二极管及其基本电路

合集下载

第02章 半导体二极管及基本电路

第02章 半导体二极管及基本电路

一、N 型半导体:
N型
电子为多数载流子
+4 +4 +4
空穴为少数载流子
+4 +5 +4 自由电子
磷原子 施主原子
载流子数 电子数
N型杂质半导体的特点:
1、与本征激发不同,施主原子在提供多余电子的同时 并不产生空穴,而成为正离子被束缚在晶格结构 中,不能自由移动,不起导电作用。
2、在室温下,多余电子全部被激发为自由电子,故N
特性 符号及等效模型:
iD
uD
S
S
正向偏置时: 管压降为0,电阻也为0。 反向偏置时: 电流为0,电阻为∞。
正偏导通,uD = 0; 反偏截止, iD = 0 R =
二、二极管的恒压降模型
iD U (BR) URM O IF uD
iD UD(on) uD
uD = UD(on)
0.7 V (Si) 0.2 V (Ge)
iD 急剧上升
死区 电压
UD(on) = (0.6 0.8) V 硅管 0.7 V (0.1 0.3) V 锗管 0.2 V iD = IS < 0.1 A(硅) 几十 A (锗) 反向电流急剧增大 (反向击穿)
U(BR) U 0 U < U(BR)
反向击穿类型: 电击穿 — PN 结未损坏,断电即恢复。 热击穿 — PN 结烧毁。 反向击穿原因: 齐纳击穿: 反向电场太强,将电子强行拉出共价键。 (Zener) (击穿电压 < 6 V) 反向电场使电子加速,动能增大,撞击 雪崩击穿: 使自由电子数突增。 (击穿电压 > 6 V)
t
例: ui = 2 sin t (V),分析二极管的限幅作用。 1、 0.7 V < ui < 0.7 V

二极管基本电路及其分析方法

二极管基本电路及其分析方法

e
v D /VT Q

VT ID
iD VT

Q

ID VT
则 rd
1 gd

VT ID
常温下(T=300K)
rd
26 ( mV ) I D ( mA )
2. 模型分析法应用举例
1) 整流电路 2)限幅电路 3)开关电路 4)低电压稳压电路 5)箝位电路 6)其它电路
分析方法:
1)选取参考点; 2)用理想模型、恒压降或折线模型代替二极管; 3)断开理想二极管,求N、P两端的电压。
vd
_ R
+
vO
_
7) 其它电路
+VCC +VCC


vi


-VEE
vo
-VEE
vo
防止共模输入电压过大
防止电源反接
- +
vo
防止差模输入电压过大
2.模型分析法应用举例
(6)小信号工作情况分析
直流通路、交流通路、静态、动态 等概念,在放大电路的分析中非常重要。
图示电路中,VDD = 5V,R = 5k,恒压降模型的VD=0.7V,vs = 0.1sint V。 (1)求输出电压vO的交流量和总量;(2)绘出vO的波形。
t
vo
3 0
t
2)用恒压降模型分析
+
vi – R D
0.7
+
vo –
VREF
当vi 3 0.7时,D通,vO 3.7V
当vi 3 0.7时,D止,vO vi
(3)限幅电路 电路如图,R = 1kΩ,VREF = 3V,二极管为硅二极管。分别 用理想模型和恒压降模型求解,当vI = 6sint V时,绘出相应的输 出电压vO的波形。

