2018年全国各地高考数学试题及解答分类汇编大全(05 不等式)

合集下载

2018年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2018年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。

既可以突出重点又可以提高复习信心,效率和效益也会双丰收。

少做、不做难题,努力避免“心理饱和”现象的加剧。

保持平常心,顺其自然2018年普通高等学校招生全国统一考试数学试题(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN 所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S 点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。

2018年全国各地高考数学试题及解答分类汇编大全(05不等式)

2018年全国各地高考数学试题及解答分类汇编大全(05不等式)

x y 1,
y 0,
() ( A) 6 (B ) 19 ( C)21 ( D) 45
2.【答案】 C 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点 A 处取得最大值,联立直线方程:
xy5 ,可得点 A 的坐标为 A 2,3 ,
xy1
据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
二、填空
1.( 2018 北京文) 能说明 “若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为 _________ . ab
1.【答案】 1, 1(答案不唯一)
2018 年全国各地高考数学试题及解答分类汇编大全 (05 不等式)
一、选择题
1.( 2018 北京文、 理 ) 设集合 A x, y x y 1,ax y 4, x ay 2 ,则(
Hale Waihona Puke )A .对任意实数 a , 2,1 A
B.对任意实数 a , 2,1 A
C.当且仅当 a 0 时, 2,1 A
D. 当且仅当 a 3 时, 2,1 A 2
1.【答案】 D
【解析】若 2,1 A ,则 a 3 且 a 0 ,即若 2,1 2
若 a 3 ,则有 2,1 A ,故选 D . 2
A ,则 a 3 ,此命题的逆否命题为, 2
x y 5,
2x y 4,
2.( 2018 天津文、理) 设变量 x, y 满足约束条件
则目标函数 z 3x 5y 的最大值为

2018全国各地高考数学试题与解答分类汇编大全(06数列)

2018全国各地高考数学试题与解答分类汇编大全(06数列)

2018年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )A B C . D .1.【答案】D【解析】因为每一个单音与前一个单音频率比为()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( )A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>2..答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( )A .12-B .10-C .10D .123. 答案:B 解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________.1.【答案】63n a n =- 【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .2.【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k kk k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3 (2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

2018年全国各地高考数学试题及解答分类汇编大全08-13

2018年全国各地高考数学试题及解答分类汇编大全08-13

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 2cos 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 2cos 4f x x x x π⎛⎫=-=+ ⎪⎝⎭错误!未找到引用源。

最新-2018年高考数学真题汇编 8:不等式 理 精品

最新-2018年高考数学真题汇编 8:不等式 理 精品

2018高考真题分类汇编:不等式1.【2018高考真题重庆理2】不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A2.【2018高考真题浙江理9】设a 大于0,b 大于0.A.若2a+2a=2b+3b ,则a >b B.若2a+2a=2b+3b ,则a >b C.若2a-2a=2b-3b ,则a >b D.若2a-2a=a b-3b ,则a <b 【答案】A3.【2018高考真题四川理9】某公司生产甲、乙两种桶装产品。

已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。

每桶甲产品的利润是300元,每桶乙产品的利润是400元。

公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。

通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元【答案】C.4.【2018高考真题山东理5】已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2-【答案】A5.【2018高考真题辽宁理8】设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为(A) 20 (B) 35 (C) 45 (D) 55 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中。

该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。

2018高考浙江数学带答案(最新整理)

2018高考浙江数学带答案(最新整理)

为 θ3,则
A.θ1≤θ2≤θ3
B.θ3≤θ2≤θ1
C.θ1≤θ3≤θ2
D.θ2≤θ3≤θ1
π 9.已知 a,b,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 ,向量 b 满足
3
b2−4e·b+3=0,则|a−b|的最小值是
A. 3 −1
B. 3 +1
C.2
D.2− 3
10.已知 a1, a2 , a3 , a4 成等比数列,且 a1 a2 a3 a4 ln(a1 a2 a3 ) .若 a1 1 ,则
2018 年普通高等学校招生全国统一考试(浙江卷) 数 学·参考答案
一、选择题:本题考查基本知识和基本运算。每小题 4 分,满分 40 分。 1.C 2.B 3.C 4.B 5.D 6.A 7.D 8.D 9.A 10.B 二、填空题:本题考查基本知识和基本运算。多空题每题 6 分,单空题每题 4 分,满分 36 分。
值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,
鸡雏个数分别为
x

