-空间解析几何题库1-1-8
第三章高等数学基础知识-空间解析几何题
库1-1-8
问题:
[单选]方程表示()。
A.锥面
B.单叶双曲面
C.双叶双曲面
D.椭圆抛物线
问题:
[单选]曲面x2-y2=z在xOz平面上的截痕是()。
A.A
B.B
C.C
D.D
xOz平面y=0。
问题:
[单选]方程表示()。
A.椭球面
B.平面上椭圆
C.椭圆柱面
D.椭圆柱面在平面上的投影曲线
题干中的方程表示平面y=1上的椭圆. (安徽11选5 https://)
问题:
[单选]设空间直线的对称式方程为,则该直线必()。
A.过原点且垂直于x轴
B.过原点且垂直于y轴
C.过原点且垂直于z轴
D.过原点且平行于x轴
问题:
[单选]在空间直角坐标系中表示()。
A.一个点
B.两条直线
C.两个平面的交线,即直线
D.两个点
问题:
[问答题]设,且a≠b,记|a-b|=m,求a-b与x轴正方向的夹角的余弦值。
问题:
[问答题]已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)。
(1)求以向量为一组邻边的平行四边形的面积S;
(2)若向量a分别与向量垂直,且,求向量a的坐标。
高等数学单元自测题
《高等数学》单元自测题第七章 空间解析几何自测题专业 班级 姓名 学号一、填空题:1. 已知a与b垂直,且a=5,b=12,则=+b a,b a-= 。
2.若两平面0=-++k z y kx 与02=-+z y kx 互相垂直,则k = 。
3.若直线531123-=++=-z k y k x 与22531-+=+=-k z y x 垂直,则k= 。
4.已知)1,3,2(A ,)1,4,5(-B ,)3,2,6(-C ,)1,2,5(-D ,则通过点A 且垂直于B 、C 、D 所确定的平面的直线方程是 。
5.母线平行于oz 轴且通过曲线⎪⎩⎪⎨⎧+==++22222214zy x z y x 的柱面方程是 。
二、选择题:1.下列命题,正确的是 。
(A )、k j i++是单位向量。
(B )、j -非单位向量(C )、2= (D )、b b a a⋅=⋅2)(1.设},,{},,{z y x z y x b b b b a a a a ==、。
则b a ⊥的充分必要条件是 。
(A )、z z y y x x b a b a b a ===,, (B )、0=++z z y y x x b a b a b a (C )、zz yy xx b a b a b a == (D )、z y x z y x b b b a a a ++=++2.设三向量c b a ,,的模分别为3,6,7;且满足a c c b b a c b a ⋅+⋅+⋅=++则,0= 。
(A)、45 (B)、-47 (C)、42 (D)、-433.设平面方程为Bx + Cz +D = 0,且BCD≠0,则平面 。
(A)、平行于OX轴 (B)、平行于OY轴 (C)、经过OY轴 (D)、垂直于OY轴 4.曲线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在XOY面上的投影曲线是 。
(A){222ay x z =+=(B){cos 0bz a x z ==(C){cosbz a y z ==(D){cossin b z a x bza y ==三、设单位向量,,满足0=++,试证:23-=⋅+⋅+⋅a c c b b a。
第七章 多元函数微积分
高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号 第一节 空间解析几何基础知识 第二节 多元函数的概念一.选择题1.方程22480x y z +-+=表示 (D ) (A )平面 (B )柱面 (C )球 (D )抛物面 2.函数)ln(1y x z +=的定义域 ( C )(A )0>+y x (B )0)ln(≠+y x (C )1>+y x (D )1≠+y x 3.设)1(-+=x f y z ,且当1=y x z =时,则)(y f = ( D )(A )1-y (B )y (C )2+y (D ))2(+y y4.若)0()l n(),(22>>--=y x y x x y x f ,则),(y x y x f -+= ( B )(A ))ln(y x - (B ))ln(2y x -(C ))ln (ln 21y x - (D ))ln(2y x - 二.