发光二极管电路

发光二极管电路

发光二极管电路发光二极管(LED)是一种半导体器件,具有高效、节能、寿命长等优点,因此在现代电子技术中得到了广泛应用。

本文将介绍发光二极管电路的基本原理、常见电路和应用。

一、基本原理发光二极管是一种具有单向导电性的半导体器件,其结构类似于普通二极管,但在PN结上加入了特殊的材料,使其能够发出光。

当LED正向偏置时,电子从N区向P区流动,与空穴复合时会释放出能量,这些能量以光的形式发射出来,形成发光现象。

二、常见电路1.单个LED电路单个LED电路是最简单的LED电路,只需要将LED连接到电源上即可。

但是,由于LED的电压和电流都比较低,需要使用限流电阻来保护LED,防止过流过压损坏LED。

2.串联LED电路串联LED电路是将多个LED连接在一起,形成串联电路。

由于LED的电压是固定的,因此需要根据串联LED的数量来选择合适的电源电压。

同时,为了保护每个LED,需要在每个LED之间加上限流电阻,以保证电流均匀分配。

3.并联LED电路并联LED电路是将多个LED连接在一起,形成并联电路。

由于LED的电流是固定的,因此需要根据并联LED的数量来选择合适的电源电流。

同时,为了保护每个LED,需要在每个LED之间加上限压电阻,以保证电压均匀分配。

三、应用1.照明LED照明是目前最为广泛的LED应用之一。

由于LED具有高效、节能、寿命长等优点,因此被广泛应用于室内照明、路灯、汽车照明等领域。

2.显示LED显示是另一个重要的LED应用领域。

由于LED具有高亮度、高对比度、高刷新率等优点,因此被广泛应用于数码管、点阵屏、大屏幕等显示设备中。

3.信号指示LED信号指示是LED应用的另一个重要领域。

由于LED具有高亮度、寿命长等优点,因此被广泛应用于电子产品中的指示灯、警示灯等。

发光二极管电路是现代电子技术中不可或缺的一部分,其应用范围广泛,未来还将有更多的应用领域。

二极管及其基本电路

二极管及其基本电路

二极管及其基本电路
二极管是一种具有单向导电性的电子器件,它只允许电流在一个方向上流动,而在相反的方向上则被阻止。

二极管的基本电路包括二极管本身以及与其连接的电路。

在基本电路中,二极管通常与电阻、电容等元件一起构成电路。

例如,在整流电路中,二极管被用来将交流电转换为直流电;在限幅电路中,二极管被用来限制电路中的电压或电流;在开关电路中,二极管被用来控制电路的通断。

二极管的基本工作原理是利用其单向导电性。

当正向电压加在二极管上时,二极管导通,电流可以通过;而当反向电压加在二极管上时,二极管截止,电流无法通过。

这种特性使得二极管在电路中具有重要的作用。

需要注意的是,不同类型的二极管具有不同的特性和应用。

例如,硅二极管和锗二极管的导通电压不同,硅二极管的导通电压为0.6V左右,而锗二极管的导通电压为0.2V左右。

因此,在使用二极管时,需要根据具体的电路需求选择合适的二极管类型。

二极管及其基本电路

二极管及其基本电路
荷区以后,由 于正负电荷之间的相互作 用,在空间电荷区中就形 成了一个电场,其方向是 从带正电的N区指向带负 电的P区。 电场是由载流子扩散运动 形成的,称为内电场。 显然,这个内电场的方向 是阻止扩散的,因为这个 电场的方向与载流子扩散 运动的方向相反。
6
杂质半导体
在本征半导体中掺入微量的杂质,就会使半导体的导 电性能发生显著的改变。 因掺入杂质的性质不同,杂质半导体可分为空穴(P) 型半导体和电子(N)型半导体两大类。
7
P型半导体
在硅或锗的晶体内渗入少量三价元素杂质,如硼(或 铟)等,因硼原子只有三个价电子,它与周围硅原于 组成共价键时,缺少一个电子,在晶体中便产生一个 空位。 当相邻共价键上的电子受到热振动或在其他激发获得 能量时,有可能填补这个空位,使硼原子成为不能移 动的负离子;而原来硅原子的共价键,则因缺少一个 电子,形成了空穴。 因为硼原子在硅晶体中能接受电子,故称硼为受主杂 质或P型杂质,受主杂质除硼外, 尚有铟和铝。加入砷 化镓的受主原子包括元素周期表中的II族元素(作为镓 原子的受主)或IV族元素(作为砷原子的受主)。
12
PN结的形成
P型半导体和N型半导体结合后,在它们的交界处就 出现了电子和空穴的浓度差别,N型区内电子多而空 穴少,P型区内则相反,空穴多而电子少。 电子和空穴都要从浓度高的地方向着浓度低的地方扩 散。电子要从N型区向P型区扩散,空穴要从P型区向 N型区扩散。 电子和空穴都是带电的,它们扩散的结果就使P区和 N区中原来保持的电中性被破坏了。
N型半导体的共价键结构
在掺入杂质后,载流子的数目都有相当程度的增加。 若每个受主杂质都能产生一个空穴,或者每个施主杂 质都能产生一个自由电子,则尽管杂质含量很微,但 它们对半导体的导电能力却有很大的影响。