y

z
,则
x y
5x
3y
z 100, 1 z 100,
3

z
81
时,
x
___________,
y
___________.
x y 0, 12. 若 x, y 满 足 约 束 条 件 2x y 6, 则 z x 3y 的 最 小 值 是 ___________, 最 大 值 是
由题意知各点坐标如下:
A(0, 3, 0), B(1, 0, 0), A1(0, 3, 4), B1(1, 0, 2),C1(0, 3,1),

2018年全国各地高考数学试题及解答分类大全(不等式)

2018年全国各地高考数学试题及解答分类大全(不等式)

取得最大值, zmax 3 2 2 0 6 .
第 2页 (共 3页)
5.(2018
天津文、理)已知 a,b∈R,且
a–3b+6=0,则
2a+
1 8b
的最小值为__________.
5.【答案】 1 4
【解析】由 a 3b 6
0 可知 a
3b
6
,且 2a
1 8b
2a
2 3b
,因为对于任意
y y
4,
则目标函数
1,
z
3x
5
y
的最大值为
y 0,
()
(A)6 (B)19 (C)21 (D)45
2.【答案】C
【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点
A
处取得最大值,联立直线方程:
x y x
5 y 1
,可得点
A
的坐标为
A
2,
3

据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
二、填空
1.(2018 北京文)能说明“若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为_________. ab
1.【答案】1, 1 (答案不唯一)
第 1页 (共 3页)
【解析】使“若 a b ,则 1 1 ”为假命题,则“若 a b ,则 1 1 ”为真命题即可,只需取 a 1,b 1
x ,2x
0 恒成立,结
合均值不等式的结论可得: 2a 23b 2 2a 23b 2 26 1 . 4
当且仅当
2a
23b
a 3b 6

2018年高考数学分类汇编:不等式

2018年高考数学分类汇编:不等式

E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5【2018·全国卷Ⅰ】 若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为 . 14.【答案】6【解析】不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5【2018·全国卷Ⅱ】若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z=x+y 的最大值为 . 14.【答案】9【解析】作出不等式组表示的可行域如图中阴影部分所示.当直线y x z =-+过点A (5,4)时,直线的纵截距z 最大,所以max 549z =+=.15.E5【2018·全国卷Ⅲ】 若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,,则13z x y =+的最大值是 .15.3 【解析】 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5【2018·浙江卷】 若x ,y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,,则z=x+3y 的最小值是 ,最大值是 . 12.【答案】2-;8【解析】 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为()4322+⨯-=-.13.E5【2018·北京卷】 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 【解析】 x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x ,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.E6【2018·天津卷】已知,a b ∈R ,且360a b -+=,则123ab+的最小值为 . 【解题提示】运用基本不等式求解. 【答案】14【解析】由已知得36a b -=-,由基本不等式得1122284a b +≥==(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法E8 不等式的综合应用 E9 单元综合8.E9【2018·北京卷】 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则( ) A.对任意实数a ,(2,1)∈A B.对任意实数a ,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a ≤32时,(2,1)∉A8.D 【解析】当a=0时,A 为空集,排除A ;当a=2时,(2,1)∈A ,排除B ;当a=32时,作出可行域如图中阴影部分所示,由x y 13x y 42-=⎧⎪⎨+=⎪⎩,,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.1.【2018·北京通州区期末】 已知a ,b ∈R ,a>b>0,则下列不等式一定成立的是( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D 【解析】 对于A ,a>b>0,则1a <1b ,故不成立;对于B ,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C ,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.【2018·唐山五校联考】 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12} D .{x |x <13或x <12}2.B 【解析】 ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b ,2×3=-a ,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.【2018·遵义联考】 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.【0,2】【解析】设z=OA⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ 的取值范围为【0,2】.4. 【2018·衡水一中月考】 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 【解析】 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n5)=45+4n 5m +m5n +15≥1+2√4n 5m·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.