填空题1.点(4,3,5)M -到x 轴的距离d2.若一球面以点(1,3,2)-为球心且过原点,则其方程为3.与Z 轴和点)1,3,1(-A 等距离的点的轨迹方程是_____ _ ___4. 球面:07442222=--+-++z y x z y x 的球心是点__________,半径=R __; 5. ln()z y x =-+的定义域6.设函数32(,)23f x y x xy y =-+,则(x f y =7.已知22),(y x xy y x f -=+,则=),(y x f 8.已知vu ww u w v u f ++=),,(,则),,(xy y x y x f -+=222(1)(3)(2)14x y z -+-++=2262110z x y z --++=(1,2,2)-422{(,)|1,0}x y x y y x +<>≥3()3x xy y -+2222(1)1(1)x xy x y y y --=++2()()xy xx y xy ++三.计算题1.y xy y x )sin(lim)0,2(),(→解:sin()xy xy ≤∴ 当(,)(2,0)x y →时,sin()2xy y→ 则原式=2 2.24lim)0,0(),(-+→xy xy y x解:2==∴原式=(,)(0,0)lim 2)4x y →=3.2222222)0,0(),()(cos 1limy x y x ey x y x +→++-解:2211()2x y -+∴原式=2222222(,)(0,0)1()2lim ()x y x y x y x y e+→++ =222(,)(0,0)1lim2x y x y e+→=12高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号第三节 偏导数 第四节 全微分一.选择题1.设),(y x f z =,则),(00y x xz ∂∂= ( B )(A )x y x f y y x x f x ∆-∆+∆+→∆),(),(lim00000(B )xy x f y x x f x ∆-∆+→∆),(),(lim 00000(C )x y x f y x x f x ∆-∆+→∆),(),(lim0000(D )xy x f y y x f x ∆-∆+→∆),(),(lim 000002.若xy z ln =,则dz 等于 ( B )(A )y x y x y y x x ln ln ln ln + (B )dy yxy dx x y y x x ln ln ln ln +(C )ln ln ln ln x xy x y ydx dy x + (D )xyy x ln ln 3.设22()z yf x y =-,则 11z zx y y∂∂+=∂∂ ( A ) (A )221()f x y y -; (B )4f yf y '+; (C )0; (D )1y二.填空题1.设)cos(2y x z =,则yz∂∂= 2.设22),(y x y x y x f +-+=,则=')4,3(x f3.设)sin(),(223y x ey x y x f xy--+=,则=)1,1(x f4.设432),,(z y x z y x f =,则),,(z y x f z =5.设函数2sin()(1y z y xy y e -=+-,则(1,0)|z x∂=∂6.设2232),(y xy x y x f -+=,则),(y x f xy''= 7.设y x e u xsin -=,则yx u∂∂∂2在点)1,2(π处的值为22sin()x x y -251e +2234x y z 14322e π-8.函数y x xy z ++=22arctan 的全微分=dz三.计算题 1.设xzyau )(1=, 求z y x u u u ''',,解: 1()'ln ln xz xzyx u zayy a -=-⋅ 1()1'ln xz xz yy u xzyaa --=- 1()'ln ln xz xzyz u xy aa y -=-⋅2.设)ln(2y x z +=,求在点(1,0)处的全微分 解:22dx ydydz x y+=+ (1,0)|d z d x = 3.