模拟电子技术 例题

模拟电子技术  例题
5、集成电路运算放大器 例 1.集成运放的输入级为什么采用差分式放大电路?对集成运放的中间级和输 出级各有什么要求?一般采用什么样的电路形式?
集成运算放大器是一个高增益直接耦合多级放大电路,直耦多级放大电路 存在零点漂移现象,尤以输入级的零点漂移最为严重。差动放大电路利用电路 的对称性和发射级电阻 Re 或恒流源形成的共模负反馈,对零点漂移有很强的抑 制所用,所以输入级常采用差分放大电路,它对共模信号有很强的抑制力。
解: 分析方法 : (1)将 D1、D2 从电路中断开,分别出 D1、D2 两端的电压; (2)根据二极管的单向导电性,二极管承受正向电压则导通,反之则截止。若 两管都承受正向电压,则正向电压大的管子优先导通,然后再按以上方法分析 其它管子的工作情况。 本题中:V12=12V,V34=12+4=16V,所以 D2 优先导通,此时,V12=-4V,所 以 D1 管子截止。VA0 = -4V。
解:(1)Vi=10V 时 Vim=14V ,Vom=14V Po=Vom×Vom/2RL=142/(2×8)=12.25W PT1=1/RL.(VccVom/T1-VomVom/4)=5.02W η=Po/Pv=12.25/22.29×100%=54.96% (2) Vim=Vcc=20V Vom=20V Po=20×20/(2×8)=25W PT1=6.85W Pv=31.85W η=78.5%
VCEQ1=VCEQ2 =VC -VE =(6-Rc.ICQ )-(-0.7)=3.58V 2.求差模电压放大倍数。 思路:首先画出差模信号工作时电路交流通路,Re 电阻交流短接。然后利用第三 章放大电路分析方法进行求解。 Avd =Vo/Vi= -βRc/(Rb+rbe) rbe= rbb'+(1+β)26/IEQ =100+(1+100)26/0.52 =5.15K 所以,Avd=-84 3.求输入电阻及输出电阻 由交流通路可直接求得 Rid=2(Rb +rbe )=14.3K Rod=2Rc =1.2K

二极管及其基本电路

二极管及其基本电路

图2-3 空穴在晶格中的移动
(动画1-2)
3.1.2 杂质半导体
(1) N型半导体 (2) P型半导体
在本征半导体中掺入某些微量元素作 为杂质,可使半导体的导电性发生显著变 化。掺入的杂质主要是三价或五价元素。 掺入杂质的本征半导体称为杂质半导体。
(1)N型半导体
在本征半导体中掺入五价杂质元素,例如磷,可形 成 N型半导体,也称电子型半导体。 因五价杂质原子中只有四个价电子能与周围四个半 导体原子中的价电子形成共价键,而多余的一个价电子 图2-4 N型半导体结构示意图 因无共价键束缚而很容易形成自由电子。 在N型半导体中自由电子是多数载流子,它主要由 杂质原子提供;空穴是少数载流子, 由热激发形成。 提供自由电子的五价杂质原子因带正电荷而成为 正离子,因此五价杂质原子也称为施主杂质。N型半导 体的结构示意图如图2-4所示。
I I S (e
VD
VT
1)
式中IS 为反向饱和电流,VD 为二极管两端的 电压降,VT =kT/q 称为温度的电压当量,k为玻耳 兹曼常数,q 为电子电荷量,T 为热力学温度。对 于室温(相当T=300 K),则有VT=26 mV。
(1) 正向特性
当V>0即处于正向特性区域。 正向区又分为两段:
图 2-8 PN结加反向电压时的 导电情况
PN结加正向电压
时,呈现低电阻,具
有较大的正向扩散电
流;PN结加反向电压
时,呈现高电阻,具 有很小的反向漂移电
图 2-8 PN结加反向电压时 的导电情况
(动画1-5)
流。由此可以得出结 论:PN结具有单向导
电性。
总之:PN结正向电阻小,反向电阻大——单向导电性。
PN结面积大,用 于工频大电流整流电路。