(完整版)2018年高考全国一卷理科数学答案及解析

(完整版)2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1 【考点定位】复数2、已知集合A={x|x 2-x —2>0},则A =A 、{x|—1〈x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x |x>2}D 、{x|x —1}∪{x |x 2} 【答案】B【解析】由题可得C R A={x |x 2-x-2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A 、-12B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d )=( a 1+a 1+d ) (a 1+a 1+d+a 1+2d+a 1+3d ),整理得: 2d+3a 1=0 ; d=—3 ∴a 5=2+(5-1)*(—3)=—10 【考点定位】等差数列 求和5、设函数f (x)=x 3+(a-1)x 2+ax ,若f (x)为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为:A 、y=-2xB 、y=-xC 、y=2xD 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x)=2*(a —1)x 2=0 ∴a=1 f (x )=x 3+x求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、—-B 、—-C 、—+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB —AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018年全国高考数学试题及答案

2018年全国高考数学试题及答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A.B.C.D.2.A.B.C.D.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若,则A.B.C.D.5.的展开式中的系数为A.10 B.20 C.40 D.806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A.B.C.D.7.函数的图像大致为8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A.B.C.D.9.的内角的对边分别为,,,若的面积为,则A.B.C.D.10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D.11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A.B.2 C.D.12.设,,则A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量,,.若,则________.14.曲线在点处的切线的斜率为,则________.15.函数在的零点个数为________.16.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

2018--2020年高考数学试题分类汇编不等式选讲附答案详解

2018--2020年高考数学试题分类汇编不等式选讲附答案详解

2018-2020年高考数学试题分类汇编不等式选讲1、(2018年高考全国卷1文理科第23题)(10分)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].2、(2018年高考全国卷II文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≤4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≤4,即﹣4≤a+2≤4,解得﹣6≤a≤2,故a的取值范围[﹣6,2].3、(2018年高考全国卷III文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.【解答】解:(1)当x≤﹣时,f(x)=﹣(2x+1)﹣(x﹣1)=﹣3x,当﹣<x<1,f(x)=(2x+1)﹣(x﹣1)=x+2,当x≥1时,f(x)=(2x+1)+(x﹣1)=3x,则f(x)=对应的图象为:画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,当x=0时,f(0)=2≤0•a+b,∴b≥2,当x>0时,要使f(x)≤ax+b恒成立,则函数f(x)的图象都在直线y=ax+b的下方或在直线上,∵f(x)的图象与y轴的交点的纵坐标为2,且各部分直线的斜率的最大值为3,故当且仅当a≥3且b≥2时,不等式f(x)≤ax+b在[0,+∞)上成立,即a+b的最小值为5.4、(2018年高考江苏卷第24题)[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z=6,求x 2+y 2+z 2的最小值.【解答】解:由柯西不等式得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2, ∵x +2y +2z=6,∴x 2+y 2+z 2≥4 是当且仅当时,不等式取等号,此时x=,y=,z=,∴x 2+y 2+z 2的最小值为45、(2019全国III 卷文理科)[选修4-5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 解:(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.6、(2019全国II 卷文理科)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围. 解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.7、(2019全国I 卷文理科)[选修4—5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 8、(2019江苏卷21C )C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 9、(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 答案:(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭. 解析:(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.解:(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-. 所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭. 10、(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 答案:(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.解析:(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 解:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.11、(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 答案:(1)证明见解析(2)证明见解析.解析:(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 解:(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .12、(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 答案:22,3⎡⎤-⎢⎥⎣⎦解析:根据绝对值定义化为三个方程组,解得结果解:因为1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦。