设)11(yx ez +-=,求证z yz y x z x222=∂∂+∂∂ 证:11()21x y z e x x -+∂=∂ 11()21x y z ey y-+∂=∂ 1111()()22222211x yx yz z x y x e y ex y x y-+-+∂∂+=+∂∂=11()22x yez -+=4.验证 nx ey tkn sin 2-=满足22xyk t y ∂∂=∂∂证:22sin kn t y kn e nx t -∂=-∂ 2c o s k n t y n e n x x -∂=∂ 2222s i n k n ty n e n x x-∂=-∂ ∴22xy k t y ∂∂=∂∂22(4)(1)1()1()y x x dx dy xy xy +++++高等数学练习题 第七章 多元函数微积分系 专业 班 姓名 学号第五节 多元复合函数与隐函数微分法(一)一.选择题1.设)(),,(,ln 2y v y x u v u z ψϕ===均为可微函数,则=∂∂yz( C ) (A )vu v u 2ln 2+(B )v u v y 2ln 2+ϕ (C )ψϕ'+v u v u y 2ln 2 (D )vu y ψϕ'22.设(,)2323z f x y x y =+,f 具有二阶连续偏导数,则2zx y∂=∂∂ (B )(A )226621112222615276f x y f x y f x yf '''''''+++ (B )()235211122226666f xy x y f x y f xy f '''''''++++ (C )()235111222666f xy x y f x y f ''''''+++ (D )226611122261527f x y f x y f ''''''++ 二.填空题1.设22v u z +=,而y x v y x u -=+=,,则yzx z ∂∂+∂∂= 2.设yx ez 2-=,而t x sin =,3t y =,则dtdz = 3.设z =)()(1y x y xy f x ++ϕ,f 和ϕ具有二阶连续导数,则yx z ∂∂∂2= '''()''(y f x y y x yϕϕ++++ 4.设f 具有一阶连续偏导数,),(22xye y xf u -=,则u x∂=∂ ;uy∂=∂ . 三.计算题1.设y x z arctan =,而v u x +=,v u y -=,求vz u z ∂∂+∂∂ 解:2211[]1()xz u x y yy∂=-∂+2211[]1()z x v y y y ∂=+∂+ 4()x y +22(cos 6)x y t t e--122''xy xf ye f +122''xy yf xe f -+222z z y u v x y ∂∂+=∂∂+2.设1)(2--=a z y e u ax ,而x a y sin =,xz cos =,求dx du 解:222cos sin ()111ax ax ax du a ae x e xe y z dx a a a =-++--- 2()1ax e yay az az a a=-++- 2222(1)sin (1)(1)1ax axa e x a e y a a a ++==-- 3.设sin()(,)x z xy x y =+ϕ,求2zx y∂∂∂,其中(,)u v ϕ有二阶偏导数。
高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册
第七章 空 间 解 析 几 何第 一 节 作 业一、选择题(单选):1. 点M(2,-3,1)关于xoy 平面的对称点是:(A )(-2,3,1); (B )(-2,-3,-1); (C )(2,-3,-1); (D )(-2,-3,1) 答:( ) 2. 点M(4,-3,5)到x 轴距离为:(A ).54)(;54)(;5)3()(;5)3(4222222222+++-+-+D C B答:( ) 二、在yoz 面上求与A (3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
第 二 节 作 业设.32,,.2,v u c b a c b a v c b a u ρρρρρρρρρρρρρ-+-=++=表示试用第 三 节 作 业一、选择题(单选):已知两点:),0,3,1()2,2,2(2121的三个方向余弦为则和M M M M.22,21,21)(.22,21,21)(;22,21,21)(;22,21,21)(-------D C B A 答:( ) 二、试解下列各题:1. 一向量的终点为B (2,-1,7),它在x 轴,y 轴,z 轴上的投影依次为4,-4,4,求这向量的起点A 的坐标。
