不等式高级水平必备
高中数学必备必考公式大全
高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。
新教材高中数学第一章预备知识3不等式3-1不等式性质课件北师大版必修第一册
+
>
.
+
1
,x>y,求证:
+
>
1
,x>y,∴
>
>
.
+
>0,∴0<
<
,故
0<+1<+1,即
角度3利用不等式性质求取值范围
【例4】 如果3<a<7,1<b<10,试求a+b,3a-2b, 2 的取值范围.
解因为3<a<7,1<b<10,
所以3+1<a+b<7+10,即4<a+b<17.
以改变符号后移到不等号的另一边,称为移项法则,在解不等式时经常用到.
4.倒数法则:
如果a>b,ab>0,那么
1 1
<
a b
,结论成立的条件是a,b要同号.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)在一个不等式的两边同乘一个非零实数,不等式仍然成立.( × )
(2)同向不等式具有可加性和可乘性.( × )
性质4(同向不等
如果a>b,c>d,那么a+c>b+d
式可加性)
如果a>b>0,c>d>0,那么ac>bd;
性质5(不等式的
如果a>b>0,c<d<0,那么ac<bd.
可乘性)
乘方法则:当a>b>0时,an>bn,其中n∈N+,n≥2
不等式高级水平必备
iff a1 a2 ... an 时,等号成立.(注: iff if and only if 当且仅当.)
b1 b2
bn
(8) 式为柯西不等式.
4.2 柯西不等式还可以表示为:
( a12 a22 ... an2 )( b12 b22 ... bn2 ) ( a1b1 a2b2 ... anbn )2 (9)
a 1 1
a 2 2
...ann
a1 1
a22
... ann
( 26 )
(26) 式就是加权的均值不等式,简称加权不等式.
(26) 式形式直接理解为:几何均值不大于算术均值.
Ch10. 赫尔德不等式
10.1 若实数 a, b 0 ,实数 p, q 1 且 1 1 1 ,则: ab a p bq (27 )
(22)
3
3
32
2
2
(22) 式就是波波维奇亚不等式.
8.2 波波维奇亚不等式可以写成:
f ( x y z) f (x) f ( y) f (z)
f
(
x
y)
f
(
y
z)
f
z (
x )
3
3
2
2
2
(23)
2
3
简称:“对于向下凸函数的三点情况,三点均值的函数与函数的均值之平均值,不小于
两点均值的函数值之平均值”.
Ch7. 琴生不等式 7.1 定义凸函数:对一切 x, y [a, b], (0, 1) ,若函数 f :[a, b] R 是向下凸函数,则:
第4页
f ( x (1 ) y) f ( x) (1 ) f ( y) (20)
(20) 式是向下凸函数的定义式.
27种不等式
27种不等式在北京这地界儿,咱们得讲究个严谨和精炼,不整那些花里胡哨的。
今天咱就聊聊数学里的不等式,具体来说就是27种不等式。
1. 算数平均与几何平均,那可是不等式里的基础,两者之间总有差距,算数平均总比几何平均要大。
2. 柯西-施瓦茨不等式,它可是在向量运算中起着大作用,告诉你两个向量的点积跟它们的模长的关系。
3. 均值不等式,那更是常见,平均值、几何平均值、调和平均值,它们之间的大小关系可是清清楚楚。
4. 伯努利不等式,告诉你一加一减的式子在啥情况下能取到等号。
5. 赫尔德不等式,那更是泛函分析里的利器,处理范数问题得靠它。
6. 琴生不等式,凸函数里的宝贝,能帮你估计函数的平均值。
7. 排序不等式,给你一组数,告诉你怎么排序能让式子取到最大或最小值。
8. 切比雪夫不等式,概率论里的好帮手,帮你估计随机变量的概率分布。
9. 闵可夫斯基不等式,范数空间里的重要不等式,揭示了不同范数之间的关系。
10. 柯西不等式,别跟柯西-施瓦茨搞混了,它可是在复数、向量、矩阵上都能用的。
11. 三角不等式,那更是在几何、三角函数中随处可见,告诉你三角形两边之和大于第三边。
12. 杨氏不等式,那也是在范数空间里用的,跟赫尔德不等式有点类似。
13. 幂平均不等式,告诉你不同幂次的平均值之间的大小关系。
14. 加权算数平均与加权几何平均不等式,那就是带权重的算数平均和几何平均之间的比较。
15. 霍尔德不等式,它可是积分形式的不等式,告诉你函数积分的性质。
16. 闵可夫斯基-霍尔德不等式,那就是把闵可夫斯基和霍尔德结合起来的版本。
17. 卡普兰不等式,在概率论里,它可是用来估计随机变量和的分布的。
18. 琴生-卡普兰不等式,那就是琴生不等式在概率论里的应用。
19. 范德蒙德不等式,告诉你行列式与它的子式之间的关系。
20. 斯特林不等式,它在数学分析里可是常用来估计阶乘和幂的关系的。
21. 赫尔-布拉施克不等式,复分析里的重要不等式,跟复数的模有关。
一元二次不等式与基本不等式常见题型及讲解
一、引言一元二次不等式是高中数学中的重要知识点,也是考试中常见的题型之一。
掌握一元二次不等式的解法及基本不等式的运用,对于提高学生的数学水平和解题能力有着重要的作用。
本文将重点讲解一元二次不等式及基本不等式的常见题型及解题方法,希望能够帮助读者更好地理解和掌握这一知识点。
二、一元二次不等式的基本概念1. 一元二次不等式的定义一元二次不等式是形如ax^2+bx+c>0(或<0、≥0、≤0)的不等式,其中a、b、c为常数,x为未知数,且a≠0。
一元二次不等式的解就是使不等式成立的x的取值范围。
2. 一元二次不等式的常见形式一元二次不等式的常见形式包括ax^2+bx+c>0、ax^2+bx+c≥0、ax^2+bx+c<0和ax^2+bx+c≤0等,需要根据具体情况选择合适的解题方法来解决。
三、一元二次不等式的解法及常见题型1. 一元二次不等式的解法解一元二次不等式的常用方法有:利用一元二次函数的图像法、利用一元二次函数的根式关系法、利用配方法、利用因式分解法等。
需要根据具体不等式的形式和题目的要求选择合适的解题方法。
2. 一元二次不等式的常见题型及讲解(1) 一元二次不等式的根的情况讨论当一元二次不等式的根的情况为实数时,解法与一元二次方程类似,可以利用一元二次函数的图像法或根式关系法求解。
当根的情况为虚数时,需要利用配方法或因式分解法进行求解。
(2) 一元二次不等式的恒成立条件讨论对于一元二次不等式ax^2+bx+c>0(或<0、≥0、≤0),当a>0时,条件为Δ<0;当a<0时,条件为Δ>0。
根据恒成立条件的讨论,可以快速判断一元二次不等式的解的范围。
(3) 一元二次不等式的应用题针对一元二次不等式的应用题,需要根据具体问题建立相应的不等式模型,再利用所学的解题方法进行求解,并得出相应的结论。
四、基本不等式的概念及应用1. 基本不等式的定义基本不等式是指在一定条件下成立的不等式,常见的基本不等式有算术平均-几何平均不等式、柯西-施瓦兹不等式等。
高中数学三年必须吃透的70个必刷题
高中数学是学生在数学学科中学习的重要阶段,数学知识的掌握对于学生进入大学甚至未来的职业发展都是至关重要的。
而在高中数学的学习过程中,大家必须掌握一定的数学题目,才能更好的提高自己的数学水平。
我将在本文中共享70个高中数学必刷题,希望能够帮助更多的学生在高中数学学习过程中取得更好的成绩。
一、代数部分1. 一元二次不等式2. 根据配方法求最值3. 分式方程4. 二项式定理5. 绝对值不等式6. 倍式展开与二项式系数二、函数部分7. 函数奇偶性8. 函数极值问题9. 参数方程问题10. 反函数与复合函数11. 对数函数的性质12. 求极限问题三、方程部分13. 解方程组14. 解不等式组15. 二元一次方程组16. 解三元一次方程组17. 解分式方程18. 二次方程的判别式四、几何部分19. 三角形内角和20. 三角形外角定理21. 直线与平面的交点22. 圆的切线与切点23. 直角三角形的性质24. 平行四边形的几何关系五、概率部分25. 事件的概率26. 条件概率27. 期望与方差28. 排列与组合29. 二项分布30. 正态分布的性质六、数列部分31. 数列的通项32. 数列的性质33. 数列的求和34. 数列的递推公式35. 等差数列与等比数列36. 等比中项问题七、植物生长模型37. 个体生长模型38. 种裙增长模型39. 人口增长模型40. 自然增长模型41. 对数生长模型42. 指数生长模型八、微积分部分43. 函数的极限44. 函数的连续性45. 一元函数的导数46. 函数的微分47. 函数的积分48. 微积分中的应用问题九、向量部分49. 向量的定位问题50. 向量的线性运算51. 向量的数量积52. 向量的夹角问题53. 平面向量的应用54. 空间向量的应用十、解析几何部分55. 曲线与曲面的方程56. 空间中的直线57. 空间中的平面58. 空间中的球面59. 空间中的圆锥曲线60. 空间中的二次曲面十一、复数部分61. 复数的性质62. 复数的运算63. 复数的共轭64. 复数的幂与根65. 复数的几何意义66. 复数方程问题十二、三角部分67. 弧度与角度的转换68. 三角函数的基本关系69. 三角函数的图像70. 三角函数的性质以上便是我整理的高中数学必刷题清单,希望对大家在高中数学学习中有所帮助。
初中数学知识点:不等式
初中数学知识点:不等式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初中数学知识点:不等式初中数学知识点必备:不等式在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
不等式高级水平必备(1)
Ch3. 幂均不等式
3.1 设 a (a1, a2 ,..., an ) 为正实数序列,实数 r 0 ,则记:
1
M r (a)
a1 r a2 r ... anr r n
(4)
(4) 式的 M r (a) 称为幂平均函数 . 3.2 若 a (a1, a2 ,..., an ) 为正实数序列,且实数 r 0 ,则:
不等式高级水平必备 目录
第 1页
Ch22. ABC 法 Ch23. SOS 法 Ch24. SMV 法 Ch25. 拉格朗日乘数法 Ch26. 三角不等式 Ch27. 习题与习题解析
Ch1. 伯努利不等式
1.1 若实数 xi ( i 1, 2,..., n )各项符号相同,且 xi 1,则:
(1 x1 )( 1 x2 )...(1 xn ) 1 x1 x2 ... xn ( 2 ... xn x 时, (1) 式变为: (1 x)n 1 nx (2)
Ch2. 均值不等式
2.1 若 a1 ,a2 ,..., an 为正实数,记:
⑴ Qn
a
2 1
a
2 2
... an2 ,为平方平均数,简称平方均值;
n
⑵ An a1 a2 ... an ,为算术平均数,简称算术均值; n
Ch1. 伯努利不等式 Ch2. 均值不等式 Ch3. 幂均不等式 Ch4. 柯西不等式 Ch5. 切比雪夫不等式 Ch6. 排序不等式 Ch7. 琴生不等式 Ch8. 波波维奇亚不等式 Ch9. 加权不等式 Ch10. 赫尔德不等式 Ch11. 闵可夫斯基不等式 Ch12. 牛顿不等式 Ch13. 麦克劳林不等式 Ch14. 定义多项式 Ch15. 舒尔不等式 Ch16. 定义序列 Ch17. 缪尔海德不等式 Ch18. 卡拉玛塔不等式 Ch19. 单调函数不等式 Ch20. 3 个对称变量 pqr 法 Ch21. 3 个对称变量 uvw法
高考数学一轮复习第一章 《集合与常用逻辑用语、不等式》第5节二次函数与一元二次方程、不等式
第五节二次函数与一元二次方程、不等式课标要求1.会从实际情景中抽象出一元二次不等式,了解一元二次不等式的现实意义.2.结合二次函数的图象,会判断一元二次方程根的个数,以及二次函数的零点与一元二次方程根的关系.3.掌握利用二次函数的图象解一元二次不等式.必备知识·整合〔知识梳理〕1.一元二次不等式只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a,b,c为常数,且a≠0).提醒解不等式ax2+bx+c>0(<0)时,不要忘记讨论当a=0时的情况.2.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2−4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+ bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=−b2a没有实根ax2+bx+c>0(a> 0)的解集{x|x<x1或x>x2}{xx≠−b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}⌀⌀提醒a>0时的一元二次不等式的解法口诀:大于取两边,小于取中间. 知识拓展1.简单分式不等式(1)f(x)g(x)≥0(≤0)⇔{f(x)g(x)≥0(≤0),g(x)≠0.(2)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0).2.不等式ax2+bx+c>0(<0)恒成立的条件要结合其对应的函数图象决定.(1)不等式ax2+bx+c>0对任意实数x恒成立⇔{a=b=0, c>0或{a>0,Δ<0.(2)不等式ax2+bx+c<0对任意实数x恒成立⇔{a=b=0,c<0或{a<0,Δ<0.〔课前自测〕1. 概念辨析(正确的打“√”,错误的打“×”).(1)ax2+bx+c<0为一元二次不等式.( × )(2)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × )(3)如果二次函数y=ax2+bx+c的图象开口向下,那么不等式ax2+bx+ c<0的解集一定不是空集.( √ )(4)x−ax−b≥0等价于(x−a)(x−b)≥0.