高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精

高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精

2018年全国高考试题分类汇编免费教育资源网解析几何部分参考答案、选择题二、填空题1.22x2y2411.用代数的方法研究图形的几何性质2 152 .2x y2 112. 5 23 1 13.44.5 14.[-1,3]15.455(0,-1) 1 2 a 1 216.2x- y+4=06.x 2+(y+1) 2=1 1-2 ≤ a≤1+ 2 17.213 18.11[ ,0) (0, ]7( ,13)10 1048.(5,0) 19.22(x 1)2 (y 1)2 259.22(x- 2)2+(y+3) 2=520.12210. (x- 2)2+(y+3) 2=5三、解答题1.(本小题主要考查直线和双曲线的概念和性质,综合解题能力 .满分 14 分 .解:( I)由 C 与 t 相交于两个不同的点,故知方程组x2y2 1,2y21,a x y 1.平面向量的运算等解析几何的基本思想和有两个不同的实数解 .消去 y 并整理得(1-a2)x2+2a2x-2a2=0. ① ⋯⋯ 2 分双曲线的离心率即离心率 e 的取值范围为 ( 6, 2) ( 2, ). 6分II)设 A(x 1,y 1),B(x 2,y 2), P 1(0,1)2. 本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和 综合解题能力。

满分 12 分。

解:(Ⅰ) C 的焦点为 F(1, 0),直线 l 的斜率为 1,所以 l 的方程为y x 1.22将 y x 1代入方程 y 2 4x ,并整理得 x 26x 1 0.设A (x 1, y 1),B (x 2,y 2),则有 x 1 x 2 6,x 1x 2 1.OA OB (x 1, y 1) (x 2,y 2) x 1x 2 y 1y 2 2x 1x 2 (x 1 x 2) 1 3. | OA ||OB | x 12y 12x 22y 22x 1x 2[x 1x 2 4(x 1 x 2) 16] 41.OA OB 3 14 cos(OA, OB) . |OA| |OB | 41314 所以 OA 与OB 夹角的大小为 arccos3 14. 41(Ⅱ)由题设 FB AF 得 (x 2 1,y 2)(1 x 1, y 1),即x 2 1 (1 x 1), ①y2y1.②所以 21 a 20. 4 2 24a 4 8a 2(1 a 2) 0.解得 0 a 2且a 1.e1 a 212 1. 0 a 2且 a 1, a 255 PA 5 PB, (x 1,y 1 1) 5(x 2,y 2 1). 12 12由此得 x 1 152x 2. 8分 由于 x 1,x 2 都是方程①的根,且 所以 17 x 2 12 22 1a12 17.13.14分 5 x 222a 2 2a 2 2891 a2 .消去, x 2 ,得 1 a 2 60 由 a 0,所以 a2a 2y12 4x1,y22 4x2, ∴ x22x1. ③联立①、③解得x2 ,依题意有0.∴B( ,2 ),或B( , 2 ),又 F(1,0),得直线 l方程为( 1)y 2 (x 1)或( 1)y 2 (x 1),当[4,9]时,l 在方程 y轴上的截距为2或 1由②得y22 2y12,2 2 2 11 可知2在[4,9]上是递减的,4,4 23,3 134,4直线 l 在 y 轴上截距的变化范围为[ 43 3] [3,4].4] [4,3]. 以及综合. 满分 14 分 .解:( 1)由题设有m 0,c m.设点 P的坐标为(x0,y0),由PF1 PF2,得y0x0 cy0x0 c1,化简得x02y02m. ①2 将①与x0 m1y021联立,解得 2x02m 1 2,y0由m 0,x021 0,得 m 1. 所以 m 的取值范围是1.2)准线 L 的方程为m 1.设点 Q的坐标为(x1,y1),则m x1m 1.mm1m |QF2 | x1 c m|PF| c x m x2 m1 |QF2| 22m m 1.将x0 代入②,化简得.满分 12 分 .2m1代入②,化简得由题设 |QF 2| | PF 2 |2 3 ,得 mm 21 2 3 ,无解 .将 x.满分 12 分 .m|QF 2 | 1m m 2 1.|PF 2 | m m 21由题设 ||QPF F22 || 2 3 ,得 m m 21 2 3.解得 m=2.从而 x 03, y 02,c 2, 得到 PF 2 的方程22y ( 3 2)(x 2).4.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力 满分 12 分 . 解: y ′ =2x+1.直线 l 1 的方程为 y=3 x - 3.设直线 l 2过曲线 y=x 2+x -2 上 的点 B( b, b 2+b -2),则 l 2的方程为y=(2b+1) x -b 2-2 1因为 l 1⊥ l 2,则有 2b+1= ,b 1 231 x所以直线 l 2的方程为 y2 322II )解方程组 y 3x 3,1 22yx391 x, 6 5 y2(1, 5).(6, 2).221,0)、 ( ,0).3所以直线 l 1和 l 2 的交点的坐标为 l 1、l 2与 x 轴交点的坐标分别为(2 32 125.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力 解:直线 l 的方程为 x y1,即 bx ay ab 0.aba 1ly 1 2(y 2 2),∴y 1 y 24d1b(a 1)a 2b 2同理得到点(- 1, 0) b(a 1)2到直线 l 的距离 d 2a2 bs d 1 d 22ab2aba 2b 2由 s4c,得 2ab 4c,5 c 5即 5a c 2 a 2 2c 2.于是得 5 e 2 1 2e 2,即4e 425e 225 0.解不等式,得 54 e 25.由于 e 1 0,所以 e 的取值范围是25 e 5.26.(Ⅰ)由已知条件 ,可设抛物线的方程为 y 2∵点 P(1,2) 在抛物线上 , ∴ 222p 1, 得 p =2.2故所求抛物线的方程是 y 2准线方程是 x=-- 1.(Ⅱ ) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB , ∵PA 与 PB 的斜率存在且倾斜角互补 ,∴k PA k PB .由 A(x 1,y 1), B(x 2,y 2)在抛物线上 ,得2 y14x 1, ① 4x 2, ②2 y 2 221221 y2 14 2 y2y 1 1 4 y 1由① --②得直线 AB 的斜率y2 y1 4 4kAB1(x1 x2). (14 分)x2 x1 y1 y2 47.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力、满分 14 分。