二极管及其基本电路

二极管及其基本电路

vD
nV T
指数 关系
D
当加反向电压时: v
vD<0,当|vD|>>|V T |时 e 则 iD IS
常数
nV T
1
4、PN结的反向击穿
二极管处于反向偏置时,在一定的电压范围内,流过 PN结的电流很小,但电压超过某一数值(反向击穿电压)时, 反向电流急剧增加,这种现象就称为PN结的反向击穿。
+4 +4 +4
+4
+3
+4
+4
+4
+4
自 由 电 子 空 穴 对
P型半导体的示意方法
空穴 受 主 离 子
- - -
- - -
- - -
- -

2.N型半导体
在硅(或锗)的晶体中掺入少量的五价元素杂质。(磷、锑)
硅原子
多余电子
+4
+4
+4
磷原子多余的电子易受 热激发而成为自由电子, 使磷原子成为不能移动的 正离子。 磷→施主杂质、N型杂质
正偏时,结电容较大,CJ≈CD 反偏时,结电容较小,CJ≈CB
§1.2 二极管
1.2.1 二极管的结构
PN 结加上管壳和引线,就成为半导体二极管。
(Anode)
1、二极管的电路符号:
2、分类
(Kathode)
按结构分:点接触型,面接触型,平面型。
按用途分:整流二极管,检波二极管,稳压二极管,„„。 按材料分:硅二极管,锗二极管。
(3)PN结的V--I 特性及表达式
i D I S (e
vD
nV T
1)
vD :PN结两端的外加电压

2二极管及其基本电路

2二极管及其基本电路
• 1.雪崩击穿
• 随着反向电压的增大,阻挡层内部的电场增强,阻挡层中 载流子的漂移速度相应加快,致使动能加大。当反向电压 增大到一定数值时,载流子获得的动能足以把束缚在共价 键中的价电子碰撞出来,产生自由电子—空穴对。新产生 的载流子在强电场作用下,再去碰撞其它中性原子,又产 生新的自由电子-空穴对。如此连锁反应使得阻挡层中载 流子的数量急剧增多,因而流过PN结的反向电流也就急 剧增大。因增长速度极快,象雪崩一样,所以将这种碰撞 电离称为雪崩击穿(Avalanche Multiplication )
门坎电压Vth(在正向电压的起始部分,由于正向电压较小, 外电场还不足以克服PN结的内电场,因而这时的正向电 压几乎为零,二极管呈现出一个大电阻,好像有一个门坎) 硅管的Vth 约为0.5V,锗管的Vth 约为0.1V 当正向电压大于Vth时,内电场大为削弱,电流因而迅速增 长,二极管正向导通。硅管的正向导通压降约为0.7V,锗 管约为0.2V
(1)杂质半导体就整体来说还是呈电中性的。
(2)杂质半导体中的少数载流子虽然浓度不高,但对温度、 光照十分敏感。
(3)杂质半导体中的少数载流子浓度比相同温度下的本征 半导体中载流子浓度小得多。
§3.2 PN结的形成及特性
漂移电流与扩散电流
1、漂移电流 载流子在电场作用下有规则的运动-------漂移运动 形成的电流-------漂移电流
+4
+4
空穴运动的实质是共有电 子依次填补空位的运动。
+4
+4
二、本征半导体
2、本征半导体的导电机理 (3)结论
①电子和空穴总是成对出现的------本征激发。 电子和空穴也可以复合而消失。
②本征半导体在外电场的作用下,形成两种电流------空穴电 流和电子电流,外电路的总电流等于两种电流的代数和。 ③电子--空穴对的数目对温度、光照十分敏感。 ④本征半导体的导电能力取决于载流子的浓度。