( × )2. [2020全国Ⅰ,1,5分]已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=( D )A. {−4,1}B. {1,5}C. {3,5}D. {1,3}[解析]由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},因为B={−4,1,3,5},所以A∩B={1,3}.3. [2021辽宁大连质检]若不等式ax2+bx+2>0的解集为{x−12<x<13},则a−b的值是( A )A. −10B. −14C. 10D. 144. 易错题不等式(x−2)(3−2x)≥0的解集为( B )A. (32,+∞) B. [32,2] C. [2,+∞) D. (−∞,32][解析]由(x−2)(3−2x)≥0,得(x−2)(2x−3)≤0,解得32≤x≤2,故原不等式的解集为[32,2].易错提醒本题容易忽视二次项的符号致错.5. (新教材改编题)若关于x的不等式x2−2ax+18>0恒成立,则实数a的取值范围为(−3√2,3√2).[解析]由题意得4a2−4×18<0,解得−3√2<a<3√2.关键能力·突破考点一一元二次不等式的解法角度1 简单分式不等式的解法例1≥0的解集为( C )(1)不等式1−x2+xA. [−2,1]B. (−∞,−2)∪(1,+∞)C. (−2,1]D. (−∞,−2]∪(1,+∞)≥2的解集为( B )(2)[2022山东烟台二中模拟]不等式3x−2x+3A. (−∞,−3]∪[8,+∞)B. (−∞,−3)∪[8,+∞)C. (−3,8]D. (−∞,−3)∪(8,+∞)−2≥0,[解析]原不等式可化为3x−2x+3≥0,即(x−8)(x+3)≥0且x+3≠0,即x−8x+3∴x<−3或x≥8.所以原不等式的解集为(−∞,−3)∪[8,+∞).方法感悟将分式不等式进行同解变形,利用不等式的同解原理将其转化为整式不等式(组)即可求解.角度2 不含参数的不等式的解法例2(1)[2022重庆八中模拟]已知集合A={3,8},B={x|x2−x−6≤0},则A∩(∁R B)=( B )A. {3}B. {8}C. {−2,3,8}D. {−2}[解析]由x2−x−6≤0,得−2≤x≤3,则B ={x|x 2−x −6≤0}=[−2,3],∁R B ={x|x <−2或x >3} ,则A ∩(∁R B)={8} .(2) [2022广东潮州月考]不等式0<x 2−x −2≤4 的解集为{x|−2≤x < −1或2<x ≤3} .[解析]原不等式等价于{x 2−x −2>0,x 2−x −2≤4,即{x 2−x −2>0,x 2−x −6≤0,即{(x −2)(x +1)>0,(x −3)(x +2)≤0,解得{x >2或x <−1,−2≤x ≤3. 借助数轴,如图所示,原不等式的解集为{x|−2≤x <−1或2<x ≤3} .方法感悟解一元二次不等式的步骤角度3 含参数的不等式的解法例3 解关于x的不等式ax2−2≥2x−ax(a∈R).[答案]原不等式可化为ax2+(a−2)x−2≥0.①当a=0时,原不等式可化为x+1≤0,解得x≤−1.②当a>0时,原不等式可化为(x−2a )(x+1)≥0,解得x≥2a或x≤−1.③当a<0时,原不等式化为(x−2a)(x+1)≤0.当2a >−1,即a<−2时,解得−1≤x≤2a;当2a=−1,即a=−2时,解得x=−1;当2a <−1,即−2<a<0时,解得2a≤x≤−1.综上所述,当a=0时,不等式的解集为{x|x≤−1};当a>0时,不等式的解集为{x|x≥2a 或x≤−1};当−2<a<0时,不等式的解集为{x|2a≤x≤−1};当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为{x|−1≤x≤2a}.方法感悟含参数的一元二次不等式的解题策略(1)二次项中若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,需要讨论判别式Δ与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,需要讨论两根的大小关系,从而确定解集的形式.1. [2023广东湛江模拟]已知全集U=R,集合A={x|2x2−3x−2<0,x∈R},B={x12<x<3},则(∁U A)∩B=( B )A. (12,1)∪(1,3) B. [2,3) C. {0,1} D. {1}[解析]由2x2−3x−2=(2x+1)(x−2)<0,得−12<x<2,所以A={x−12<x<2},则∁U A={xx≤−12或x≥2},又B={x12<x<3},则(∁U A)∩B={x|2≤x<3}=[2,3).2. [2023山东济南一模]不等式x−12x+1≥0的解集为(−∞,−12)∪[1,+∞).[解析]x−12x+1≥0⇒{(x−1)(2x+1)≥0,2x+1≠0⇒x≥1或x<−12.3. 求不等式12x2−ax>a2(a∈R)的解集. [答案]原不等式可化为12x2−ax−a2>0,即(4x+a)(3x−a)>0,令(4x+a)(3x−a)=0,解得x1=−a4,x2=a3.当a>0时,不等式的解集为{x<x−a4或x>a3};当a=0时,不等式的解集为{x|x≠0};当a<0时,不等式的解集为{x|x<a3或x>−a4}.考点二三个两次的关系例4 [2021广东东莞高三期末]多选题若不等式ax2−bx+c>0的解集是(−1,2),则( AD )A. 相应的一元二次函数的图象开口向下B. b >0 且c >0C. a +b +c >0D. 不等式ax 2−cx +b ≤0 的解集是R[解析]由题意知a <0 ,所以A 正确;由题意可得−1 ,2是方程ax 2−bx +c =0 的两个根,所以{−1+2=ba ,−1×2=c a ,所以{b =a,c =−2a ,得b <0,c >0 ,所以B 不正确;因为−1 是方程ax 2−bx +c =0 的根,所以把x =−1 代入方程得a +b +c =0 ,所以C 不正确;把b =a ,c =−2a 代入不等式ax 2−cx +b ≤0 ,可得ax 2+2ax +a ≤0 ,因为a <0 ,所以x 2+2x +1≥0 ,此时不等式的解集为R ,所以D 正确. 方法感悟(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的图象开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.4. 已知关于x 的不等式ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,则不等式cx 2+bx +a <0 的解集是( A ) A. {x −1<x <12} B. {x <x −1或x >12} C. {x −12<x <1}D. {x <x −12或x >1}[解析]因为ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,所以−1 ,2是方程ax 2+bx +c =0 的两实数根,且a <0 ,由根与系数的关系得{−1+2=−ba ,−1×2=ca , 所以b =−a ,c =−2a ,所以不等式cx 2+bx +a <0⇒−2ax 2−ax +a <0 ,即2x 2+x −1<0 ,解得−1<x <12 ,故不等式cx 2+bx +a <0 的解集为{x −1<x <12} .考点三 一元二次不等式恒成立问题角度1 在R 上的恒成立问题例5 不等式ax(x +1)−1<0 对任意x ∈R 恒成立,则实数a 的取值范围是 (−4,0] .[解析]由ax(x +1)−1<0 ,得ax 2+ax −1<0 .当a =0 时,−1<0 恒成立;当a ≠0 时,有{a <0,Δ=a 2+4a <0⇒−4<a <0 .综上所述,实数a 的取值范围是(−4,0] .角度2 在给定区间上的恒成立问题例6 [2022广东深圳月考]若对于任意的x ∈[0,2] ,不等式x 2−2x +a >0 恒成立,则a 的取值范围为( B ) A. (−∞,1)B. (1,+∞)C. (0,+∞)D. [1,+∞)[解析]不等式x 2−2x +a >0 可化为a >−x 2+2x ,设f(x)=−x 2+2x ,x ∈[0,2] ,则f(x)=−(x −1)2+1 ,当x =1 时,f(x)max =f(1)=1 ,所以实数a 的取值范围是(1,+∞) .角度3 给定参数范围的恒成立问题例7 若mx2−mx−1<0对任意m∈[1,2]恒成立,则实数x的取值范围是(1−32,1+32).[解析]设g(m)=mx2−mx−1=(x2−x)m−1,其图象是直线,当m∈[1,2]时,图象为一条线段,则{g(1)<0, g(2)<0,即{x2−x−1<0, 2x2−2x−1<0,解得1−√32<x<1+√32,故x的取值范围为(1−√32,1+√32).方法感悟(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.(2)一元二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.对第一种情况,恒大于0就是相应的二次函数的图象全部在x轴上方,恒小于0就是相应的二次函数的图象全部在x轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法求解).5. 函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;[答案]当x∈R时,x2+ax+3−a≥0恒成立,只需Δ=a2−4(3−a)≤0,即a2+4a−12≤0,解得−6≤a≤2,∴实数a的取值范围是[−6,2].(2)当x∈[−2,2]时,f(x)≥a恒成立,求实数a的取值范围;[答案]由题意,可得x2+ax+3−a≥0在[−2,2]上恒成立,令g(x)=x2+ ax+3−a,则有①g(x)中Δ≤0或②{Δ>0,−a2<−2,g(−2)=7−3a≥0或③{Δ>0,−a2>2,g(2)=7+a≥0,解①得−6≤a≤2,解②得无实数解,解③得−7≤a<−6.综上可得,满足条件的实数a的取值范围是[−7,2].(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围. [答案]令ℎ(a)=xa+x2+3.当a∈[4,6]时,ℎ(a)≥0恒成立,只需{ℎ(4)≥0,ℎ(6)≥0,即{x2+4x+3≥0, x2+6x+3≥0,解得x≤−3−√6或x≥−3+√6.∴实数x的取值范围是(−∞,−3−√6]∪[−3+√6,+∞).考点四一元二次方程根的分布例8 [2023湖南益阳开学考]已知关于x的二次方程x2+2mx+2m+1=0. [解析]设函数f(x)=x2+2mx+2m+1.(1)若方程有两根,其中一根在区间(−1,0)内,另一根在区间(1,2)内,求m 的取值范围;[答案]易知f(x)的图象与x轴的交点分别在区间(−1,0)和(1,2)内,画出示意图,得{ f(0)=2m +1<0,f(−1)=2>0,f(1)=4m +2<0,f(2)=6m +5>0,∴{m <−12,m ∈R m <−12,m >−56,∴−56<m <−12 .(2) 若方程两根均在区间(0,1) 内,求m 的取值范围.[答案]易知f(x) 的图象与x 轴的交点在区间(0,1) 内,画出示意图,得{ f(0)>0,f(1)>0,Δ≥0,0<−m <1,∴{ m >−12,m >−12,m ≥1+√2或m ≤1−√2,−1<m <0,∴−12<m ≤1−√2 .方法感悟一元二次方程根的分布一般要考虑以下几点: (1)一元二次函数图象的开口方向; (2)一元二次函数对应方程的根的判别式;(3)一元二次函数图象的对称轴与区间的关系; (4)一元二次函数在区间端点处函数值的符号.6. [2023广东茂名期中]已知方程2x 2−(m +1)x +m =0 有两个不等的正实根,则实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) . [解析]设f(x)=2x 2−(m +1)x +m , 由{Δ>0,−−(m+1)2×2>0,f(0)>0,得{(m +1)2−8m >0,m >−1,m >0,∴{m <3−2√2或m >3+2√2,m >−1,m >0,∴0<m <3−2√2 或m >3+2√2 ,即实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) .分层突破训练 基础达标练1. 不等式−x 2+3x +10>0 的解集为( A ) A. (−2,5) B. (−∞,−2)∪(5,+∞) C. (−5,2)D. (−∞,−5)∪(2,+∞)[解析]由x 2−3x −10<0 ,解得−2<x <5 .2. 多选题 下列不等式的解集为R 的是( BC ) A. x 2+2√5x +5>0 B. x 2+6x +10>0 C. −x 2+x −2<0D. 2x 2−3x −3<0[解析]对于A 选项,x 2+2√5x +5=(x +√5)2>0 ,故解集为{x|x ≠−√5} ; 对于B 选项,x 2+6x +10=(x +3)2+1>0 ,解集为R ; 对于C 选项,−x 2+x −2=−(x −12)2−74<0 ,解集为R ;对于D 选项,2x 2−3x −3<0 ,对应的二次函数图象开口向上,Δ=9−4×2×(−3)=33>0 ,故不等式的解集不是R .