2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)
x
则曲线 y 2ln x 在点 1,0 处的切线的斜率为 k f 1 2 , 则所求切线方程为 y 0 2 x 1 ,即 y 2x 2 .
4.(2018 全国新课标Ⅱ理)曲线 y 2 ln(x 1) 在点 (0, 0) 处的切线方程为__________.
4.【答案】 y 2x
x
,1
1
1,1a
f x
0
f x
Z
极大值
]
f x 在 x 1处取得极大值,不合题意. ③当 x1 x2 ,即 a 1时, f x , f x 随 x 的变化情况如下表:
x
,1 a
1 a
1 a
,1
f x
0
1 a 0 极小值
1 0
1 a
,
Z
1,
f x
Z
极大值
]
极小值
Z
f x 在 x 1处取得极小值,即 a 1满足题意.
1 x
1)2 k 1
4
16
0 ,得 h(x) 有两个极值点 x1, x2 (x1 x2 ) ,

1 x1
1 4
,∴ 0
x1
16 .
可知 h(x) 在 (0, x1) 递增, (x1, x2 ) 递减, (x2 , ) 递增,
∴ h(x1) kx1
x1
ln x1
a
( 2
1 x1
1) x1
(1)证明:函数 f (x) x 与 g(x) x2 2x 2 不存在“S 点”;
(2)若函数 f (x) ax2 1与 g(x) ln x 存在“S 点”,求实数 a 的值; (3)已知函数 f (x) x2 a ,g(x) bex .对任意 a 0 ,判断是否存在 b 0 ,使函数 f (x) 与 g(x)