.{}.6,7,6.3.34.45,42,353.2的单位向量求平行于向量轴上的分向量上的投影及在轴在求向量设-=-+=-+=-+=++=a y x p n m a k j i p k j i n k j i m ρρρρρρρρρρρρρρρρρ第 四 节 作 业一、选择题(单选):)()()()(:.1D C B A b a ρρρρρρρρρρ上的投影为在向量 答:( ).//)(;)(;)(;//)(:0,.2的必要但不充分条件的充要条件的充要条件的充要条件是则为非零向量与设b a D b a C b a B b a A b a b a ρρρρρρρρρρρρ=⊥=⋅ 答:( ).6321)(;14321)(;14321)(;6321)(:,321,,.3222222=++=++=++=++++====D C B A c b a s c b a 的长度为则两两垂直向量ρρρρρρρ答:( )二、试解下列各题:{}{}.,),3,1,3()1,3,3(),2,1,1(.4.,,4,1,2,2,5,3.3.,5,4,3,,2,85,3),(.13221321321321同时垂直的单位向量求与和已知的关系与求轴垂直与设求向量的数量积分别为与三向量设设M M M M M M M z b a b a x k j a k i a j i a k x j x i x x b a -+=-=+=+=+=++=-+===μλμλπρρρρρρρρρρρρρρρρρρρρ..,3,3.7.)()()(,2,3,32.6.,0,,.5的面积求已知和求已知求为单位向量且满足已知OAB k j k i c b a c b b a j i c k j i b k j i a a c c b b a c b a c b a ∆+=+=⋅⨯+⨯+-=+-=+-=⋅+⋅+⋅=++ρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ第 五 节 作 业选择题(单选):1. 在xoy 面上的曲线4x 2-9y 2=36绕x 轴旋转一周,所得曲面方程为:(A )4(x 2+z 2)-9y 2=36; (B) 4(x 2+z 2)-9(y 2+z 2)=36(C)4X2-9(y2+z2)=36; (D) 4x2-9y2=36.答:()2. 方程y2+z2-4x+8=0表示:(A)单叶双曲面;(B)双叶双曲面;(C)锥面;(D)旋转抛物面。
专升本高等数学二(向量代数与空间解析几何)模拟试卷2(题后含答
专升本高等数学二(向量代数与空间解析几何)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设a、b为两个非零向量,λ为非零常数,若向量a+λb垂直于向量b,则λ等于( )A.B.C.1D.a.b正确答案:B解析:向量a+λb垂直于向量b,则(a+λb).b=0,则λ=.知识模块:向量代数与空间解析几何2.设有单位向量a0,它同时与b=3i+j+4k,c=i+k垂直,则a0为( )A.B.i+j—kC.D.i-j+k正确答案:A解析:a=c×b==i+j一k,又a0为a的单位向量,故a0=.知识模块:向量代数与空间解析几何3.在空间直角坐标系中,若向量a与Ox轴和Oz轴的正向夹角分别为45°和60°,则向量a与Oy轴正向夹角为( )A.30°B.45°C.60°D.60°或120°正确答案:D解析:由cos2α+cos2β+cos2γ=1,且cosα=,所以向量a与Oy轴正向夹角为60°或120°.知识模块:向量代数与空间解析几何4.若两个非零向量a与b满足|a+b|=|a|+|b|,则( )A.a与b平行B.a与b垂直C.a与b平行且同向D.a与b平行且反向正确答案:C解析:|a|+|b|=|a+b|,(|a|+|b|)2=|a|2+|b|2+2|a||b|=(|a+b|)2=|a|2+|b|2+2ab=|a|2+|b|2+2|a||b|cos〈a,b〉,即cos〈a,b〉=1,故两向量平行,若二者反向则|a|+|b|>|a+b|.不满足条件,故两向量平行且同向.