故选BC.3. [2023山东东营模拟]设x ∈R ,则“x ≤3 ”是“x 2≤3x ”的( B ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件[解析]由x 2≤3x ,得0≤x ≤3 ,所以“x ≤3 ”是“x 2≤3x ”的必要不充分条件.4. [2022江苏南通模拟]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,则实数a 的取值范围是( A ) A. (−∞,−2]B. (−∞,−2)C. (−∞,0]D. (−∞,0)[解析]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,故Δ=(−2)2+4(1+a)≤0 ,解得a ≤−2 ,故实数a 的取值范围是(−∞,−2] . 5. [2022湖北华中师大一附中模拟]不等式2x+1≤1 的解集是( A ) A. (−∞,−1)∪[1,+∞) B. (−∞,−1]∪[1,+∞) C. (−∞,−1)D. (−1,1)[解析]原不等式可化为2x+1−1≤0 ,即x−1x+1≥0 ,得(x −1)(x +1)≥0 且x +1≠0 ,得x <−1 或x ≥1 ,所以原不等式的解集为(−∞,−1)∪[1,+∞) . 6. [2022天津耀华中学模拟]对于任意实数x ,不等式(a −1)x 2−2(a −1)x −4<0 恒成立,则实数a 的取值范围是( D ) A. (−∞,3)B. (−∞,3]C. (−3,1)D. (−3,1][解析]当a =1 时,−4<0 恒成立; 当a ≠1 时,有{a −1<0,Δ<0, 解得−3<a <1 .综上,实数a 的取值范围是(−3,1] .7. 已知二次函数f(x)=(m +2)x 2−(2m +4)x +3m +3 的图象与x 轴有两个交点,一个大于1,一个小于1,则实数m 的取值范围为(−2,−12) . [解析]由题意得,(m +2)⋅f(1)<0 , 即(m +2)⋅(2m +1)<0 , ∴−2<m <−12 ,即m 的取值范围为(−2,−12) .8. [2023辽宁丹东期末]某种杂志以每本2.5 元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0.1 元,销售量就可能减少2 000本.要使提价后的销售总收入不低于20万元,则定价的最大值为4元.[解析]设定价为x 元,销售总收入为y 元,由题意得,y =(80 000−x−2.50.1×2 000)x =−2 0000x 2+130 000x ,因为要使提价后的销售总收入不低于20万元,所以y =−20 000x 2+130 000x ≥200 000 ,解得52≤x ≤4 ,所以要使提价后的销售总收入不低于20万元,则定价的最大值为4元.9. [2023河北保定模拟]已知集合A ={x ∈R ||x +2|<3} ,集合B ={x ∈R ∣x−m x−2<0} ,且A ∩B =(−1,n) ,则m = −1 ,n = 1.[解析]A ={x ∈R ||x +2|<3}={x|−5<x <1} ,B ={x ∈R ∣x−m x−2<0}={x ∣(x −m)(x −2)<0} ,因为A ∩B =(−1,n) ,所以−1 是方程(x −m)(x −2)=0 的根,则−1−m =0 ,解得m =−1 ,所以B ={x|−1<x <2} ,A ∩B =(−1,1) ,则n =1 .10. [2022广东化州第三中学月考]已知集合A ={−5,−1,2,4,5} ,请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是(x +4)(x −6)>0 (答案不唯一).[解析]不等式(x +4)(x −6)>0 的解集为{x|x >6或x <−4} ,解集中只有−5 在集合A 中.11. [2021江西南昌莲塘第一中学模拟]已知f(x)=−3x 2+a(6−a)x +6 . (1) 解关于a 的不等式f(1)>0 ; [答案]∵f(x)=−3x 2+a(6−a)x +6 , ∴f(1)=−3+a(6−a)+6=−a 2+6a +3 , ∴ 原不等式可化为a 2−6a −3<0 , 解得3−2√3<a <3+2√3 .∴ 原不等式的解集为{a|3−2√3<a <3+2√3} .(2) 若不等式f(x)>b 的解集为(−1,3) ,求实数a ,b 的值.[答案]f(x)>b 的解集为(−1,3) 等价于方程−3x 2+a(6−a)x +6−b =0 的两根为−1 ,3, 即{−1+3=a(6−a)3,−1×3=−6−b3,解得{a =3±√3,b =−3.能力强化练12. [2022重庆南开中学模拟]三位同学合作学习,对问题“已知不等式xy ≤ax 2+2y 2 对任意x ∈[1,2] ,y ∈[2,3] 恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析.” 乙说:“寻找x 与y 的关系,再进行分析.” 丙说:“把字母a 单独放在一边,再进行分析.”参考上述思路,或自己的其他解法,可求出实数a 的取值范围是( B ) A. [1,+∞)B. [−1,+∞)C. [−1,4)D. [−1,6][解析]选择用丙的方法.因为xy ≤ax 2+2y 2 ,x ∈[1,2] ,y ∈[2,3] , 所以xy −2y 2≤ax 2 等价于xy−2y 2x 2≤a ,即yx −2(yx )2≤a . 令y x =t ,则t ∈[1,3] .原式化为t −2t 2≤a 对任意t ∈[1,3] 恒成立,因为t −2t 2=−2(t −14)2+18 ,所以当t =1 时,(t −2t 2)max =−1 . 所以−1≤a ,即a ∈[−1,+∞) . 故选B.13. [2022重庆质量检测]若方程x 2+(m −2)x +6−m =0 的两根都大于2,则m 的取值范围是(−6,−2√5] .[解析]令f(x)=x 2+(m −2)x +6−m ,其图象的对称轴方程为x =2−m 2,由题意得,{2−m2>2,f(2)>0,Δ≥0,即{2−m2>2,4+2m −4+6−m >0,(m −2)2−4(6−m)≥0,解得−6<m ≤−2√5 ,故m 的取值范围是(−6,−2√5] .14. [2023江苏南京二模]已知定义在R 上的奇函数f(x) 满足f(1−x)+f(1+x)=2 ,当x ∈[0,1] 时,f(x)=2x −x 2 ,若f(x)≥x +b 对一切x ∈R 恒成立,则实数b 的最大值为−14 .[解析]因为f(1+x)+f(1−x)=2 ,所以f(x) 的图象关于点(1,1) 中心对称, 当x ∈[−1,0] 时,f(x)=−f(−x)=x 2+2x ,作出f(x) 的图象和直线y =x +b ,如图所示,结合图象可得,只需当x ∈[−1,0] 时,f(x)=x 2+2x ≥x +b 即可, 即b ≤(x +12)2−14 , 故b ≤−14 .故b的最大值为−1.415. 某地区上年度电价为0.8元/kW⋅h,年用电量为a kW⋅h.本年度计划将电价降到0.55元/kW⋅h至0.75元/kW⋅h之间,而用户期望电价为0.4元/kW⋅h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW⋅h.(1)写出本年度电价下调后,电力部门的收益y(元)与实际电价x(元/kW⋅h)的函数关系式;kW⋅h,∴下调电价后的总用电量为(a+ [答案]下调电价后新增的用电量为kx−0.4k)kW⋅h,x−0.4)(x−0.3)(0.55≤x≤0.75).∴y=(a+kx−0.4(2)设k=0.2a,问:电价最低定为多少时,仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价−成本价).)(x−0.3)≥a×(0.8−0.3)×(1+20%),0.55≤x≤[答案]由已知得(a+0.2ax−0.40.75,整理得x2−1.1x+0.3≥0,0.55≤x≤0.75,解得0.60≤x≤0.75.故电价最低定为0.60元/kW⋅h时,仍可保证电力部门的收益比上年度至少增长20%.+b,关于x的不等式xf(x)<0的解集为(1,3). 16. 已知函数f(x)=x+ax(1)求实数a,b的值;[答案]因为关于x的不等式xf(x)<0的解集为(1,3),所以不等式x2+bx+a<0的解集为(1,3),所以{1+3=−b,1×3=a,解得{a=3,b=−4,所以f(x)=x+3x−4.(2)求关于x的不等式xf(x)<(m−3)(x−1)(m∈R)的解集;[答案]由xf(x)<(m−3)(x−1)(m∈R),得x2+3−4x<(m−3)(x−1),即x2−(m+1)x+m<0,即(x−1)(x−m)<0.所以当m<1时,不等式的解集为(m,1);当m=1时,不等式无解;当m>1时,不等式的解集为(1,m).(3)若不等式f(2x)−k⋅2−x−2k≥0在R上恒成立,求实数k的取值范围.[答案]令t=2x(t>0),则f(t)−kt−2k≥0在(0,+∞)上恒成立,即t+3t −4−kt−2k≥0在(0,+∞)上恒成立,即t 2−(2k+4)t+3−kt≥0在(0,+∞)上恒成立,即t2−(2k+4)t+3−k≥0在(0,+∞)上恒成立,令g(t)=t2−(2k+4)t+3−k.当2k+42≤0,即k≤−2时,g(t)图象的对称轴在y轴的左侧,所以g(0)=3−k≥0,即k≤3,所以k≤−2;当2k+42>0 ,即k >−2 时,g(t) 图象的对称轴在y 轴的右侧,则Δ=(2k −4)2−4(3−k)≤0 ,所以3−√52≤k ≤3+√52 .综上,k ≤−2 或3−√52≤k ≤3+√52 .素养综合练17. [2022河北石家庄二中模拟]若函数f(x) 满足对任意的x ∈[n,m](n <m) ,都有n k ≤f(x)≤km 成立,则称函数f(x) 在区间[n,m](n <m) 上是“被k 约束的”.若函数f(x)=x 2−ax +a 2 在区间[1a ,a](a >0) 上是“被2约束的”,则实数a 的取值范围是( A )A. (1,2]B. (1,√323]C. (1,√2]D. (√2,2] [解析]由题意得12a ≤x 2−ax +a 2≤2a 对任意的x ∈[1a ,a](a >0) 都成立.由a >1a 且a >0 ,得a >1 ,则f(1a )=1a 2−1+a 2>2−1=1>12a 恒成立. 由f(a)=a 2−a 2+a 2=a 2≤2a ,且a >1 ,得1<a ≤2 .因为a >1 ,所以f(1a )=1a 2−1+a 2<1−1+a 2=a 2 .f(x)=x 2−ax +a 2 图象的对称轴方程为x =a 2 ,由f(a 2)=3a 24≥12a , 得a ≥√233 .因为√233<1 ,所以a 的取值范围为(1,2] .故选A.。
高三不等式必背知识点总结
高三不等式必背知识点总结高中数学学科中,不等式是一个重要的内容,也是学习中的重点和难点之一。
在高三阶段,不等式的掌握和运用变得更加关键,它是解析几何、数列等各种数学内容的基础。
下面将对高三不等式的必背知识点进行总结与归纳。
一、基本的不等式关系在不等式学科中,最基础、最重要的关系就是大小关系。
通常使用的符号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
大于号和小于号用于表示严格的大小关系,大于等于号和小于等于号则包含了等于的情况。
二、绝对值不等式绝对值不等式是高三阶段需要掌握的一个重要知识点。
对于任意的实数a,绝对值不等式可以分为三种情况:1. 当a > 0时,|x| > a的解集为(-∞,-a)∪(a,+∞);2. 当a = 0时,|x| > a的解集为全体实数集R;3. 当a < 0时,|x| > a的解集为空集。
绝对值不等式的求解需要根据以上三种情况进行分类讨论。
三、一元一次不等式一元一次不等式是最基础的一类不等式之一,在高三阶段需要非常熟练地掌握。
一元一次不等式的求解大致可以分为以下几个步骤:1. 将不等式两边的式子整理为一个多项式,注意保持不等式的方向不变;2. 描述不等式的解集,可以通过解析法或图像法等方式确定解集的范围。
四、二次不等式二次不等式在高三学习中也是一个重点,它的解集常常与多项式的图像、方程的根等有关。
1. 解二次不等式需要先将二次不等式整理为标准形式,即要使得二次项系数大于0。
2. 利用二次不等式的图像特点,以及平方的非负性质,确定解集的范围。
五、分式不等式分式不等式是高三学习中较为复杂的一类不等式,求解分式不等式的一般步骤如下:1. 找到分式不等式的定义域,即分母不能为0的条件;2. 利用分式的性质化简不等式,使其变为分子和分母均不为0的形式;3. 对分子和分母分别进行讨论,找出使得不等式成立的范围。
六、不等式的基本性质在高三学习中,还需要深入了解不等式的一些基本性质,这些性质在解决不等式问题时起到了重要的指导作用。
08-第三节 不等式-课时1 不等式的性质高中数学必修一北师大版
6.新情境手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手
机外观设计中一个重要参数,其值通常在0 ∼ 1之间.现某款手机的屏占比小
于1,设计师将该款手机的屏幕面积和手机前面板面积同时增加相同的数量,
升级为一款新手机,则该新手机的“屏占比”和升级前相比( C )
A.不变
【解析】
+
+
9.(多选)已知1 ≤ ≤ 2,3 ≤ ≤ 5,则( AC
A.4 ≤ + ≤ 7
B.2 ≤ − ≤ 3
)
C.3 ≤ ≤ 10
【解析】
因为1 ≤ ≤ 2,3 ≤ ≤ 5,所以4 ≤ + ≤ 7.
A
√
B
× 因为−2 ≤ − ≤ −1,所以1 ≤ − ≤ 4.
<
.
−
【答案】 因为 < < ,且 + + = 0,
所以 < 0,且 − < − < 0,
−
−
所以 − − > 0,所以
<
− −
− −
1
1
即
<
,所以
>
,即
<
.
−
−
−
−
−
−
,
第三节 不等式
所以
1
+1+
<
1
,+ −1来自即 + 1 − < − − 1.