2018年高考数学全国试题集附答案

2018年高考数学全国试题集附答案

(8)设集合 A {( x, y ) | x y 1, ax y 4, x ay 2}, 则 (A)对任意实数 a, (2,1) A (C)当且仅当 a<0 时, (2,1) A (B)对任意实数 a, (2,1) A (D)当且仅当 a
3 时, (2,1) A 2
10. 1 2 14. 3 1 ;2
11.
2 3
Байду номын сангаас12.3
∵B∈(
π π π ,π),∴A∈(0, ),∴∠A= . 2 2 3 3 1 1 4 3 3 3 = . ( ) 2 7 2 7 14
(Ⅱ)在△ABC 中,∵sinC=sin(A+B)=sinAcosB+sinBcosA= 如图所示,在△ABC 中,∵sinC= ∴AC 边上的高为
假设所有电影是否获得好评相互独立. (Ⅰ) 从电影公司收集的电影中随机选取 1 部, 求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取 1 部,估计恰有 1 部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ k 1 ”表 示第 k 类电影得到人们喜欢, “ k 0 ”表示第 k 类电影没有得到人们喜欢(k=1,2,3,4, 5,6) .写出方差 D1 , D 2 , D3 , D 4 , D5 , D 6 的大小关系.
1 1 ,则当 x∈( ,2)时,f ′(x)<0; 2 a
当 x∈(2,+∞)时,f ′(x)>0. 所以 f (x)<0 在 x=2 处取得极小值. 若 a≤
3 3 . 2
h 3 3 3 3 ,∴h= BC sin C = 7 , BC 14 2

2018年全国各省市高考数学真题及解析(高清精美版)

2018年全国各省市高考数学真题及解析(高清精美版)
卷天津卷北京卷以及上海卷浙江卷江苏卷总计在内的13份真题及超详细解析
2018年全国各省市高考数学真题及解析(高清精美版)
这份独家秘笈囊括了2018年高考数学文理的全国I、II、III卷,天津卷、北京卷以及上海卷、浙江卷、江苏卷总计在内的13份真题及超详细解析,
其中对图片和文字精益求精的排版使得电子版打印出来十分清晰,
而对试题进行的逐题逐项解析更是十分实用,
这是所有高中学生或入门竞赛、教师及高考试题研究者在这个夏天研究,复习巩固以及刷题必备的超级干货!

2018全国各地高考数学试题汇编(附答案解析)

2018全国各地高考数学试题汇编(附答案解析)

2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B =I ▲ . [答案]{1,8}2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ . [答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .[答案]85.函数2()log 1f x x =-的定义域为 ▲ .[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b -=>>的右焦点(c,0)F 到一条渐近线的距离为3c ,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]22 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]34 11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ .[答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,5cos()αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN 构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大△,要求,A B均在线段MN上,,C D均在棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP圆弧上.设OC与MN所成的角为θ.△的面积,并确定sinθ的取值范围;(1)用θ分别表示矩形ABCD和CDP(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.[答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

(30套)2018年全国各地高考数学模拟试题附答案 汇总5(打包下载)

(30套)2018年全国各地高考数学模拟试题附答案 汇总5(打包下载)