知识模块:向量代数与空间解析几何5.直线( )A.过原点且与y轴垂直B.不过原点但与y轴垂直C.过原点且与y轴平行D.不过原点但与y轴平行正确答案:A解析:若直线方程为,令比例系数为t,则直线可化为本题x0=y0=z0=0说明直线过原点,又β=0,则y=0,即此直线在平面xOz内,即垂直于y轴,故选A.知识模块:向量代数与空间解析几何6.平面2x+3y+4z+4=0与平面2x-3y+4z-4=0的位置关系是( )A.相交且垂直B.相交但不重合,不垂直C.平行D.重合正确答案:B解析:2×2-3×3+4×4=11,且两平面的法向量的对应分量不成比例,故两平面的位置关系是相交,但不垂直,不重合.知识模块:向量代数与空间解析几何7.已知三平面的方程分别为π1:x-5y+2z+1=0,π2:3x-2y+3z+1=0,π3:4x+2y+3z-9=0,则必有( )A.π1与π2平行B.π1与π2垂直C.π2与π3平行D.π1与π3垂直正确答案:D解析:三个平面的法向量分别为n1={1,一5,2},n2={3,一2,3},n3={4,2,3},n1.n2=19,n2.n3=17,n1.n3=0,故π1与π3垂直.知识模块:向量代数与空间解析几何8.平面π1:x-4y+z-2=0和平面π2:2x-2y-z-5=0的夹角为( )A.B.C.D.正确答案:B解析:平面π1的法向量,n1={1,一4,1},平面π2的法向量n2={2,一2,一1},cos〈n1,n2〉=,故〈n1,n2〉=,故选B.知识模块:向量代数与空间解析几何9.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为( )A.(一1,2,一3),2B.(一1,2,一3),4C.(1,一2,3),2D.(1,一2,3),4正确答案:C解析:(x-1)2+[y一(一2)]2+(z-3)2=22,所以,该球的球心坐标与半径分别为(1,一2,3),2.知识模块:向量代数与空间解析几何10.方程一=z在空间解析几何中表示( )A.双曲抛物面B.双叶双曲面C.单叶双曲面D.旋转抛物面正确答案:A解析:方程一=z满足双曲抛物面=z(p和q同号)的形式,故方程=z在空间解析几何中表示双曲抛物面.知识模块:向量代数与空间解析几何11.方程(z-a)2=x2+y2表示( )A.xOz面内曲线(z-a)2=x2绕y轴旋转而成B.xOz面内直线z-a=x绕z轴旋转而成C.yOz面内直线z-a=y绕y轴旋转而成D.yOz面内曲线(z-a)2=y2绕x轴旋转而成正确答案:B解析:方程(z-a)2=x2+y2形式表示旋转后的曲面方程形式是h(z,)=0,其是xOz面上的曲线z-a=x绕z轴旋转得到的曲面方程,故选B.知识模块:向量代数与空间解析几何12.下列方程在空间直角坐标系中所表示的图形为柱面的是( ) A.=y2B.z2—1=C.D.x2+y2一2x=0正确答案:D解析:A项表示的是正锥面,B项表示的是单叶双曲面,C项表示的是椭球面,D项可写为(x-1)2+y2=1,其图形为圆柱面,故选D.知识模块:向量代数与空间解析几何填空题13.向量a=3i+4j-k的模|a|=________.正确答案:解析:|a|=.知识模块:向量代数与空间解析几何14.在空间直角坐标系中,以点A(0,一4,1),B(一1,一3,1),C(2,一4,0)为顶点的△ABC的面积为________.正确答案:解析:知识模块:向量代数与空间解析几何15.(a×b)2+(a.b)2=________.正确答案:a2.b2解析:(a×b)2=|a|2|b|2sin2θ,(a.b)2=|a|2|b|2cos2θ,θ=〈a,b〉,(a×b)2+(a.b)2=|a|2|b|2=a2.b2.知识模块:向量代数与空间解析几何16.过点P(4,1,一1)且与点P和原点的连线垂直的平面方程为_________.正确答案:4z+y—z-18=0解析:由点P与原点的连线和所求平面垂直,因此就是平面的法向量.所以n=={4,1,一1},平面又过点P,所以由点法式得平面的方程为4(x-4)+(y-1)-(z+1)=0,即4x+y一2—18=0.知识模块:向量代数与空间解析几何17.通过Oz轴,且与已知平面π:2x+y一-7=0垂直的平面方程为________.