(2)2
++
1
1与 2
,其中
−+1
笔记(高中数学—不等式)
高中数学—不等式 一、不等式性质 1、已知31,11≤-≤≤+≤-y x y x ,求y x -3的取值范 2、已知c b a >>,且0=++c b a ,求a c /的取值范围。
已知2<m <4,3<n <5,求下列各式的取值范围:(1)m +2n ;(2)m -n ;(3)mn ;(4)m/n ①.比较233x x +与的大小,其中x R ∈.②.比较当0a ∉时,2222(1)(1)(1)(1)a a a a a a ++++-+与的大小. ③. 22643,44,,,b c a a c b a a a b c +=-+-=-+则的大小关系是 二、解不等式 1、不等式2654x x +<的解集为 2、设集合{}12x x A =≤≤,{}0x x a B =-<,若A B ≠∅I ,则实数a 的范围 3、若不等式210x mx ++>的解集为R ,则m 的取值范围 4、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是 5、不等式①()221200x ax a a --<< ②220mx mx +-< ③03222<--a ax x ④0)1(2<--+a x a x 的解集 6、不等式222693191122x x x x -+++⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭的解集是 7、设()21f x x bx =++,且()()13f f -=,则()0f x >的解集是 8、不等式()130x x ->的解集是 9、不等式20ax bx c ++>的解集为{}23x x <<,则20ax bx c -+>的解集 10、不等式30x x +≥的解集为_________ 11、032)2(2≥---x x x 2、0322322≤--+-x x x x . 12、)0(,112>≤-+a ax x 4、0)2)(2(>--ax x三、基本不等式1.已知141a b+=,且a>0,b>0,求a+b 最小值2.已知x >0,函数y =2-3x -4x有 值是 . 4、2x >,1252y x x =-+-的最小值 5、0x <,21x x y x ++=的最大值。
高考数学:不等式高级水平必备
高考数学:不等式高级水平必备在高考数学中,不等式是考察学生数学思维和解决问题能力的重要部分。
不等式的解法和应用涉及到众多数学思想和技巧,比如转化思想、基本不等式、不等式的性质等。
因此,掌握不等式的高级水平是高考数学取得高分的必要条件之一。
基本不等式是高中数学中最重要的不等式之一,也是解决实际问题中经常用到的。
基本不等式主要涉及到算术平均数和几何平均数之间的关系,即“平均数大于等于几何平均数”。
在应用基本不等式时,需要注意等号成立的条件和取值范围。
例题:已知x>0,求(x + 1/x)的最小值。
解:由基本不等式可得,x + 1/x ≥ 2√(x × 1/x) = 2,当且仅当x = 1时取等号。
因此,(x + 1/x)的最小值为2。
不等式的性质是解决不等式问题的基石,包括传递性、可加性、可乘性等。
在解复杂的不等式时,常常需要通过变形将其转化为几个简单的不等式组,再分别解不等式组。
例题:解不等式(x - 1)(x + 2) > 0。
解:由不等式的可加性和可乘性可得,不等式(x - 1)(x + 2) > 0等价于两个简单的不等式组:①x - 1 > 0且x + 2 > 0;②x - 1 < 0且x + 2 < 0。
解得第一个不等式组的解集为x > 1,第二个不等式组的解集为x < -2。
因此,原不等式的解集为{x|x > 1或x < -2}。
绝对值不等式是高中数学中一个重要的不等式,它涉及到绝对值的性质和运算规则。
绝对值不等式的解法一般需要先去掉绝对值符号,再解不等式。
例题:解不等式|x - 3| < x - 1。
∣x−3∣=−(x−3)。
因此,原不等式等价于两个简单的不等式组:①x - 3 < x - 1;②- (x - 3) < x - 1。
解得第一个不等式组的解集为空集,第二个不等式组的解集为{x|x > 2}。
高中数学必备知识点
高中数学必备知识点高中数学必备知识点一、基本概念与方法1.数学基本概念:包括数的概念、自然数、整数、有理数、无理数、实数、复数的概念;代数式、方程、不等式等基本概念。
2.初等代数方法:包括代数式的化简、多项式乘法、因式分解、分式化简、方程解法及不等式解法。
3.初等数论方法:包括最大公因数、最小公倍数、整除性、质数性、同余关系等数论概念,以及用这些概念解决问题的方法。
4.初等几何方法:包括图形的性质及分类、角度、三角形、圆的性质等基础知识及证明方法。
5.函数的基本性质:包括函数的定义和表示方法、函数的奇偶性、单调性、周期性、界、有界性、连续性、极限等基础概念及相关定理和性质。
二、微积分1.导数及其应用:包括函数的导数的定义、求导法则、高阶导数、隐函数求导、参数方程求导、导函数的应用等。
2.不定积分及其应用:包括不定积分的定义、求导与求不定积分的关系、基本积分公式、分部积分法、换元积分法、有理函数积分法、三角函数积分法、积分中值定理等。
3.定积分及其应用:包括定积分的定义、定积分的几何意义、定积分的计算方法、变限积分的基本定理和牛顿—莱布尼茨公式、反常积分及其收敛性、定积分应用于物理和几何问题等。
4.微分方程的解法:包括一阶微分方程的分离变量法、齐次方程的求解、一阶非齐次线性方程的求解、二阶齐次线性方程和非齐次线性方程的求解、常微分方程组及其解法等。
三、立体几何1.向量及其运算:包括向量的基本概念、向量的表示、向量的加法、向量数乘、向量的模、向量垂直、向量平行、向量的数量积、向量的叉积等。
2.空间直线和平面:包括直线的方程与位置关系、平面的方程与位置关系、直线与平面的交点及交线、两直线和两平面的位置关系等。
3.空间曲面:包括二次曲面的表达式及其方程、柱面、圆锥面、旋转曲面、双曲面、抛物面的定义及性质等。
4.立体几何证明:包括三棱锥、四棱锥、正多面体、柱体、圆锥体、圆柱体、旋转体等几何体的性质证明。
四、概率统计1.随机事件和概率:包括样本空间、随机事件、事件关系、概率的基本概念和公式、独立事件等。
高一不等式及其解法
个性化教学辅导教案学科:数学年级:高一任课教师:授课时间:2017 年春季班第周教学课题不等式及其解法教学目标1.不等式的性质2.不等式的解法教学重难点重点:不等式性质的应用难点:一元二次不等式恒成立问题教学过程第一节不等关系与不等式考点一比较两个数(式)的大小[必备知识] 两个实数比较大小的法则关系法则作差法则作商法则a>b a-b>0ab>1(a,b>0)或ab<1(a,b<0)a=b a-b=0ab=1(b≠0)a<b a-b<0ab<1(a,b>0)或ab>1(a,b<0)[题组练透]1.已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M >N C.M=N D.不确定2.若a=ln 22,b=ln 33,则a____b(填“>”或“<”).3.若实数a≠1,比较a+2与31-a的大小.[类题通法]比较两个数(式)大小的两种方法(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素需进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)用作商法比较代数式的大小一般适用于分式、指数式、对数式,作商只是思路,关键是化简变形,从而使结果能够与1比较大小.考点二不等式的性质(重点保分型考点——师生共研)[必备知识] 1.不等式的基本性质(1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥2). (8)开方法则:a >b >0⇒n a >nb (n ∈N ,n ≥2). 2.不等式的倒数性质(1)a >b ,ab >0⇒1a <1b . (2)a <0<b ⇒1a <1b . (3)a >b >0,0<c <d ⇒a c >bd .[提醒] 不等式两边同乘数c 时,要特别注意“乘数c 的符号”.[典题例析]1.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b[类题通法](1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.[演练冲关]1.若a >b >0,则下列不等式不成立的是( )A.1a <1bB .|a |>|b |C .a +b <2ab D.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b 2.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4考点三 不等式性质的应用(题点多变型考点——全面发掘)[一题多变][典型母题]已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围.[题点发散1] 若本例中条件变为:已知函数f (x )=ax 2+bx ,且1<f (-1)≤2,2≤f (1)<4,求f (-2)的取值范围.[题点发散2] 若本例条件不变,求2a -3b 的取值范围.[类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.一、选择题1.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B D .A >B2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m 3.(2015·西安检测)设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( )A.⎝⎛⎭⎫0,5π6B.⎝⎛⎭⎫-π6,5π6 C .(0,π) D.⎝⎛⎭⎫-π6,π 4.在所给的四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0中,能推出1a <1b 成立的有( )A .1个B .2个C .3个D .4个 5.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |6.已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确命题的个数是( )A .0B .1C .2D .3 二、填空题7.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确命题的序号是__________.8.若1<α<3,-4<β <2,则α-|β|的取值范围是________.9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.10.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________.第二节一元二次不等式及其解法考点一 一元二次不等式的解法(基础送分型考点——自主练透)[必备知识] 设一元二次不等式为ax 2+bx +c >0(a ≠0),其中Δ=b 2-4ac ,x 1,x 2是方程ax 2+bx +c =0(a ≠0)的两个根且x 1<x 2.(1)当a >0时,若Δ>0,则不等式的解集为{x |x <x 1,或x >x 2};若Δ=0,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,且x ≠-b 2a ; 若Δ<0,则不等式的解集为R .(2)当a <0时,若Δ>0,则不等式的解集为{x |x 1<x <x 2}; 若Δ=0,则不等式的解集为∅; 若Δ<0,则不等式的解集为∅.[题组练透]解下列不等式:(1)-3x 2-2x +8≥0; (2)x 2-4ax -5a 2>0(a ≠0).[类题通法]1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[提醒] 当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.考点二 一元二次不等式恒成立问题(常考常新型考点——多角探明)[必备知识] 一元二次不等式恒成立的条件(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.[多角探明]一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图象与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:(1)形如f (x )≥0(x ∈R )确定参数的范围;(2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围. 角度一:形如f (x )≥0(x ∈R )确定参数的范围1.已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.角度二:形如f (x )≥0(x ∈[a ,b ])确定参数范围2.设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.角度三:形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.[类题通法]恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.考点三 一元二次不等式的应用(重点保分型考点——师生共研)[典题例析]甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[类题通法]求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.[演练冲关]某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成(要求售价不能低于成本价).(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.一、选择题1.不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1} 2.不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)3.已知f (x )=ax 2-x -c ,不等式f (x )>0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )4.如果关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,4,那么实数a 的取值范围是( )A .[80,125)B .(80,125)C .(-∞,80)D .(125,+∞)5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间6.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎤-∞,-235 二、填空题7.不等式|x (x -2)|>x (x -2)的解集是________.8.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1},则a 的值为________.9.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.。
高数常用不等式公式
高数常用不等式公式高数中常用的不等式公式有很多,以下是一些重要的不等式公式:1. 两个数的不等式公式:若a-b>0,则a>b。
若a>b,则a±c>b±c。
若a+b>c,则a>c-b。
若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。
若a>b>0,c>d>0,则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)。
若a>b>0,则an>bn(n∈N,n>1)。
2. 高中4个基本不等式:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。
平方平均数≥算术平均数≥几何平均数≥调和平均数。
3. 基本不等式两大技巧“1”的妙用:题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。
4. 调整系数。
基本不等式中常用公式:(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。
(当且仅当a=b时,等号成立) (2)√(ab)≤(a+b)/2。
(当且仅当a=b时,等号成立) (3)a²+b²≥2ab。
(当且仅当a=b时,等号成立) (4)ab≤(a+b)²/4。
(当且仅当a=b时,等号成立) (5)a-b ≤a+b≤a+b。
(当且仅当a=b时,等号成立)。
以上信息仅供参考,如有需要,建议查阅数学书籍或咨询数学专业人士。
高中数学会考必备资料
高一内容梳理一、集合1、集合的中元素的三个特性:确定性、互异性、无序性2、3、空集是任何集合的子集,空集是任何非空集合的真子集。
4、⑴C U (C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U(4)(C U A)∩(C U B)=C U (A ∪B)(5)(C U A)∪(C U B)=C U (A∩B)5、充要条件口诀:小充大必(范围小的是充分条件,范围大的是必要条件)6、复合命题的真假判断(利用真值表):非二、不等式1、若R b a ∈,,ab b a 222≥+,222b a ab +≤,2)2(222b a b a +≤+(当且仅当b a =时取“=”)2、若*,R b a ∈,则ab b a ≥+2,ab b a 2≥+,22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3、若0x >,12x x +≥(当且仅当1x =取“=”);0x <,则12x x+≤-(当且仅当1x =-取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或(当且仅当b a =时取“=”)4、若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或(当且仅当b a =时取“=”)三、函数1、定义域:分母不等于零;偶次方根的被开方数不小于零;对数式的真数必须大于零;指数、对数式的底必须大于零且不等于1;2、抽象函数定义域:定义域是指x 的取值范围,对应法则的作用范围相同。
3、求函数值域:根式型(换元法);一次分式型(无限制:系数比,取不到;有限制;带端点,内外反);二次分式型(换元,转化为一次;判别式法;捺撇方程法)4、函数单调性:在定义域范围内,取21x x ,,比较()()21,x f x f :同增异减5、函数奇偶性:()()x f x f =-偶函数;()()x f x f -=-为奇函数,若奇函数定义域有0,则必有()00=f 。