二极管及其基本电路

二极管及其基本电路
3.1 半导体的基本知识 3.2 PN结的形成及特性 3.3 半导体二极管 3.4 二极管基本电路及其分析方法 3.5 特殊二极管
杂质半导体
杂质半导体:为了提高半导体的导电能力,人为掺入某
些微量的有用元素作为杂质,称为杂质半导体。在提炼单 晶的过程中一起完成。掺杂是为了显著改变半导体中的自 由电子浓度或空穴浓度,以明显提高半导体的导电性能。
所以,AO的电压值为-6V。
开关电路
1.在开关电路中,利用二极管的单向导电性以接通或 断开电路。
2.在分析这种电路时,即判断电路中二极管处于导 通状态还是截止状态,应掌握一条基本原则:
可以先将二极管断开,确定零电位点,然后观察(或 经过计算)阳、阴两极间是正向电压还是反向电压, 若是前者则二极管导通,否则二极管截止。
三价元素掺杂——P 型半导体 五价元素掺杂——N 型半导体
本节中的有关概念
• 半导体材料-本征半导体结构-半导体掺杂 • 半导体的导电机制-自由电子、空穴 • 掺杂半导体-N型半导体、P型半导体 • 多数载流子(多子)、少数载流子(少子)
小结
• P型半导体中含有受主杂质,在室温下,受主 杂质电离为带正电的空穴和带负电的受主离子。
v
击穿
iIS(eV T1) (常温 V T下 2m 6 V电) 压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
反向饱 开启 和电流 电压
反向饱和电流 1µA以下 几十µA
3.3.3 二极管的主要参数
• 最大整流电流(平均值)IF:是指管子长期运行时允许通过
3.2.3 PN结的单向导电性
• 外加电压才显示出来 • 外加正向电压: P 区接电源正极,或使 P 区的

第一章二极管及其基本电路

第一章二极管及其基本电路

PN结方程
iD I S ( e
v D / nVT
1)
PN结的伏安特性 非线性
其中: IS ——反向饱和电流
VT ——温度的电压当量 常温下(T=300K) kT VT 0.026V 26 mV q n —发射系数 vD —PN结两端的外加电压
v D / nVT i I e 近似 正向: D S 估算 反向: i I D S
1 掺杂性:在纯净的半导体中掺入某些杂质,导电能力明显改变。
§1.1 半导体的基本知识
电子器件中,用的最多的半导体材料是硅和锗。
Ge
Si
+4
通过一定的工艺过程,可以将半导体制成晶体。
2
二、本征半导体 本征半导体 — 完全纯净、结构完整的半导体晶体。
半导体的共价键结构
§1.1 半导体的基本知识
+4
⑴PN结加正向电压:P区接正,N区接负
变薄
- - - - - + + + + +

I : 扩散电流 + + + + + - - - - - P区 N区
- - - - - + + + + +

IF
外电场 小 内电场被削弱,多子的扩散加 结 强,形成较大的扩散电流I。 VF
16
内电场
3.PN结的单向导电性
b.恒压降模型
当二极管导通后,认 为其管压降vD=VON。 常取vD硅=VON=0.7V vD锗=VON=0.2V
适用
只有当二极管的电流iD近似 等于或大于1mA时才正确。
恒压降模型
应用较广泛。