正确答案:x一2y=0解析:过Oz轴的平面方程可设为Ax+By=0(A,B不全为零),则法向量n={A,B,0},因为所求平面与已知平面垂直,又已知平面法向量为{2,1,},故可知2A+B=0,即B=一2A,因此,所求平面方程为x一2y=0.知识模块:向量代数与空间解析几何18.直线=z与平面x+2y+2z=5的交点坐标是________.正确答案:(1,1,1)解析:设=z=t,则交点Q(3t一2,一2t+3,t),又点Q∈平面π,即3t-2+2(-2t+3)+2t=5,解得t=1,故交点为Q(1,1,1).知识模块:向量代数与空间解析几何19.点P(3,7,5)关于平面π:2x一6y+3z+42=0对称的点P’的坐标为________.正确答案:解析:过点P(3,7,5)且垂直于平面π:2x一6y+3z+42=0的直线方程可写为,设点P’的坐标为(2t+3,一6t+7,3t+5),故PP’的中点坐标为(t+3,一3t+7,+5),且该点在平面内,即2(t+3)一6(一3t+7)+3(+5)+42=0,解得t=一,故P’=.知识模块:向量代数与空间解析几何解答题20.求垂直于向量a={2,2,1}与b={4,5,3}的单位向量.正确答案:由向量积的定义可知,向量c=a×b是既垂直于向量a,又垂直于向量b的向量,因此为所求单位向量.由于c==i一2j+2k,因此为所求单位向量.涉及知识点:向量代数与空间解析几何21.若|a|=3,|b|=4,且向量a、b垂直,求|(a+b)×(a一b)|.正确答案:因为(a+b)×(a-b)=一a×b+b×a=2b×a,所以|(a+b)×(a-b)|=2|b||a|sin〈a,b〉=24.涉及知识点:向量代数与空间解析几何22.设平面π通过点M(2,3,一5),且与已知平面x—y+z=1垂直,又与直线平行,求平面π的方程.正确答案:用一般式求之.设平面π的方程为Ax+By+Cz+D=0,则从而,平面π的方程为x一2y一3z=11.涉及知识点:向量代数与空间解析几何23.求过点A(-1,0,4)且平行于平面π:3x一4y+z-10=0,又与直线L0:相交的直线方程.正确答案:用两点式求之.过点A(-1,0,4)与已知平面π:3x一4y+z一10=0平行的平面π1的方程为3(x+1)一4y+(z一4)=0,将直线L0的方程化为参数式并代入π1中,求得t=16.于是直线L0与平面π1的交点B为B(15,19,32),={16,19,28},所求直线方程为.涉及知识点:向量代数与空间解析几何24.求直线与平面x—y+z=0的夹角.正确答案:因为直线的方向向量为s={2,3,2},平面的法向量为n={1,一1,1},所以直线与平面的夹角φ的正弦为sinφ=.所以φ=arcsin.涉及知识点:向量代数与空间解析几何25.求过点(2,1,1),平行于直线且垂直于平面x+2y 一3z+5=0的平面方程.正确答案:直线的方向向量为s={3,2,一1},平面的法向量为n1={1,2,一3},s×n1==一4i+8j+4k,于是所求平面方程为(x一2)一2(y 一1)-(z-1)=0,即x一2y-z+1=0.涉及知识点:向量代数与空间解析几何26.求点(一1,2,0)在平面x+2y-z+1=0的投影点坐标.正确答案:过点(一1,2,0)且与平面x+2y-z+1=0垂直的直线方程为,所以设该垂线与平面x+2y—z+1=0的交点为Q(t一1,2t+2,一t),即点Q就是点(一1,2,0)在平面π:x+2y-z+1=0上的投影点,由点Q ∈π,将Q(t一1,2t+2,一t)代入到平面方程中可得t-1+2(2t+2)+t+1=0,解之得t=一.涉及知识点:向量代数与空间解析几何27.求直线L:绕z轴旋转所得旋转曲面的方程.正确答案:设(x,y,z)是旋转曲面上任何一点,它对应于L上的点为(x0,y0,z0),由L的参数式可得由于(x,y,z)与(x0,y0,z0)到z轴的距离相等,所以有关系式x2+y2=x02+y02=1+t2,另外z=z0,所以z=1+2t,t=,得x2+y2一=1,即为一单叶双曲面方程.涉及知识点:向量代数与空间解析几何。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学空间解析几何
练习
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
向量代数与空间解析几何
第一部分 向量代数___线性运算
[内容要点]:
1. 向量的概念.