含参不等式之整数解问题-杰少
含参不等式之整数解问题--极客杰少--2020年4月27日说明:本人才疏学浅,能力有限,请大家见谅.技能储备篇一、含参不等式整数解问题的三重境界①一重境·初阶:化简后的不等式两边都是常数,求整数解;如:2.1<x<4.5的整数解为:x=3或4.②二重境·中阶:化简后的不等式一边是常数,一边含参数,给定整数解个数,求参数范围;如:2.1<x<2a-1的整数有2个,求a的范围.【特点】结果中一边取等,一边不取等.③三重境·高阶:化简后的不等式两边都含有参数,给定整数解的个数,求参数范围;如:a<x<2a的整数解有2个,求a的范围.二、必备技能1.绝对值不等式:①若|x|>a(a>0),则x>a或x<-a;②若|x|<a(a>0),则-a<x<a.2.一元二次不等式:①若(x-a)(x-b)>0(a<b),则x>b或x<a;②若(x-a)(x-b)<0(a<b),则a<x<b.3.区间长度:定义:a<x<b、a≤x<b、a<x≤b、a≤x≤b的区间长度均为d=b-a,则d能在数轴上覆盖的整数点的个数为[d]或[d]+1.极道征途篇一、一重境·初阶 1.解不等式组()41710853⎧⎪⎨−−⎪⎩+≤+①<②x x x x ,并写出它的所有非负整数解.二、二重境·中阶 1. (双流期末) 已知关于x 的不等式-a ≤3x -a ≤0的正整数解只有3个,则a 的取值范围是__________.通过此题,可以发现答案与已知条件之间存在以下结论:【含参一侧,正号互补,负号复制;二重境时,答案两侧,一边取等,一边不取等】 做数学选择题的时候最让人兴奋的可能就是题目一出现别人在动笔一阵狂算,而你居然口暴答案!下面我们来一组不动笔,口暴答案的题!秒杀1:(四川宜宾期末)不等式组2⎧⎨⎩>-≤x x m 有4个不同的整数解,则m 的取值范围( )A .2≤m <3B .2<m ≤3C .m <3D .2<m秒杀2:(四川眉山中考)已知关于x 的不等式组()232325−⎧⎨−⎩>≥+x a x x 仅有三个整数解,则a 的取值范围是( ) A .12≤a <1 B .12≤a ≤1 C .12<a ≤1D .a <1秒杀3:(四川攀枝花期末)关于x 的不等式组()2331324−⎧⎪⎨⎪⎩<++>+x x x x a 有四个整数解,则a 的取值范围是( ) A .11542−≤−<a B .11542−≤≤−a C .11542−≤−<a D .11542−−<<a 秒杀4:(四川内江中考)若关于x 的不等式组()1023354413⎧⎪⎨⎪⎩++>++>++xx x a x a 恰有三个整数解,则a 的取值范围是( )A .1≤a 32<B .1<a 32≤C .1<a 32<D .a ≤1或a 32>秒杀5:(成都七中自主招生)若不等式组52111−⎧⎨⎩≤≤<x x a 的正整数解有3个,那么a 必须满足( ) A .5<a <6B .5≤a <6C .5<a ≤6D .5≤a ≤6秒杀6:(浙江自主招生)关于x 的不等式组15322x x x a+⎧<−⎪−⎨⎪+>⎩的解中恰有4个整数解,则a 的取值范围是( ) A .1819a B .1819a < C .1819a << D .1819a <<2. (安庆一中自主招生)已知关于x 的不等式组12−⎧⎨⎩<+<x x x m 有两个整数解,则实数m 的取值范围是__________.3. (四川成都金牛区期末) 如果关于x的不等式3020−⎧⎨−⎩≥≤x ax b的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有个;如果关于x的不等式组⎧⎨⎩+>+<px d fqx e g(其中p,q为正整数)的整数解仅有c1,c2,…,c n(c1<c2<…<c n),那么适合这个不等式组的整数d,e组成的有序数对(d,e)共有________个.(请用含p、q的代数式表示)秒杀1:(四川乐山期末)如果关于x的不等式组5040−⎧⎨−⎩>≤x mx n的整数解仅为2、3,那么适合这个不等式组的整数对(m,n)共有()A.30对B.20对C.25对D.16对秒杀2:(安徽宣城期中)如果不等式组4030−⎧⎨−⎩≥<x ax b的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)共有__________对.4. (四川南充自主招生)若关于x的不等式组321−⎧⎨−⎩≤<xx m的所有整数解的和是6,则m的取值范围是__________.5. (四川成都锦江区期末)若关于x的不等式组2223⎧−⎪⎨⎪⎩+≥<xxx m的所有整数解的和是-9,则m的取值范围是__________.6.(四川成都新都区期中)关于x的不等式x2-(a+1)x+a<0的解集中恰有3个整数解,则a 的取值范围是__________.三、三重境·高阶1. (湖北武汉月考)已知关于x的不等式-4≤3x+b≤11的整数解之和为-5,那么b的取值范围是__________.2. 已知关于x的不等式组230320⎧⎨−⎩+>≥a xa x有三个整数解,则a的取值范围是__________.3. (天津高考题)若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.4.已知关于x的不等式组122⎧⎨−⎩<+>x ax a的整数解集为3和4,则实数a的取值范围是__________.5. (天津竞赛题)已知关于x的不等式组122⎧⎨−⎩<+>x ax a的解集中的整数恰好有2个,则实数a的取值范围是__________.6. (上海自主招生)已知a为正数,且关于x的不等式1<ax<2只有3个整数解,则a的取值范围是__________.7.(浙江温州自主招生)若满足不等式871513<<+nn k的正整数k只有一个,则正整数n的最大值是__________.8.(安徽马鞍山自主招生)若满足不等式871513<<+nn k的正整数k只有一个,则正整数n的最小值是__________.9. 已知正整数a,b满足:41235<<ab,则b的最小值是__________.10. 已知m、n为正整数,且仅有2个m使得1191814<<+nn m成立,求n的最大值和最小值.登峰造极篇巅峰挑战1. (四川成都成华区期末)不等式组123122−⎧⎪⎨⎪⎩<+≤xx的所有整数解的积是__________.2. (四川成都锦江区期中)若不等式组321−⎧⎨−>⎩≥x ax有4个整数解,则a的取值范围是__________.3. (四川成都锦江区期末)对x 、y 定义一种新运算T ,规定:T (x ,y )2+=+ax by x y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)01201⨯⨯⨯+==+a b b ,已知T (1,-1)=-2,T (4,2)=1,若关于m 的不等式组()()254432−≤⎧⎪⎨−⎪⎩,,>T m m T m m P 恰好有3个整数解,则实数P 的取值范围是__________.4.已知关于x 的不等式组29020−⎧⎨−⎩<>x x m 的所有整数解的和为10,则m 的取值范围是__________.5.如果不等式組9080−⎧⎨−⎩≥<x a x b 的整数解仅为1、2、3,那么适合不等式组的整数a 、b 的有序数对(a ,b )共有__________个.6.已知关于x 的不等式组2030⎧⎨−⎩+>≥ax ax 恰有3个整数解,则a 的取值范围是__________.7.已知关于x 的不等式a +1≤x +2≤3a 有实数解但没有整数解,则a 的取值范围是__________.8.已知仅有3个整数x 满足不等式()2242320−+++<x a x a a ,其中a >-1,则a 的取值范围是__________.9.设0<b <a +1,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则a 的取值范围是__________.10.已知关于x的不等式a<x<2a的整数解有3个,则a的取值范围是__________.11.已知m,n为正整数,仅存在2个m,使得561113<<+nm n成立,则n的最小值是__________.参考答案一、一重境·初阶1. 【答案】解集为:722−≤<x,整数解为:0,1,2,3.二、二重境·中阶1.【答案】9≤a<12.秒杀1秒杀2秒杀3秒杀4秒杀5秒杀6A A CBC B2. 【答案】1<m≤23. 【答案】6;pq秒杀1秒杀2B124. 【答案】3<m≤45. 【答案】-2<m≤-1或1<m≤2.6. 【答案】-3≤a<-2或4<a≤5三、三重境·高阶1. 【答案】5<b<82. 【答案】43 32≤≤a3. 【答案】2549 916≤<a4. 【答案】3<a<45. 【答案】3<a<4或4<a≤5或a=66. 【答案】13<a<25或27≤a<13或a=147. 【答案】1128. 【答案】159. 【答案】1110. 【答案】n最小16,最大36巅峰挑战1. 【答案】02. 【答案】43−−<≤a3. 【答案】-2≤P13−<4. 【答案】-11 22≤<m5. 【答案】726. 【答案】1.5<a<2或-2<a<-1.57. 【答案】12≤a<238. 【答案】1233<≤a或a=19. 【答案】1<a<310.【答案】532<<a或732<≤a或a=411. 【答案】41。
高中数学 第二章 等式与不等式 2.2 不等式 2.2.1 第1课时 不等式及其性质精品练习(含解析
第1课时 不等式及其性质必备知识基础练进阶训练第一层知识点一用不等式表示不等关系1.下面表示“a 与b 的差是非负数”的不等关系的是( )A .a -b >0B .a -b <0C .a -b≥0D .a -b≤02.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要安全通过隧道,应使车载货物高度h 满足关系为( )A .h <4.5B .h >4.5C .h≤4.5D .h≥4.5知识点二作差法比较大小3.设a =3x 2-x +1,b =2x 2+x ,则( )A .a>bB .a<bC .a≥bD .a≤b4.若P =a +6+a +7,Q =a +5+a +8(a>-5),则P ,Q 的大小关系为( )A .P<QB .P =QC .P>QD .不能确定5.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( )A .A≤B B .A≥BC .A<B 或A>BD .A>B知识点三用不等式的性质判断或证明6.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b7.给出下列命题: ①若ab>0,a>b ,则1a <1b ;②若a>b ,c>d ,则a -c>b -d ;③对于正数a ,b ,m ,若a<b ,则a b <a +mb +m .其中真命题的序号是________.8.(1)已知a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b ,求证:ab >0.关键能力综合练进阶训练第二层一、选择题1.按照神州十一号飞船环境控制与生命保障系统的设计指标,要求神州六号飞船返回舱的温度在(21±4) ℃之间(包含端点),则该返回舱中温度t(单位:℃)的取值X 围是( )A .t≤25B .t≥17C .17≤t≤25D .17<t<252.已知a +b>0,b<0,那么a ,b ,-a ,-b 的大小关系是( )A .a>b>-b>-aB .a>-b>-a>bC .a>-b>b>-aD .a>b>-a>-b3.已知a>b ,c>d ,且c ,d 不为0,那么下列不等式一定成立的是( )A .ad>bcB .ac>bdC .a +c>b +dD .a -c>b -d4.已知a ,b ,c 均为正实数,若c a +b <a b +c <ba +c,则a ,b ,c 的大小关系为( )A .c <a <bB .b <c <aC .a <b <cD .c <b <a5.已知x >y >z ,x +y +z =0,则下列不等式中成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x|y|>z|y|6.已知a ,b∈(0,1),记M =ab ,N =a +b -1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定二、填空题7.一辆汽车原来每天行驶x km ,如果该辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写出不等式为________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.8.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.9.(探究题)给定下列命题:①a>b ⇒a 2>b 2;②a 2>b 2⇒a>b ;③a>b ⇒b a <1;④a>b,c>d ⇒ac>bd ;⑤a>b,c>d ⇒a -c>b-d.其中错误的命题是________(填写相应序号).三、解答题10.(易错题)已知实数x ,y 满足-4≤x-y≤-1,-1≤4x-y≤5,求9x -3y 的取值X 围.学科素养升级练进阶训练第三层1.(多选)给出四个选项能推出1a <1b的有( )A .b >0>aB .0>a >bC .a >0>bD .a >b >02.已知a ,b ,c 为不全相等的实数,P =a 2+b 2+c 2+3,Q =2(a +b +c),那么P 与Q 的大小关系是( )A .P>QB .P≥QC .P<QD .P≤Q3.(情境命题—生活情境)甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试探究谁先到达教室?2.2.1 不等式及其性质第1课时 不等式及其性质必备知识基础练1.解析:“a 与b 的差是非负数”用不等式表示为a -b ≥0.故选C. 答案:C2.解析:“限高4.5米”即h <4.5,故选A. 答案:A3.解析:a -b =(3x 2-x +1)-(2x 2+x )=x 2-2x +1=(x -1)2≥0,所以a ≥b . 答案:C4.解析:P 2=2a +13+2a +6a +7,Q 2=2a +13+2a +5a +8,因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以a +6a +7>a +5a +8,所以P 2>Q 2,所以P >Q . 答案:C5.解析:因为A -B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,所以A ≥B .答案:B6.解析:对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .答案:D7.解析:对于①,若ab >0,则1ab>0,又a >b ,所以a ab >b ab ,所以1a <1b,所以①正确; 对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1bb +m >0,所以a b <a +m b +m,③正确. 综上,真命题的序号是①③. 答案:①③8.证明:(1)证法一:∵a <b <0,∴-a >-b >0, ∴0<-1a <-1b, ①∵0<-b <-a, ② ①②相乘,b a <a b.证法二:b a -a b =b 2-a 2ab =b +a b -aab,∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴b +ab -aab <0,故b a <ab .(2)∵1a <1b,∴1a -1b<0,即b -a ab<0,又a >b ,∴b -a <0, ∴ab >0.关键能力综合练1.解析:由题意知21-4≤t ≤21+4,即17≤t ≤25.答案:C2.解析:解法一 ∵a +b >0,∴a >-b , 又b <0,∴a >0,且|a |>|b |, ∴a >-b >b >-a .解法二 设a =3,b =-2,则a >-b >b >-a . 故选C. 答案:C3.解析:由a >b ,c >d 得a +c >b +d ,故选C. 答案:C 4.解析:∵ca +b <ab +c,∴c (b +c )<a (a +b ),bc +c 2<a 2+ab ,移项后因式分解得,(a -c )(a +b +c )>0,∵a ,b ,c 均为正实数,∴a >c ,同理b >a .∴c <a <b ,故选A.答案:A5.解析:因为x >y >z ,x +y +z =0, 所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz .故选C.答案:C6.解析:M -N =ab -(a +b -1)=ab -a -b +1 =(a -1)(b -1).∵a ,b ∈(0,1),∴a -1<0,b -1<0, ∴M -N >0,∴M >N . 答案:B7.解析:由题意知,汽车原来每天行驶x km,8天内它的行程超过2 200 km ,则8(x +19)>2 200.若每天行驶的路程比原来少12 km ,则原来行驶8天的路程就要用9天多,即8x x -12>9(x >12).答案:8(x +19)>2 2008xx -12>9(x >12) 8.解析:a b2+b a2-⎝ ⎛⎭⎪⎫1a +1b=a 3+b 3-ab 2-a 2b a 2b 2.∵a 2b 2>0,所以只需判断a 3+b 3-ab 2-a 2b 的符号.a 3+b 3-ab 2-a 2b=a 2(a -b )+b 2(b -a ) =(a -b )(a 2-b 2) =(a -b )2(a +b )≥0, 等号当a =b 时成立,所以a b2+b a2≥1a +1b.答案:a b2+b a2≥1a +1b9.解析:由性质7可知,只有当a >b >0时,a 2>b 2才成立,故①②都错误;对于③,只有当a >0且a >b 时,ba<1才成立,故③错误;由性质6可知,只有当a >b >0,c >d >0时,ac >bd 才成立,故④错误;对于⑤,由c >d 得-d >-c ,从而a -d >b -c ,故⑤错误.答案:①②③④⑤10.解析:设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴⎩⎪⎨⎪⎧a +4b =9,a +b =3⇒⎩⎪⎨⎪⎧a =1,b =2,∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10, 又-4≤x -y ≤-1, ∴-6≤9x -3y ≤9.学科素养升级练1.解析:1a <1b ⇔b -aab<0⇔ab (a -b )>0,A .ab <0,a -b <0,ab (a -b )>0成立B .ab >0,a -b >0,ab (a -b )>0成立C .ab <0,a -b >0,ab (a -b )<0,不成立,D .ab >0,a -b >0,ab (a -b )>0成立故选ABD. 