(30套)2018年全国各地高考数学模拟试题附答案汇总52018年四川省凉山州高考数学一诊试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B的元素个数为()A.6 B.5 C.4 D.32.(5分)命题“∀x>1,”的否定是()A.∀x>1,B.∀x≤1,C.∃x0>1,D.∃x0≤1,3.(5分)已知Z=,则Z•=()A.B.0 C.1 D.4.(5分)已知f(x)=sin(x﹣)﹣1,则f(x)的最小正周期是()A.2πB.πC.3πD.4π5.(5分)以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A.B.C.D.6.(5分)已知锐角α满足cos(α﹣)=cos2α,则sinαcosα等于()A.B.﹣ C.D.﹣7.(5分)执行如图所示的程序框图,当输出S=210时,则输入n的值为()A.6 B.7 C.8 D.98.(5分)已知点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值是()A.B.C.1 D.9.(5分)在△ABC中,a2tanB=b2tanA,则△ABC是()A.等腰三角形B.直角三角形C.等腰三角形D.等腰或直角三角形10.(5分)设y=f(x)是R上的奇函数,且f(x)在区间(0,+∞)上递减,f (2)=0,则f(x)>0的解集是()A.(﹣∞,﹣2)B.(0,2) C.(﹣∞,﹣2)∪(0,2)D.(﹣2,0)∪(0,2)11.(5分)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为()A.3 B.C.7 D.12.(5分)若函数f(x)=4﹣x2+alnx满足∀x>0,有f(x)≤3成立,则a的取值范围是()A.{2}B.(,2]C.[2,3) D.(1,2]二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设向量=(1,﹣2),=(6,m),若⊥,则m=.14.(5分)我国古代数学名著《张邱建算经》有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是.15.(5分)已知各项为正的等比数列{a n}中,a2a3=16,则数列{log2a n}的前四项和等于.16.(5分)已知函数f(x)=,则方程f(1+x2)=f(2x)的解集是.三、解答题(本大题共5小题,共70分)17.(12分)设数列{a n}a n=2n﹣1.(1)求数列{a n}的前n项和;(2)设数列{b n}满足b n =2,求数列{a n b n}的n项和.18.(12分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求四面体PACD的体积.19.(12分)共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也是露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(“提倡”或“不提倡”),某调研小组随机的对不同年龄段50人进行调查,将调查情况整理如下表:并且,年龄[20,25)和[40,45)的人中持“提倡”态度的人数分别为5和3,再从这两个年龄段中各随机抽取2人征求意见.(1)求年龄在[20,25)中被抽到的2人都持“提倡”态度的概率;(2)求年龄在[40,45)中被抽到的2人至少1人持“提倡”态度的概率.20.(12分)若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.21.(12分)定义运算a⊗b=,设函数f(x)=x⊗(2﹣x).(1)用代数方法证明:函数f(x)的图象关于直线x=1对称;(2)设g(x)=m2x+2+m,若f(e x)≤g(x)在区间[0,+∞)上恒成立,求实数m的取值范围.请考生在第22、23两题中选一题作答.[选修4-4:坐标系与参数方程] 22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x 轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求证:|PA|×|PB|为定值.[选修4-5:不等式选讲]23.设函数f(x)=|2x+2|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)x∈R,f(x)≥t2﹣t恒成立,求实数t的取值范围.2018年四川省凉山州高考数学一诊试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B的元素个数为()A.6 B.5 C.4 D.3【解答】解:集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},则集合A∩B={1,2,3,4,5},其元素个数为5,故选B.2.(5分)命题“∀x>1,”的否定是()A.∀x>1,B.∀x≤1,C.∃x0>1,D.∃x0≤1,【解答】解:因为全称命题的否定是特称命题,所以命题“∀x>1,”的否定是∃x0>1,故选:C.3.(5分)已知Z=,则Z•=()A.B.0 C.1 D.【解答】解:∵Z=,∴Z•=|Z|2=.故选:C.4.(5分)已知f(x)=sin(x﹣)﹣1,则f(x)的最小正周期是()A.2πB.πC.3πD.4π【解答】解:f(x)=sin(x﹣)﹣1,则f(x)的最小正周期是T=2π.故选:A.5.(5分)以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A.B.C.D.【解答】解:根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.(5分)已知锐角α满足cos(α﹣)=cos2α,则sinαcosα等于()A.B.﹣ C.D.﹣【解答】解:由cos(α﹣)=cos2α,得,∴,∵α∈(0,),∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴sin.故选:A.7.(5分)执行如图所示的程序框图,当输出S=210时,则输入n的值为()A.6 B.7 C.8 D.9【解答】解:由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n﹣1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.