2. 向量的线性运算.
3. 向量的坐标,利用坐标作向量的线性运算.
[本部分习题]
1. 指出下列各点所在的坐标轴、坐标面或哪个卦限. (2,3,5);(0,4,3);(0,3,0)A B C ---
2. 求点(1,3,2)--关于点(1,2,1)-的对称点坐标.
3. 求点(4,3,5)M --到各坐标轴的距离.
4. 一向量的起点为(1,4,2)A -,终点为(1,5,0)B -,求AB →
在x 轴、y 轴、z 轴上的投影,并求||AB →。
5. 已知两点1M 和2(3,0,2)M ,计算向量12M M −−→
的模、方向余弦和方向角.
6. 已知{3,5,4},{6,1,2},{0,3,4},a b c →
→
→
==-=--求234a b c →→→
-+及其单位向量.
7.设358,247,54,a i j k b i j k c i j k →
→
→
→→
→
→
→→
→
→
→
=++=--=--求向量43l a b c →→→→
=+-在x 轴上的投影以及在y 轴上的分向量.
第二部分 向量代数___向量的“积”
[内容要点]:
1.向量的数量积、向量积的概念、坐标表示式及其运算规律。
2.向量的混合积的概念、坐标表示式及其几何意义。
3.向量垂直、平行、共面的条件. [本部分习题]
1. 设{3,1,2},{1,2,1},a b →→
=--=-求:
(1);(2);(3)cos(,);(4)Pr ;(5)Pr .a b a b a b a b j b j a →→
→
→
→→
→
→
⋅⨯
2. 设{2,3,1},{1,1,3},{1,2,0},a b c →
→
→
=-=-=-求: (1)();(2)();(3)();a b c a b c a b c →
→
→
→
→
→
→
→
→
⨯⋅⨯⨯⨯⨯
3. 112233a b a b a b ≥++ 其中,(1,2,3)i i a b i =均为实数,并指出等号成立的条件.
4.设{3,5,2},{2,1,9},a b →
→
=-=试求λ的值,使得: (1)a b λ→→
+与z 轴垂直;
(2)a b λ→→+与a →垂直,并证明此时||a b λ→→
+取最大值。
5.已知||3,||36,||72,a b a b →
→
→
→
==⨯=求a b →→
⋅。
6.判断向量,,a b c →→→
是否共面。
(1){3,2,5},{1,1,2},{9,7,16};a b c →
→
→
===- (2){1,2,3},{3,3,1},{1,7,5};a b c →
→
→
=-==-
(3){1,1,2},{2,4,5},{3,9,8};a b c →→→
=-==
第三部分 空间解析几何
[内容要点]:
1. 平面方程和直线方程,平面与直线的位置关系。
2. 空间曲线及其方程和在坐标平面上的投影及其方程。
3. 曲面方程的概念,旋转曲面、柱面、二次曲面的方程及其图形。
[本部分习题]
1.求满足下列条件的平面方程:
(1) 过点A (1,-2,3)且与向径OA →
垂直; (2) 过点(3,1,-2)且与平面2x+y-7z+10=0平行; (3) 过点(1,0,2)且平行于向量{1,1,2},{2,1,0};a b →
→
=-= (4) 过点(1,1-1),(-2,-2,2)和(1,-1,2); (5) 过点(1,2,-1)和y 轴;
(6) 过点(2,0,1)和点(5,1,3)且平行于z 轴; (7) 过点(1,1,1)和点(0,1,-1)且与平面x+y+z=0相垂
直
2.求平面2x-2y+z+5=0与平面x+3y-2z+7=0的夹角的余弦。
3.求两平行平面10Ax By Cz D +++=与20Ax By Cz D +++=之间的距离。
4.求下列直线的方程:
(1) 过点(-2,3,1)且平行于直线
12
321
x y z -+==
; (2) 过点(1,1,5)且垂直于平面2y-z=0; (3) 过点(1,2,-3)和(2,1,4);