答案:ABD2.解析:∵P -Q =a 2+b 2+c 2+3-2(a +b +c ) =a 2-2a +1+b 2-2b +1+c 2-2c +1 =(a -1)2+(b -1)2+(c -1)2≥0,又∵a ,b ,c 为不全相等的实数,∴等号取不到, ∴P >Q ,故选A. 答案:A3.解析:设寝室到教室的路程为s ,步行速度为v 1,跑步速度为v 2,则甲用时t 1=12s v 1+12s v 2,乙用时t 2=2s v 1+v 2,t 1-t 2=s 2v 1+s 2v 2-2s v 1+v 2=s ⎝ ⎛⎭⎪⎫v 1+v 22v 1v 2-2v 1+v 2=v 1+v 22-4v 1v 22v 1v 2v 1+v 2·s =v 1-v 22·s 2v 1v 2v 1+v 2>0, ∴甲用时多.∴乙先到达教室.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式高级水平必备目录Ch1. 伯努利不等式Ch2. 均值不等式Ch3. 幂均不等式Ch4. 柯西不等式Ch5. 切比雪夫不等式Ch6. 排序不等式Ch7. 琴生不等式Ch8. 波波维奇亚不等式Ch9. 加权不等式Ch10. 赫尔德不等式Ch11. 闵可夫斯基不等式Ch12. 牛顿不等式Ch13. 麦克劳林不等式Ch14. 定义多项式Ch15. 舒尔不等式Ch16. 定义序列Ch17. 缪尔海德不等式Ch18. 卡拉玛塔不等式Ch19. 单调函数不等式Ch20. 3个对称变量pqr法Ch21. 3个对称变量uvw法Ch22. ABC 法 Ch23. SOS 法 Ch24. SMV 法 Ch25. 拉格朗日乘数法 Ch26. 三角不等式 Ch27. 习题与习题解析Ch1. 伯努利不等式1.1若实数i x (i 12n ,,...,=)各项符号相同,且i x 1>-,则:12n 12n 1x 1x 1x 1x x x ()()...()...+++≥++++ 1()1()当12n x x x x ...====时,1()式变为:n 1x 1nx ()+≥+ 2() Ch2. 均值不等式2.1若12n a a a ,,...,为正实数,记:⑴n Q =,为平方平均数,简称平方均值;⑵ 12nn a a a A n...+++=,为算术平均数,简称算术均值;⑶n G =,为几何平均数,简称几何均值; ⑷ n 12nnH 111a a a ...=+++,为调和平均数,简称调和均值.则:n n n n Q A G H ≥≥≥ 3()iff 12n a a a ...===时,等号成立. (注:iff if and only if =当且仅当.)Ch3.幂均不等式3.1设12n a a a a (,,...,)=为正实数序列,实数r 0≠,则记:1r r rr12n r a a a M a n ...()⎛⎫+++= ⎪⎝⎭4()4()式的r M a ()称为幂平均函数.3.2若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,则:r s M a M a ()()≤ 5()当r s ≤时,5()式对任何r 都成立,即r M a ()关于r 是单调递增函数.5()3.3设12n m m m m (,,...,)=为非负实数序列,且12n m m m 1...+++=,若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,则:1m rrr rr1122n n M a m a m a m a ()(...)=+++ 6()6()式称为加权幂平均函数.3.4若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,对m r M a ()则:m m r s M a M a ()()≤即:11rrr sss sr1122n n 1122n n m a m a m a m a m a m a (...)(...)+++≤+++ 7()当r s ≤时,7()式对任何r 都成立,即m r M a ()关于r 是单调递增函数.7()Ch4. 柯西不等式4.1若12n a a a ,,...,和12n b b b ,,...,均为实数,则:222222212n 12n 1122n n a a a b b b a b a b a b (...)(...)(...)++++++≥+++ 8()iffn 1212na a ab b b ...===时,等号成立.(注:iff if and only if =当且仅当.)4.2柯西不等式还可以表示为:222222212n 12n 1122n n a a a b b b a b a b a b n n n.........()()()+++++++++≥ 9()简称:“平方均值两乘积,大于积均值平方” 我们将1122n na b a b a b n...+++简称为积均值,记:n D =则:224n n n Q a Q b D ab [()][()][()]≥n D ab ()≥ 10() 4.3推论1:若a b c x y z ,,,,,为实数,x y z 0,,>,则:2222n 12n 1212n 12na a a a a ab b b b b b (...)......++++++≥+++ 11() iffn 1212na a ab b b ...===时,等号成立. 11()式是柯西不等式的推论,称权方和不等式4.4推论2:若12n a a a ,,...,和12n b b b ,,...,均为实数,则:...+≥12()iffn 1212na a ab b b ...===时,等号成立. 4.5推论3:若a bc x y z ,,,,,为正实数,则:x y zb c c a a b y z z x x y()()()+++++≥+++ 13() Ch5. 切比雪夫不等式5.1若12n a a a ...≤≤≤;12n b b b ...≤≤≤,且均为实数.则:12n 12n 1122n n a a a b b b n a b a b a b (...)(...)(...)++++++≤+++ 14()iff 12n a a a ...===或12n b b b ...===时,等号成立. 12()由于有12n a a a ...≤≤≤,12n b b b ...≤≤≤条件,即序列同调, 所以使用时,常采用WLOG 12n a a a ...≤≤≤…… (注:WLOG Without Loss Of Generality =不失一般性) 5.2切比雪夫不等式常常表示为:12n 12n 1122n na a ab b b a b a b a b n n n.........()()()+++++++++≤ 15()简称:“切比雪夫同调数,均值积小积均值”.即:两个序列数的均值之积不大于两个序列数各积之均值. 则:2n n n A a A b D ab ()()[()]≤n D ab ()≤ 16() Ch6. 排序不等式6.1若12n a a a ...≤≤≤;12n b b b ...≤≤≤为实数,对于12n a a a (,,...,)的任何轮换12n x x x (,,...,),都有下列不等式:1122n n 1122n n n 1n 121n a b a b a b x b x b x b a b a b a b .........-+++≥+++≥+++ 17()17().其中,1122n n a b a b a b ...+++称正序和,n 1n 121n a b a b a b ...-+++称反序和,1122n n x b x b x b ...+++称乱序和. 故17()式可记为:18()6.2推论:若12n a a a ,,...,为实数,设12n x x x (,,...,)为12n a a a (,,...,)的一个排序,则:22212n 1122n n a a a a x a x a x ......+++≥+++ 19()Ch7. 琴生不等式7.1定义凸函数:对一切x y a b ,[,]∈,01(,)α∈,若函数f a b R :[,]→是向下凸函数,则:f x 1y f x 1f y (())()()()ααα+-≤+- 20()20()式是向下凸函数的定义式.注:f a b R :[,]→表示区间a b [,]和函数f x ()在a b [,]区间都是实数.7.2若f a b R :(,)→对任意x a b (,)∈,存在二次导数f x 0''()≥,则f x ()在a b (,)区间为向下凸函数;iff x a b (,)∈时,若f x 0''()>,则f x ()在a b (,)区间为严格向下凸函数. 7.3若12n f f f ,,...,在a b (,)区间为向下凸函数,则函数1122n n c f c f c f ...+++在在a b (,)区间对任何12n c c c 0,,...,(,)∈∞也是向下凸函数.7.4若f a b R :(,)→是一个在a b (,)区间的向下凸函数,设n N ∈,12n 01,,...,(,)ααα∈为实数,且12n 1...ααα+++=,则对任何12n x x x a b ,,...,(,)∈,有:1122n n 1122n n f x x x f x f x f x (...)()()...()αααααα+++≤+++ 21()21()简称:“对于向下凸函数,均值的函数值不大于函数的均值”. Ch8. 波波维奇亚不等式8.1若f a b R :[,]→是一个在a b [,]区间的向下凸函数,则对一切x y z a b ,,[,]∈,有:x y z f x f y f z 2x y y z z xf f f f 333222()()()()[()()()]++++++++≥++ 22() 22()8.2波波维奇亚不等式可以写成:x y z f x f y f z x y y z z xf f f f 3322223()()()()()()()++++++++++≥23() 简称:“对于向下凸函数的三点情况,三点均值的函数与函数的均值之平均值,不小于两点均值的函数值之平均值”.8.3若f a b R :[,]→是一个在a b [,]区间的向下凸函数,12n a a a a b ,,...,[,]∈,则:12n 12n f a f a f a n n 2f a n 1f b f b f b ()()...()()()()[()()...()]++++-≥-+++ 24()其中:12n a a a a n...+++=,i j i j 1b a n 1≠=-∑(对所有的i ) 24()当1a x =,2a y =,3a z =,n 3=时,x y z a 3++=,1y z b 2+=,2z x b 2+=,3x yb 2+= 代入23()式得:x y z y z z x x yf x f y f z 3f 2f f f 3222()()()()[()()()]++++++++≥++ 即:x y z f x f y f z 2x y y z z xf f f f 333222()()()()[()()()]++++++++≥++ 25() 25()式正是22()式.Ch9. 加权不等式9.1若i a 0(,)∈∞,i 01[,]α∈(i 12n ,,...,=),且12n 1...ααα+++=,则:n 1212n 1122n n a a a a a a ......αααααα≤+++ 26()26()26()式形式直接理解为:几何均值不大于算术均值.Ch10. 赫尔德不等式10.1若实数a b 0,>,实数p q 1,>且111p q+=,则:p q a b ab p q ≤+ 27() iff p q a b =时,等号成立.27()10.2若12n a a a ,,...和12n b b b ,,...为正实数,p q 1,>且111p q+=,则: 11p p p q q q pq1122n n 12n 12n a b a b a b a a a b b b ...(...)(...)+++≤++++++ 28()28()iff p p pn 12q q q 12na a ab b b ...===时,等号成立.10.3赫尔德不等式还可以写成:11p p p q q q p q1122n n 12n 12n a b a b a b a a a b b b n n n.........()()+++++++++≤ 29()即:2n p q D ab M a M b [()]()()≤n D ab ()≥ 30() 简称:“幂均值的几何均值不小于积均值”. (注:赫尔德与切比雪夫的不同点:赫尔德要求是111p q+=,切比雪夫要求是同调;赫尔德的积均值小,切比雪夫的积均值大.)10.4若12n a a a ,,...、12n b b b ,,...和12n m m m ,,...为三个正实数序列,p q 1,>且111p q+=,则: 11nnnpqp q i i ii i i i i 1i 1i 1a b ma mb m ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 31() 31()iff p p pn 12q q q 12na a ab b b ...===时,等号成立.10.5若ij a (i 12m ,,...,=;j 12n ,,...,=),12n ,,...,ααα为正实数且...12n 1ααα+++=,则:()()jj m mnn ijij j 1j 1i 1i 1aa αα====≤∏∏∑∑ 32()32()10.6推论:若123a a a N ,,+∈,123b b b N ,,+∈,123c c c N ,,+∈,则:3333333333123123123111222333a a a b b b c c c a b c a b c a b c ()()()()++++++≥++ 33()简称:“立方和的乘积不小于乘积和的立方”. Ch11.闵可夫斯基不等式11.1若12n a a a ,,...,;12n b b b ,,...,为正实数,且p 1>,则:111nnnppppppi i i i i 1i 1i 1a b a b (())()()===+≤+∑∑∑ 34()iffn 1212na a ab b b ...===时,等号成立. 34()11.2若12n a a a ,,...,;12n b b b ,,...,为正实数,且p 1>,则:11nnn pp p p p pi i i i i 1i 1i 1a b a b ()()()===⎛⎫+≤+ ⎪⎝⎭∑∑∑ 35()iffn 1212na a ab b b ...===时,等号成立. 35()11.3若12n a a a ,,...,;12n b b b ,,...,;12n m m m ,,...,为三个正实数序列,且p 1>,则:111nnnp p p pppi i i i i i i i 1i 1i 1a b m a m b m (())()()===+≤+∑∑∑ 36()iffn 1212na a ab b b ...===时,等号成立. 36()Ch12.牛顿不等式12.1若12n a a a ,,...,为任意实数,考虑多项式:n n 112n 01n 1n P x x a x a x a c x c x c x c ()()()...()...--=+++=++++ 37()的系数01n c c c ,,...,作为12n a a a ,,...,的函数可表达为:0c 1=;112n c a a a ...=+++;21213n 1n i j c a a a a a a a a ...-=+++=∑;(i j n <≤) 3i j k c a a a =∑;(i j k n <<≤) ……n 12n c a a a ...=.对每个k 12n ,,...,=,我们定义k k k k n c k n k p c C n !()!!-== 38() 则37()式类似于二项式定理,系数为:kk nk c C p =. 12.2若12n a a a ,,...,为正实数,则对每个k 12n 1,,...,=-有:2k 1k 1k p p p -+≤ 39()iff 12k a a a ...===时,等号成立.39()Ch13.麦克劳林不等式13.1若12n a a a ,,...,为正实数,按38()定义,则:111kn212k n p p p p ......≥≥≥≥ 40()iff 12k a a a ...===时,等号成立.40()Ch14.定义多项式14.1若12n x x x ,,...,为正实数序列,并设12n ,,...,ααα为任意实数.记:n 1212n 12n F x x x x x x (,,...,)...ααα=;12n T [,,...,]ααα为12n F x x x (,,...,)所有可能的积之和,遍及12n ,,...,ααα的所有轮换.14.2举例说明⑴ T 100[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是1,第2和第3个参数的指数是0.故:[,,]()!()()100100100T 10031x y z y x z z y x 2x y z =-⋅++=++.⑵ T 11[,]:表示共有2个参数的所有积之和,共有22!=项.第1个和第2个参数的指数是1.故:[,]()!()11T 1121x y 2xy =-⋅=.⑶ T 12[,]:表示共有2个参数的所有积之和,共有22!=项.第1个参数的指数是1,第2个参数的指数是2.故:[,]()!()121222T 1221x y y x xy x y =-⋅+=+.⑷ T 121[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是1,第2个参数的指数是2,第3个参数的指数是1.故:[,,]()222T 1212xy z x yz xyz =++.即:[,,][,,]T 121T 211=⑸ T 210[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是2,第2个参数的指数是1,第3个参数的指数是0.故:222222T 210x y x z y x y z z x z y [,,]=+++++.⑹ T 300[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是3,第2个和第3个参数的指数是0.故:333T 3002x y z [,,]()=++.⑺ [,,]T a b c :表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是a ,第2个参数的指数是b ,第3个参数的指数是c .故:[,,]a b c a c b b c a b a c c a b c b a T a b c x y z x y z x y z x y z x y z x y z =+++++.由于[,,][,,][,,][,,][,,]...T a b c T b c a T c a b T c b a T b a c =====表达式比较多, 所以我们规定:[,,]T a b c (a b c ≥≥).Ch15.