南邮模电课件-第1章--晶体二极管及其基本电路

南邮模电课件-第1章--晶体二极管及其基本电路
28
第1章 半导体二极管及其基本电路
耗尽 区
耗尽 区
P+
N
P
N+
(a)
(b)
图1―8不对称PN结
29
第1章 半导体二极管及其基本电路
1―2―2 PN 一、PN结加正向电压— forward bias
IF P 区
外电场
N区 内电场
限流电阻
外电场使多子向 PN 结移动, 中和部分离子使空间电荷区变窄。
及外加电场的强度等因素决定。
21
第1章 半导体二极管及其基本电路
二、扩散电流(扩散运动) 1.定义:因某种原因使半导体中的载流子的浓度分 布不均匀时,载流子从浓度大的地方向浓度小的地方 作扩散运动,形成的电流。 2.扩散电流主要取决于载流子的浓度差(即浓度 梯度)。浓度差越大,扩散电流越大,而与浓度值无 关。
18
第1章 半导体二极管及其基本电路
nn pn ni2
pn
ni2 nn
ni2 ND
对P型半导体,多子pp与少子np有
pp np ni2
np
ni2 pp
ni2 NA
(1―2a)
(1―2b) N型半导体,施
主浓度
(1―3a)
(1―3b) P型半导体,受
主浓度
19
第1章 半导体二极管及其基本电路
本征半导体受外界能量(热、电、光等能量)激发,同 时产生电子、空穴对的过程称为本征激发。
二、本征载流子浓度 1.复合:在本征半导体中,由于本征激发,不断产生
电子、空穴对,使载流子密度增加。与此同时,又会有 相反的过程发生。由于正负电荷相吸引,电子会填入空 穴成为价电子,同时释放出相应的能量,从而消失一对 电子、空穴,这一过程称为复合。

一讲:二极管及其基本电路

一讲:二极管及其基本电路

导言 我们为什么要学习模拟电子技术在自然界以及人类活动中,存在着各种各样的信息。

承载着这些信息的载体,就叫做信号。

现实生活中,我们会遇到种类繁多的信号,比如声信号、光信号、温度信号等等,这些时间连续、幅值连续的信号叫做模拟信号,也就是数学当中的连续函数。

在对这些信号进行处理时,为了方便研究,需要将它们转换成电信号。

将各种非电信号转换为电信号的器件或装置叫做传感器,在电路中常将它描述为信号源。

然而,传感器输出的电信号通常是很微弱的,如细胞电生理实验中所检测到的电流仅有皮安(pA ,A 1210-)量级。

对于这些过于微弱的信号,一般情况下既无法直接显示,也很难作进一步处理。

因此,需要将这些信号输入到放大电路中进行放大处理。

如何利用各种元件设计出合理的放大电路,对信号源进行有效的、减少失真的处理,是这门课程的主要内容。

可以说,“放大”一词,就是这门课的核心。

课时一:二极管及其基本电路一、PN 结1. 形成通过一定的工艺,在同一块半导体的一边掺杂成P 型,另一边掺杂成N 型,当多子扩散与少子漂移达到动态平衡时,交界面上就会形成稳定的空间电荷区,又称势垒区或耗尽层,即为PN 结的形成。

2. 单向导电性PN 结正向偏置时,耗尽层变窄,呈现低电阻,称为正向导通;PN 结反向偏置时,耗尽层变宽,呈现高电阻,称为反向截止。

3. 电容效应PN 结的电容效应包括扩散电容D C 和势垒电容B C 。

4. 反向击穿特性PN 结的反向击穿分为雪崩击穿和齐纳击穿两种现象。

二、半导体二极管半导体二极管就是一个封装的PN 结。

1. 二极管的伏安特性1) 伏安特性表达式二极管是一个非线性器件,其伏安特性的数学表达式为)1(-=T D V v S D e I i在室温下(K T 300=时),mV V T 26=。