(4) 过点(0,2,4)与两平面x+2z-1=0和y-3z-2=0平行; (5) 过点(0,1,2)且与直线
11112
x y z --==垂直相交。
5.写出下列直线的对称式及参数方程:
0(1)0x y z x y z +-=⎧⎨-+=⎩ 50
(2)384360x y z x y z -++=⎧⎨-++=⎩
6.判断下列直线1L 和2L 的相互位置,并求夹角的余弦:
123122(1):
,:;234112x y z x y z L L +-+-==+= 121112
(2):,:;112134
x y z x y z L L +-+-==+=
7.求下列投影点的坐标:
(1) 点(-1,2,0)在平面x+2y-z+1=0上的投影点; (2) 点(2,3,1)在直线
722
123
x y z +++==
上的投影点。
8.求直线210
3210x y z x y z +-+=⎧⎨-+-=⎩在平面30x y z ++-=上的投影直线方程。
9.求两直线250240x y y z ++=⎧⎨--=⎩与0
240y x z =⎧⎨++=⎩的公垂线的方程。
10. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形
(1)21x y += (2)221x y += (3)221x y -= (4)212x y +=
11.写出下列曲线绕指定轴旋转而成的旋转曲面的方程:
(1)yOz 面上的抛物线22z y =绕y 轴旋转; (2)xOy 面上的双曲线22236x y -=绕x 轴旋转; (3)xOz 面上的直线210x z -+=绕z 轴旋转。
12.指出下列方程所表示的曲面哪些是旋转曲面,这些旋转曲面是如何形成的?
(1)221x y z ++= (2)221x y z ++=
(3)2
2
214
y x z -+= (4)22221x y z z --+-=
13.指出下列方程表示的曲线:
(1)222(1)(4)2510x y z y ⎧-++++⎨+=⎩ (2)222
432
x y z z ⎧-=⎨=⎩
14.将曲线2229
1x y z x z ⎧++=⎨+=⎩化为参数方程,并求其在xOy 平面上的投影方
程。
15.求准线为222222
41
x y z x y z
⎧++=⎪⎨=+⎪⎩母线平行于z 轴的柱面方程。
[重点、难点、考点]:
本章要求熟悉向量的概念及其运算和空间直角坐标系以及
一些特殊曲面的方程及其图形。
【总习题】
1.在边长为1的立方体中,设OM 为对角线,OA 为棱,求OA →在OM →
上的
投影。
2.设|||1,6
a b a b π
→
→
→
→
==与的夹角=,计算:
(1)a b →→+与a b →→
-之间的夹角;
(2)以2a b →→+与3a b →→
-为邻边的平行四边形的面积。
3.设,a b →→
为非零向量,且||1,b →
=a b →→
与的夹角=
3π,求0||||lim x a x b a x
→→→
→+-。
4. 已知点A (-1,0,0)和B (0,3,2),试在z 轴上求一点C ,使
ABC ∆的面积最小。
5. 求通过点A (3,0,0)和B (0,0,1)且与xOy 面成
4
π
角的平面方程。
6. 设一平面过原点及点(1,-1,0)到直线230
30
y x x z -+=⎧⎨--=⎩的垂线,求此平
面的方程。
7. 设一直线过点(2,-1,2)且与两条直线1111
:,101
x y z L ---==和 2213
:
,111
x y z L --+==-同时相交,求此直线的方程。
8. 求直线(0)x b bc b y z c =⎧⎪
≠⎨=⎪⎩
绕z 轴旋转所得旋转面的方程,它表示什么曲
面? 9. 10.
证明直线10x y x z -=⎧⎨+=⎩与11x y z +=⎧⎨=-⎩
相交,并求出交点的坐标。