舒尔不等式15.1若R α∈,且0β>,则:[,,][,,][,,]T 200T 2T 0αβαββαββ++≥+ ()41()4115.2 解析()41式[,,]()222T 2002x y z αβαβαβαβ++++=++;[,,]()T 2x y z x y z x y z αβββαβββααββ=++;[,,]T 0x y x y y z y z x z x z αβββαβαβββαββαβαββαββ+++++++=+++++将上式代入()41式得:222x y z x y z x y z x y z αβαβαβαβββαβββα++++++++x y x y y z y z x z x z αβββαβαβββαββαβαββ++++++≥+++++即:222y x y z z x y x z x y z αβααββαβαβββββα++++++++y x y y z x y x z 0z x z βαβββααββαβββαβαββ++++++------≥即:()()22x x y z x y x z y y x z x y y z αβββββββαβββββββ++--+--()2z z x y y z x z 0αβββββββ++-≥-即:()()()()()()x x y x z y y z y x z z x z y 0αββββαββββαββββ--+--+--≥ ()42()42式与()4115.3若实数,,x y z 0>,设t R ∈,则:()()()()()()t t t x x y x z y y z y x z z x z y 0--+--+--≥ ()43iff x y z ==或,x y z 0==及轮换,等号成立.按照()41式写法,即:t α=,1β=,则:[,,][,,][,,]T t 200T t 112T t 110++≥+ ()44()43式是我们最常见的舒尔不等式形式.15.4推论:设实数,,x y z 0>,实数,,a b c 0>且a b c ≥≥或a b c ≤≤,则:()()()()()()a x y x z b y z y x c z x z y 0--+--+--≥ ()45()43式中,t x a =,t y b =,t z c =,就得到()45式.15.5推论:设实数,,x y z 0>,则:[()()()]3333332223xyz x y z 2xy yz zx +++≥++ ()4615.6推论:若(,]k 03∈,则对于一切,,a b c R +∈,有:()()()2222k 3k k abc a b c 2ab bc ca -++++≥++ ()47Ch16. 定义序列16.1设存在两个序列()(,,...,)n i i 112n ββββ==和()(,,...,)n i i 112n αααα==,当满足下列条件:⑴ ......12n 12n βββααα+++=+++ ①⑵ ...12n βββ≥≥≥且...12n ααα≥≥≥ ②⑶ ......12s 12s βββααα+++≤+++ ③对一切[,]s 1n ∈,③式都成立.则:()n i i 1β=就是()n i i 1α=的优化值,记作:()()i i βα<.注:这里的序列只有定性的比较,没有定量的比较.Ch17.缪尔海德不等式17.1若,,...,12n x x x 为非负实数序列,设()i α和()i β为正实数序列,且()()i i βα<,则:[][]i i T T βα≤ ()48iff ()()i i αβ=或...12n x x x ===时,等号成立.()4817.2解析()48式若实数123a a a 0≥≥≥,实数123b b b 0≥≥≥,且满足11a b ≥,1212a a b b +≥+,123123a a a b b b ++=++;设,,x y z 0>,则:满足序列(,,)(,,)123123b b b a a a <条件, 则:[,,]333333121221211221b b b b b b b b b b b b b b b b b b 123T b b b x y z x y z x y z x y z x y z x y z =+++++[,,]333333121221211221a a a a a a a a a a a a a a a a a a 123T a a a x y z x y z x y z x y z x y z x y z =+++++ 即()48式为: [,,][,,]123123T b b b T a a a ≤用通俗的方法表达即:331212a b a a b b sym sym x y z x y z ≥∑∑ ()49()49.17.3例题:设(,,)x y z 为非负变量序列,考虑(,,)221和(,,)311.由16.1中的序列优化得:(,,)(,,)221311<由缪尔海德不等式()48式得:[,,][,,]T 221T 311< ①[,,]()222222T 2212x y z x yz xy z =++ ②[,,]()333T 3112x yz xy z xyz =++ ③将②③代入①得:222222333x y z x yz xy z x yz xy z xyz ++≤++即:222xy yz zx x y z ++≤++ ④由柯西不等式:()()()2222222x y z y z x xy yz zx ++++≥++即:()()22222x y z xy yz zx ++≥++即:222x y z xy yz zx ++≥++ ⑤ ⑤式④式等价,这就证明了④式是成立的,而缪尔海德不等式直接得到①式是成立的. ⑤式可以用[,,][,,]T 200T 110≥来表示,这正是缪尔海德不等式的()48式.Ch18.卡拉玛塔不等式18.1设在实数区间I R ∈的函数f 为向下凸函数,且当,i i a b I ∈(,,...,i 12n =)两个序列()n i i 1a =和()n i i 1b =满足()()i i a b >,则: ()()...()()()...()12n 12n f a f a f a f b f b f b +++≥+++ ()50()5018.2若函数f 为严格向下凸函数,即不等取等号,()()i i a b ≠,且()()i i a b >,则:()()...()()()...()12n 12n f a f a f a f b f b f b +++>+++ ()51若函数f 为严格向上凸函数,则卡拉玛塔不等式反向.Ch19.单调函数不等式19.1若实数函数:(,)f a b R →在区间(,)a b 对一切,(,)x y a b ∈为单调增函数,则当x y ≥时,有()()f x f y ≥;若f 在区间(,)a b 对一切,(,)x y a b ∈为严格单调增函数,当x y >时,有()()f x f y >.19.2若实数函数:(,)f a b R →在区间(,)a b 对一切,(,)x y a b ∈为单调减函数,则当x y ≥时,有()()f x f y ≤;若f 在区间(,)a b 对一切,(,)x y a b ∈为严格单调减函数,当x y >时,有()()f x f y <.19.3若实数函数:(,)f a b R →在区间(,)a b 为可导函数,当对一切(,)x a b ∈,'()f x 0≥,则f 在区间(,)a b 为单调递增函数;当对一切(,)x a b ∈,'()f x 0≤,则f 在区间(,)a b 为单调递减函数.19.4设两个函数:[,]f a b R →和:[,]g a b R →满足下列条件:⑴ 函数f 和g 在[,]a b 区间是连续的,且()()f a g a =;⑵ 函数f 和g 在[,]a b 区间可导;⑶ 导数'()'()f x g x >对一切(,)x a b ∈成立,则对一切(,)x a b ∈有:()()f x g x > ()52()52Ch20.3个对称变量pqr 法20.1设,,x y z R +∈,对于具有变量对称形式的不等式,采用下列变量代换:p x y z =++;q xy yz zx =++;r xyz =,则,,p q r R +∈.代换后的不等式(,,)f p q r ,很容易看出其满足的不等式关系,这样证明不等式的方法称为pqr 法.20.2常用的代换如下:⑴22cyc x p 2q =-∑ ⑵ ()32cycx p p 3q 3r =-+∑⑶ 222cycx y q 2pr =-∑⑷ ()()()x y y z z x pq r +++=-⑸()()2cyc x y y z p q ++=+∑ ⑹ ()cycxy x y pq 3r +=-∑⑺ ()()()1x 1y 1z 1p q r +++=+++⑻ ()()cyc1x 1y 32p q ++=++∑⑼()()2cyc cycx y z xy x y pq 3r +=+=-∑∑20.3常用的pqr 法的不等式若,,x y z 0≥,则:⑴ 3p qr 4pq +≥⑵ pq 9r ≥⑶ 2p 3q ≥⑷ 3p 27r ≥⑸ 32q 27r ≥⑹ 2q 3pr ≥⑺ 32p 9r 7pq +≥⑻ 322p 9r 7pqr +≥⑼ 22p q 3pr 4q +≥Ch21.3个对称变量uvw 法21.1在,,a b c R ∈的不等式中,采用下列变量代换:3u a b c =++;23v ab bc ca =++;3w abc =.上述变换强烈含有“平均”的意味:u 对应“算术平均值”;v 对应“积均值”;w 对应“几何平均值”. 21.2当,,a b c 0≥时,则:u v w ≥≥ ()53()53即:“算术平均值”≥“积均值”≥“几何平均值”.21.3若,,a b c 0≥,则,,23u v w 0≥ ()54()5421.4若,,23u v w R ∈,任给,,a b c R ∈,则当且仅当22u v ≥,且[32323w 3uv 2u 3uv 2u ∈---+时, 则:3u a b c =++,23v ab bc ca =++,3w abc =等式成立.这称为uvw 定理.Ch22.ABC 法22.1 ABC 法即Abstract Concreteness Method设p x y z =++;q xy yz zx =++;r xyz =.则函数(,,)f x y z 变换为(,,)f r q p .这与Ch20.3个对称变量pqr 法类似.22.2若函数(,,)f r q p 是单调的,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值. 22.3若函数(,,)f r q p 是凸函数,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值. 22.4若函数(,,)f r q p 是r 的线性函数,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值. 22.5若函数(,,)f r q p 是r 的二次三项式,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值.Ch23.SOS 法23.1 SOS 法即Sum Of Squares23.2本法的全部思想是将给出的不等式改写成以下形式:()()()222a b c S S b c S a c S a b =-+-+- ()55其中,,,a b c S S S 分别都是,,a b c 的函数.⑴ 若,,a b c S S S 0≥,则S 0≥;⑵ 若a b c ≥≥或a b c ≤≤,且,,b b a b c S S S S S 0++≥,则S 0≥; ⑶ 若a b c ≥≥或a b c ≤≤,且,,,a c a b c b S S S 2S S 2S 0++≥,则S 0≥; ⑷ 若a b c ≥≥,且,,22b c b a S S a S b S 0+≥,则S 0≥;⑸ 若a b S S 0+≥或b c S S 0+≥或c a S S 0+≥,且a b b c c a S S S S S S 0++≥,则S 0≥. 23.3 常用的形式⑴ ()22cyc cyc cyc1a ab a b 2-=-∑∑∑ ⑵ ()32cyc cyc cyc1a 3abc a a b 2-=⋅-∑∑∑ ⑶ ()223cyc cyccyc 1a b ab a b 3-=-∑∑∑ ⑷ ()()322cyc cyc cyc1a a b 2a b a b 3-=+-∑∑∑ ⑸()333cyc cyccyc cyc 1a b ab a b a 3-=⋅-∑∑∑∑ ⑹ ()()42222cyc cyc cyca ab 2a b a b -=+-∑∑∑ Ch24.SMV 法24.1 SMV 法即Strong Mixing Variables Method本法对多于2个变量的对称不等式非常有用.24.2 设(,,...,)12n x x x 为任意实数序列,⑴ 选择,{,,...,}i j 12n ∈使min{,,...,}i 12n x x x x =,max{,,...,}j 12n x x x x =;⑵ 用其平均数i j x x 2+代替i x 和j x ,经过多次代换后各项i x (,,...,i 12n =)都趋于相同的极限...12n x x x x n+++=. 24.3 设实数空间的函数F 是一个对称的连续函数,满足(,,...,)(,,...,)12n 12n F a a a F b b b ≥ ()56其中,(,,...,)12n b b b 序列是由(,,...,)12n a a a 序列经过预定义变换而得到的.预定义变换可根据当前的题目灵活采用,如a b2+. 24.4 例题说明例题:设实数,,a b c 0>,证明:a b c 3b c c a a b 2++≥+++. 解析:采用SMV 法. 设:(,,)a b c f a b c b c c a a b =+++++ ① 则:(,,)t t c 2t c f t t c t c c t t t t c 2t =++=+++++ ② 其中,a b t 2+=. 由②得:(,,)()()2t c 112t c t 113f t t c 2t c 2t 22t c 2t 222+=++-=+-≥-=++ 由()56式得:(,,)(,,)3f a b c f t t c 2≥≥证毕. Ch25.拉格朗日乘数法 25.1 设函数(,,...,)12n f x x x 在实数空间的I R ∈连续可导,且(,,...,)i 12n g x x x 0=,其中(,,....i 12k =),即有k 个约束条件,则(,,...,)12n f x x x 的极值出现在I 区间的边界或偏导数(函数为ki i i 1L f g λ==-∑)全部为零的点上.Ch26.三角不等式26.1 设,,(,)0αβγπ∈,且αβγπ++=,则,,αβγ就是同一个三角形的内角. 26.2 若,,αβγ为同一个三角形的内角,则有下列不等式:⑴ sin sin sin αβγ++≤; ⑵ cos cos cos 32αβγ++≤;⑶ sin sin sin αβγ≤⑷ cos cos cos 18αβγ≤; ⑸ sin sin sin 22294αβγ++≤; ⑹ cos cos cos 22234αβγ++≥; ⑺ tan tan tan αβγ++≥;⑻ cot cot cot αβγ++≥;⑼ sinsin sin 32222αβγ++≤;⑽ coscos cos 222αβγ++≤; ⑾ sinsin sin 12228αβγ≤;⑿ cos cos cos 2228αβγ≤; ⒀ sin sin sin 22232224αβγ++≥; ⒁ cos cos cos 22292224αβγ++≤; ⒂ tan tan tan222αβγ++≥⒃cotcotcot222αβγ++≥Ch27.习题27.1 设,,...,(,]12n x x x 01∈,求证:()()...()321111x x x n 12n 1x 1x 1x 2+++≥.27.2 设,,...,12n x x x 0≥,且...12n 1x x x 2+++=,求证:()()...()12n 11x 1x 1x 2---≥. 27.3 设,,...,12n a a a R +∈,且...12n a a a 1=......12n a a a +≤+++. 27.4 设,,a b c 0>,且abc 1=,求证:333a b c ab bc ca ++≥++. 27.5 设,,,a b c d 0>,求证:a b c d 2b 2c 3d c 2d 3a d 2a 3b a 2b 3c 3+++≥++++++++.27.6 设,,a b c 0>,求证:222a bc b ca c aba b c b c c a a b+++++≥+++++. 27.7设,a b 0>,n N ∈,求证:()()n n n 1a b112b a++++≥.27.8 设,,...,12n x x x R +∈,且...22212n x x x 1+++=,若n N ∈,n 2≥,求(,,...,)...()()()555n 1212n nnni 1i 2i ni 1i 1i 1x x x f x x x x x x x x x ====+++---∑∑∑的最小值.27.9 设,,a b c R +∈,且a b c abc ++=32≤. 27.10 设,,a b c R ∈. 27.11设,,a b c R +∈,且ab bc ca 3++=,求证:()()()2221a 1b 1c 8+++≥.27.12设,,a b c 0>,且a b c 1++=,求证:()()3332226a b c 15a b c +++≥++. 27.13设,,a b c 0≥,且a b c 2++=,求证:444333a b c abc a b c +++≥++. 27.14设,,a b c 0>,求证:()()()()3333338a b c a b b c c a ++≥+++++.27.15设,,a b c 0≥,求证:()33331a b c abc a b c 7+++≥++. 27.16设,,a b c 0>,且a b c 1++=,求证:2224a b c 3abc 9+++≥. 27.17设,,...,12n a a a 0>,求证:()()...()()()...()222n 1212n 231a a a 1a 1a 1a 111a a a +++≤+++.27.18设,,,a b c d 0>,且abcd 1=,求证:()()()()2222111111a 1b 1c 1d +++≥++++.27.19设,,,a b c d 0≥,且a b c d 4+++=,求证:()()()()2222abc bcd cda dab abc bcd cda dab 8+++++++≤.27.20设,,a b c 0≥,且222a b c 3++=,求证:222222a b b c c d a b c ++≤++.27.21设,,a b c R ∈,求证:()()()2222223333333a ab b b bc c c ca a a b b c c a -+-+-+≥++.27.22设,,,a b c d 0>,且a b c d abcd 5++++=,求证:11114a b c d+++≥.27.23设不等式:()()()()2222222222ab a b bc b c ca c a M a b c -+-+-≤++对一切实数,,a b c 都成立,求M 的最小值.27.24设,,a b c 0≥,且a b c 3++=,求证:()()222a b b c c a ab bc ca 9++++≤.Ch27.