[例1.1]在室温下,若二极管的反向饱和电流为nA 1,求它的正向电流为mA 5.0时应加多大的电压。

2) 伏安特性曲线二极管的伏安特性曲线如下图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二极管工作上限频率。
6、反向恢复时间TRR
二极管由正向导通过渡到反向截止时所需的时间。
思考题:3.3.2 (P72) 3.3.3 3.3.4
§3.4 二极管的基本电路 及其分析方法
3.4.1 简单二极管电路的图解分析法
( P73 自学了解)
3.4.2 二极管电路的简化模型分析法(P74)
一、 二极管V-I特性的建模:
3. 工作波形
2U
t
2U
u 正半周,Va>Vb,二极 管 1、3 导通,2、4 截止 。 u 负半周,Va<Vb,二极 管 2、4 导通,1、3 截止 。
§3.5
特殊二极管
§3.1半导体基本知识

半导体器件特点: 体积小、重量轻、使用寿命长、输入功率小、 功率转换效率高。
3.1.1 半导体材料:(Semiconductor materials)
10-3 导体
如金属等
10+9
半导体
绝缘体
如橡胶、塑料等
ρ(Ω-cm )
典型半导体:硅Si、锗Ge、砷化镓GaAs等
Si Si
1. N型半导体
硅(锗) +磷 N型半导体
五价杂质原子只有四个 p+ 价电子能与周围四个半导体 Si Si 原子中的价电子形成共价键 多余的一个价电子因 无共价键束缚而很容易形 失去一个电子 磷原子 变为正离子 成自由电子。 在N型半导体中自由电子是多数载流子,它主要由杂质原 子提供;空穴是少数载流子, 由热激发形成。 提供自由电子的五价杂质原子因带正电荷而成为正离子, 因此五价杂质原子也称为施主杂质。
b2
b1
a2 a1
D导通
参考点 D2导通、 D1截止
D2优先导通 D1截止
v Ao =-15V
v Ao =0V
v Ao =-4V
Eg.3 限幅电路:(P80)
R +
vI
D 3V
+
vo

已知: vI 6sin tV 二极管是理想的,试画 出 uo 波形。
思考:若用恒压降模 型分析二极管,输出 波形应为什么?
iD
VBR O
D
3.2.5 PN结电容效应 (P66自学 了解) 反向击穿段
§3.3 二极管(Diode)
3.3.1 二极管结构:
一 、符号: 阳极+ -阴极
阳极+
-阴极
二、 结构: (1)点接触型二极管: (2)面接触型二极管: (3)平面型二极管: 具体型号及参数参见P72 表3.3.1
3.3.2 伏安特性(V-I特性)(P70)
§3.1
半导体基本知识
3.1.4 杂质半导体 杂质半导体的示意表示法 P型半导体
- - - - - -
- - - - - - - - - - - - - - - - - -
N型半导体
+ + + + + +
+ + + + + + + + + + + +
+ + + + + +
§3.2 3.2.1
PN结的形成及特性 载流子的漂移与扩散
特点:非线性 反向击穿 电压VBR
iD
正向特性
P
+

N
导通压降 vD
硅0.7V,
锗0.2V。
反向电流 在一定电压 范围内保持 常数。
P

+N
硅管0.5V, 死区电压 锗管0.1V。 外加电压大于死区 电压二极管才能导通。
反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
3.3.3 二极管主要参数(P71 自学 熟悉)
半导体的导电特性:
热敏性: 当环境温度升高时,导电能力显著增强。 (可做成温度敏感元件,如热敏电阻) 光敏性:当受到光照时,导电能力明显变化。 (可做成各种光敏元件,如光敏电阻、 光敏二极管、光敏三极管等)。 掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变。 (可做成各种不同用途的半导体器件, 如二极管、三极管和晶闸管等)。
1、 最大整流电流IF
二极管长期连续工作时,允许通过二极管的最大正 向平均电流。
2、反向击穿电压VBR
二极管反向电流急剧增加时对应的反向电压值。 最高反向工作电压约为1/2 VBR 3、反向电流IR
在室温及规定的反向电压下的反向电流值。 硅管:(<0.1 A); 锗管:(<几十A)。
4、结电容Cd 反映二极管中PN结结电容效应的参数。在高频 和开关状态时运用时必须考虑。 5、最高工作频率fM
vi 6V 3V

t 若是双限幅电路又待
怎样?见P97 3.4.9
二极管阴极电位为 3 V vI > 3V,二极管导通,可看作短路 vo = 3V vI < 3V,二极管截止,可看作开路 vo = vI
Eg.4 全波整流电路(P97 题3.4.2)
1. 电路结构 a 4 1 + u -– 3 2 b
2. 工作原理
io
+ uo RL – -
u
3. 工作波形
2U
t
2U
u 正半周,Va>Vb,二 极管 D1、 D3 导通, D2、 D4 截止 。
Eg.4 全波整流电路(P97 题3.4.2)
1. 电路结构 a 1 -+ 4 u – 3 2 b
2. 工作原理
io + uo RL – -
u
3.1.2
半导体的共价键结构 Si
1、Si、Ge的原子结构
价电子: 最外层上的电子,决定了 物质的化学特性和导电性; Ge 惯性核 简化模型
锗原子
硅原子
§3.1 3.1.2
半导体基本知识 半导体的共价键结构
2、共价键
共价键
+4
+4表示 惯性核
+4
共用电子对
+4
+4
硅和锗的晶体结构
3.1.3 本征半导体、空穴及其导电作用 完全纯净的、具有晶体结构的半导体,称为本征 半导体。
- - - - - - - - - - - -
+ + + + + +
+ + + + + +
扩散运动
§3.2
PN结的形成及其特性
漂移运动
P型半导体 - - - - - - - - - - - -
内电场E
N型半导体
+ + + + + + + + + + + + 内电场越强,就使漂 移运动越强,而漂移 + + + + + + 使空间电荷区变薄。 + + + + + +
第三章 二极管及其基本电路(P54)
基本要求: 1 了解半导体器件内部物理过程; 2 理解二极管工作原理、主要参数、使 用方法; 3 掌握二极管外特性、二极管基本应用 电路及其分析方法。
第三章
§3.1 §3.2 §3.3 §3.4
二极管及其基本电路
半导体的基本知识 PN结的形成及特性 二极管 二极管的基本电路及其分析方法
价电子 Si Si
Si 共价健 晶体中原子的排列方式
Si
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
自由电子
本征半导体的导电机理
Si
Si
Si
Si
价电子在获得一定能量 (温度升高或受光照)后, 即可挣脱原子核的束缚, 成为自由电子(带负电), 同时共价键中留下一个空 位,称为空穴(带正电)。
- - - - - - - - - - - -
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
扩散运动
3.2 3.2.2
PN结的形成及其特性 PN结的形成
漂移运动
内电场E
P型半导体 - - - - - - - - - - - -
N型半导体
- - - - - - - - - - - -
所以扩散和漂 + + + + + + 移这一对相反 + + + + + + 的运动最终达 到平衡,相当 + + + + + + 于两个区之间 没有电荷运动, + + + + + + 空间电荷区的 厚度固定不变。
4 小信号模型: ( P76 自学、了解)
二极管电路分析举例
导通 截止 若二极管是理想的,正向导通时正向管压降为零, 反向截止时二极管相当于断开。
定性分析:判断二极管的工作状态
否则,正向管压降
硅0.7V 锗0.2V
分析方法:将二极管断开,分析二极管两端电位 的高低或所加电压UD的正负。 若 V阳 >V阴或 UD为正( 正向偏置 ),二极管导通 若 V阳 <V阴或 UD为负( 反向偏置 ),二极管截止
自由电子和空穴都称为载流子。
自由电子和空穴成对地产生的同时,又不断复合 在一定温度下,载流子的产生和复合达到动态平衡, 半导体中载流子便维持一定的数目。
注意: 1. 本征半导体中载流子数目极少,其导电性能很差; 2. 温度愈高, 载流子的数目愈多,半导体的导电性能 也就愈好。所以,温度对半导体器件性能影响很大。
相关文档
最新文档