习题解析27.1 设,,...,(,]12n x x x 01∈,求证:()()...()321111x x x n 12n 1x 1x 1x 2+++≥.解析:设:n 11x x +=,则:因为i x 01(,]∈,所以i11x [,)∈+∞ (i 12n ,,...,=) 由伯努利不等式2():当i x 1>-且i 1[,)α∈+∞时,i i i i 1x 1x ()αα+≥+ ①iff i x 0=或i 1α=时,①式等号成立.由均值不等式3():i i 1x α+≥ ②iff i i x 1α=时,②式等号成立.由①②式得:i i 1x ()α+≥ ③iff i i x 1α==时, ③式等号成立.设:i i 11x α+=,则由③式得:i 11x i 1x ()++≥ ④则:21x 11x ()+≥31x 21x ()+≥11x n 1x ()+≥上面各式相乘得:321111x x x n 12n 1x 1x 1x 22()()...()+++≥=. 证毕.27.2 设,,...,12n x x x 0≥,且...12n 1x x x 2+++=,求证:()()...()12n 11x 1x 1x 2---≥. 解析:因为i x 0≥,ni i 11x 2==∑,所以i 1x 02[,]∈ 设i i y x =-,则i 1y 012[,]∈->-由伯努利不等式1():12n 12n 1y 1y 1y 1y y y ()()...()(...)+++≥++++ ① 将i i y x =-代入①式,并代入...12n 1x x x 2+++=得: 12n 12n 111x 1x 1x 1x x x 122()()...()(...)---≥-+++=-=. 证毕.27.3 设12n a a a 0,,...,>,且...12n a a a 1=......12n a a a +≤+++. 解析:因为12n a a a 0,,...,>,且...12n a a a 1=,所以由均值不等式3()n ...+≥=1≥ ①iff 12n a a a 1...====时,①式等号成立.由柯西不等式8():2222222111...](...)...++++++≥+ 即:212n a a a n (...)...+++⋅≥即:12n a a a (...)...+++≥+ ②iff 12n a a a 1...====时,②式等号成立.将①式代入②式得:12n a a a ......+++≥+ ③iff 12n a a a 1...====时, ③式等号成立. 证毕.27.4 设,,a b c 0>,且abc 1=,求证:333a b c ab bc ca ++≥++. 解析:因为,,a b c 0>,且abc 1=,所以由均值不等式3():222222222a b b c c a a b c ab bc ca 222+++++=++≥++ ① iff a b c 1===时,①式等号成立.由均值不等式3():a b c 3++≥=,即:a b c13++≥ ② iff a b c 1===时,②式等号成立.WLOG ,设a b c ≤≤,则因为,,a b c 0>,所以222a b c ≤≤由切比雪夫不等式14():222222a b c a b c 3a a b b c c ()()()++++≤⋅+⋅+⋅ 即:333222a b ca b c a b c 3()++++≥⋅++ ③ iff a b c 1===时,③式等号成立.将①②代入③式得:333a b c ab bc ca ++≥++ ④iff a b c 1===时, ④式等号成立. 证毕.27.5 设,,,a b c d 0>,求证:a b c d 2b 2c 3d c 2d 3a d 2a 3b a 2b 3c 3+++≥++++++++.解析:记A b 2c 3d =++,B c 2d 3a =++,C d 2a 3b =++,D a 2b 3c =++则:aA bB cC dD 4ab ac ad bc bd cd ()+++=+++++ ① 待证式为:a b c d 2A B C D 3+++≥ ② 由柯西不等式8():2a b c daA bB cC dD a b c d A B C D()()()++++++≥+++ 即:2a b c d a b c d A B C D aA bB cC dD ()++++++≥+++ ③由②③式,只需证明2a b c d 2aA bB cC dD 3()+++≥+++ ④ 设多项式:P x x a x b x c x d ()()()()()=++++43201234c x c x c x c x c =++++则: 1c a b c d =+++ ⑤2c ab ac ad bc bd cd =+++++代入①式得:2aA bB cC dD 4c +++= ⑥ 根据定义38():k k k nc p C =得:11114c c p C 4==,即:11c 4p =;22224c c p C 6==,即:22c 6p = 则:2221112222c 16p p 24c a b cd aA bB cC 6p 3D p d 4()==⋅++⋅+++=+ ⑦ 由麦克劳林不等式40():1212p p ≥,即:212p 1p ≥代入⑦式得:2a b c d aA bB c dD 23C ()++++≥++,④式得证. iff a b c d ===时,等号成立. 证毕.27.6 设,,a b c 0>,求证:222a bc b ca c aba b c b c c a a b +++++≥+++++. 解析:不等式左边=222a b c b c c b c c b c a c a a b ba a ab +++++++++++ 不等式右边=()()()a c ab a bc b c a b c c a a b b c +++++=+++++222ab a ac b c c a b c c a a b b c ca b b =+++++++++++ 则不等式其实就是:222222a b c c a b b c c a a b b c c a a b++≥++++++++ ① 由于是对称不等式,WLOG ,假设a b c ≥≥,则222a b c ≥≥ ②且b c a c a b +≤+≤+,即:111b c c a a b≥≥+++ ③ 则有排序不等式()18:222222a b c c a b b c c a a b b c c a a b++≥++++++++ 其中,222a b c b c c a a b +++++为正序和;222c a b b c c a a b+++++为乱序和. iff a b c ==时,等号成立. 证毕.27.7设,a b 0>,n N ∈证:()()n n n 1a b112b a++++≥.解析:当n 0=时,()()00a b112b a+++=,0122+=,不等式成立;当n 1=时,()()11a b a b1124b a b a+++=++≥,1124+=,不等式成立;当n 2≥时,构建函数()n f x x =. 则函数的导数'()n 1f x nx -=;二次导数''()()n 2f x n n 1x 0-=-≥,故在x 0>时函数为向下凸函数. 由琴生不等式()20:()()()1212f x f x x x f 22++≥ ①将()()n 1a f x 1b =+,()()n 2bf x 1a=+ ,()()()[][()]n n n 12b a 11x x 1b a a b f 12222a b++++==++≥ 带入①式得:()()n nn a b11b a 22+++≥,即:()()n n n 1a b 112b a ++++≥ 综上,当n 0=、n 1=和n 2≥时, ()()n n n 1a b112b a ++++≥都成立,即n N ∈时,()()n n n 1a b112b a++++≥成立. 证毕.27.8 设,,...,12n x x x R +∈,且...22212n x x x 1+++=,若n N ∈,n 2≥,求(,,...,)...()()()555n 1212n nnni 1i 2i ni 1i 1i 1x x x f x x x x x x x x x ====+++---∑∑∑的最小值.解析:记ni i 1S x ==∑,(,,...,i 12n =).则(,,...,) (555)n 1212n 12nx x x f x x x S x S x S x =+++---①WLOG 假设...12n x x x ≥≥≥,则...44412n x x x ≥≥≥ ② 由于ni i 1S x ==∑,所以()nk i k i 1S x x x =-=-∑与k x 无关,则kkx S x -与k x 同单调性. 即:...n 1212nx x x S x S x S x ≥≥≥--- ③ 由切比雪夫不等式14():若(,,...,)12n a a a 与(,,...,)12n b b b 同单调性,则有:12n 12n 1122n n a a a b b b n a b a b a b (...)(...)(...)++++++≤+++ ④设:4i i a x =,ni nx b S x =-,(,,...,i 12n =),则满足{}i a 与{}i b 同单调性.代入④式得:(...)(...)(...)4444n n 111n 1n 1n 1nx x x x x x n x x S x S x S x S x ++++≤⋅++⋅----即:......()(...)5445n 1n n 111n 1n x x x x x xf S x S x n S x S x ++=++≥⋅++---- ⑤由均值不等式()3:n n Q A ≥...221n x x 1n n ++=故:...441n 1x x n++≥ ⑥ 构建函数:()xg x S x=- ⑦ 则导函数:'()()2S g x S x =-,''()()32Sg x 0S x =>- 故()g x 为向下凸函数.由琴生不等式21():(...)()()...()1122n n 1122n n g x x x g x g x g x αααααα+++≤+++ 取加权i 1nα=(,,...,i 12n =)时,上式变为: ...()()...()()12n 12n x x x g x g x g x g n n++++++≤ ⑧即:...()()...()()12n12n x x x g x g x g x n g n++++++≥⋅即:.........12n n 112n 1nx x x Sx x n n n n n x x x S S x S x n 1S S n n +++++≥⋅=⋅=+++-----⑨ 将⑥和⑨式代入⑤式得:...()55n 11n x x 11n 1f S x S x n n n 1n n 1=++≥⋅⋅=---- 故:(,,...,)12n f x x x 的最小值是()1n n 1-.27.9 设,,a b c R +∈,且a b c abc ++=32≤. 解析:在圆锥曲线里,椭圆方程为:2222x y 1ab+=时,常常采用的参数方程是:cos x a θ=,sin y b θ=,因为将它带入方程时满足cos sin 221θθ+=,这个三角函数的基本关系. 对于三角形的内角,,A B C ,同样有关系A B C π++=和tan tan tan tan tan tan A B C A B C ++=. 而本题初始条件a b c abc ++=.设tan a A =.tan b B =,tan c C =,因为,,a b c R +∈,所以,,(,)A B C 02π∈ ①则当,,A B C 为三角形的内角时,A B C π++=, tan tan tan tan tan tan A B C A B C ++=满足条件. 带入不等式左边得:+=cos cos cos A B C =++ ②构建函数()cos f x x =-,则在(,)x 02π∈区间函数()f x 为向下凸函数,故由琴生不等式21()得:函数值的均值不小于均值的函数值.1122n n 1122n n f x x x f x f x f x (...)()()...()αααααα+++≤+++ ③当加权...12n 1nααα====时,③式变为: ()()...()...()12n 12nf x f x f x x x x f n n++++++≥即:()()()()f A f B f C A B Cf 33++++≥ ④即:cos cos cos cos()cos A B C A B C 13332π++++-≥-=-=-即:cos cos cos 3A B C 2++≤ ⑤32+≤. 证毕.27.10 设,,a b c R ∈+≥.解析:因为,,a b c R ∈,由柯西不等式12()式...+≥=≥==.2≥. 证毕. 27.11设,,a b c R +∈,且ab bc ca 3++=,求证:()()()2221a 1b 1c 8+++≥. 解析:对赫尔德不等式32():jjm nn mijij i 1j 1j 1i 1aa ()()αα====≤∑∏∏∑ 32()当 n 4=,m 4=,123414αααα====时,32()式为: ()()()()1111444411121314212223243132333441424344a a a a a a a a a a a a a a a a +++[()()()()]1411213141122232421323334314243444a a a a a a a a a a a a a a a a ≤++++++++++++即:()()()()11213141122232421323334314243444a a a a a a a a a a a a a a a a ++++++++++++[()()()()]11114444411121314212223243132333441424344a a a a a a a a a a a a a a a a ≥+++ ①设:11a 1=,221a a =,231a b =,2241a a b =;12a 1=,2222a c a =,232a c =,242a a =; 13a 1=,223a c =,2233a b c =,243a b =;14a 1=,24a 1=,34a 1=,44a 1=.代入①式得:()()()()2222222222221a b a b 1c a c a 1c b c b 1111+++⋅+++⋅+++⋅+++[()()()()]1111222222222222444441111a c a c 1b c b c 1a b a b 1≥⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ ()41ac bc ab =+++ ②②式就是赫尔德不等式.()()()2222221a 1b 1c +++()()()()()()2222221a 1b 1c 1a 1b 1c =++⋅++⋅++()()()2222222222221a b a b 1c a c a 1b c b c =+++⋅+++⋅+++()()()()222222222222222211a b a b 1c a c a 1b c b c 11114=+++⋅+++⋅+++⋅+++ ()()()()222222222222222211a b a b 1c a c a 1c b c b 11114=+++⋅+++⋅+++⋅+++ 将②式代入上式得:(())()()2222224111a 1b 1c 4ac bc ab ++++++≤开方出来即:()()()()222211a 1b 1c 21ac bc ab ++++++≤③ 将ab bc ca 3++=代入③式得:()()(())222211a 1b 1c 8213++++=≤. iff a b c 1===时等号成立. 证毕.27.12设,,a b c 0>,且a b c 1++=,求证:()()3332226a b c 15a b c +++≥++. 解析:采用pqr 法.设:p a b c =++,q ab bc ca =++,r abc =,则:p 1=⑴22cycx p 2q=-∑; ⑵ ()32cycx p p 3q 3r =-+∑则:2222a b c p 2q ++=-;()3332a b c p p 3q 3r 13q 3r ++=-+=-+于是,待证式变为:()()2613q 3r 15p 2q -++≥-即:28q 18r 0-+≥,即:14q 9r 0-+≥,即:3p 4pq 9r 0-+≥ ①⑴ 3p qr 4pq +≥,即:3p 4pq 9r 0-+≥ 故:①式成立,即待证式成立. 证毕.27.13设,,a b c 0≥,且a b c 2++=,求证:444333a b c abc a b c +++≥++. 解析:由舒尔不等式()43:()()()()()()t t t x x y x z y y z y x z z x z y 0--+--+--≥ ① 即:()()()t 2t 2t 2x x xy xz yz y y yz xy zx z z zx yz xy 0--++--++--+≥ 即:()()()()()()t 2t 2t 2t 1t 1t 1x x yz y y zx z z xy x y z y z x z x y ++++++++≥+++++ 即:()()()t 2t t 2t t 2t t 1t 1t 1x x yz y xy z z xyz x y z y z x z x y +++++++++++≥+++++ 即:()()()()t 2t 2t 2t 1t 1t 1t 1t 1t 1x y z x y z xyz x y z y z x z x y +++---++++++++≥+++++ 两边都加t 2t 2t 2x y z +++++得:()()()()t 2t 2t 2t 1t 1t 1t 1t 1t 12x y z x y z xyz x y z x y z +++---++++++++≥++++ ② ②式就是舒尔不等式.设t 2=,代入②式得:()()()()4443332x y z x y z xyz x y z x y z +++++≥++++ 将a b c 2++=代入上式得:()()4443332x y z 2xyz 2x y z +++≥++ 即:444333a b c abc a b c +++≥++ ③ ③式就是我们要证明的不等式. 证毕.27.14设,,a b c 0>,求证:()()()()3333338a b c a b b c c a ++≥+++++.解析:待证式化为:()()()3333332222228a b c 2a b c 3a b ab b c bc c a ca ++≥++++++++。