(5分)已知点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值是()A.B.C.1 D.【解答】解:点M的坐标(x,y)满足不等式组的可行域如图:点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值,就是两条平行线y=﹣2x+2与2x+y﹣4=0之间的距离:d==.故选:B.9.(5分)在△ABC中,a2tanB=b2tanA,则△ABC是()A.等腰三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【解答】解:∵a2tanB=b2tanA,∴由正弦定理可得:sin2AtanB=sin2BtanA,∴由sinA≠0,sinB≠0,可得:sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B,或2A+2B=π,∴A=B或A+B=,∴△ABC是等腰或直角三角形.故选:D.10.(5分)设y=f(x)是R上的奇函数,且f(x)在区间(0,+∞)上递减,f (2)=0,则f(x)>0的解集是()A.(﹣∞,﹣2)B.(0,2) C.(﹣∞,﹣2)∪(0,2)D.(﹣2,0)∪(0,2)【解答】解:根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(﹣∞,0)上单调递减,且f(﹣2)=﹣f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<﹣2,即f(x)>0的解集是(﹣∞,﹣2)∪(0,2);故选:C.11.(5分)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为()A.3 B.C.7 D.【解答】解:由已知中的三视图可得:该几何体是由一个长方体切去一个三棱锥所得的组合体,长方体的长,宽,高分别为:2,1,2,体积为:4,切去的三棱锥的长,宽,高分别为:2,1,1,体积为:,故组合体的体积V=4﹣=,故选:B12.(5分)若函数f(x)=4﹣x2+alnx满足∀x>0,有f(x)≤3成立,则a的取值范围是()A.{2}B.(,2]C.[2,3) D.(1,2]【解答】解:函数f(x)=4﹣x2+alnx满足∀x>0,有f(x)≤3成立⇔x2﹣1﹣alnx≥0对∀x>0恒成立.令g(x)=x2﹣1﹣alnx,,①当a≤0时,g′(x)≥0恒成立,g(x)在(0,+∞)单调递增,而g(1)=0,故不符合题意;②当a>0时,令g′(x)=0,x,g(x)在x=处有极小值,而g(1)=0∴,∴a=2,故选:A二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设向量=(1,﹣2),=(6,m),若⊥,则m=3.【解答】解:根据题意,向量=(1,﹣2),=(6,m),若⊥,则•=1×6+(﹣2)×m=0,故答案为:3.14.(5分)我国古代数学名著《张邱建算经》有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是195.【解答】解:设共有n人,根据题意得;3n+=100n,解得n=195;∴一共有195人.故答案为:195.15.(5分)已知各项为正的等比数列{a n}中,a2a3=16,则数列{log2a n}的前四项和等于8.【解答】解:各项为正的等比数列{a n}中,a2a3=16,可得a1a4=a2a3=16,即有log2a1+log2a2+log2a3+log2a4=log2(a1a2a3a4)=log2256=8.故答案为:8.16.(5分)已知函数f(x)=,则方程f(1+x2)=f(2x)的解集是{x|x≥0} .【解答】解:∵函数f(x)=,方程f(1+x2)=f(2x),∴当x<0时,2=e2x+1,解得x=0,不成立;当x≥0时,f(1+x2)=f(2x)=2,成立.∴方程f(1+x2)=f(2x)的解集是{x|x≥0}.故答案为:{x|x≥0}.三、解答题(本大题共5小题,共70分)17.(12分)设数列{a n}a n=2n﹣1.(1)求数列{a n}的前n项和;(2)设数列{b n}满足b n=2,求数列{a n b n}的n项和.【解答】解:(1)数列{a n}的通项公式:a n=2n﹣1,则:数列为首项为1,公差为2的等差数列.所以:,(2)设数列{b n}满足b n=2=22n=4n,则:{a n b n}的通项公式为:,则:+…+(2n﹣1)•4n①,+…+(2n﹣1)•4n+1②,①﹣②得:﹣(2n﹣1)•4n+1﹣4.解得:,整理得:.当n=1时,T1=4,当n≥2时,,对n=1也成立,故,n∈N*.18.(12分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求四面体PACD的体积.【解答】(1)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,AB ⊥AD,AB⊂平面ABCD,∴AB⊥平面PAD,∵PD⊂平面PAD,∴AB⊥PD,又PD⊥PA,且PA∩AB=A,∴PD⊥平面PAB;(2)解:取AD中点O,连接PO,则PO⊥AD,又平面PAD⊥平面ABCD,∴PO⊥平面ABCD,∵PA⊥PD,PA=PD,AD=2,∴PO=1.在△ACD中,由AD=2,AC=CD=,可得.∴.19.(12分)共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也是露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(“提倡”或“不提倡”),某调研小组随机的对不同年龄段50人进行调查,将调查情况整理如下表:并且,年龄[20,25)和[40,45)的人中持“提倡”态度的人数分别为5和3,再从这两个年龄段中各随机抽取2人征求意见.(1)求年龄在[20,25)中被抽到的2人都持“提倡”态度的概率; (2)求年龄在[40,45)中被抽到的2人至少1人持“提倡”态度的概率. 【解答】解:(1)年龄在[20,25)中共有6人,其中持“提倡”态度的人数为5, 其中抽两人,基本事件总数n==15,被抽到的2人都持“提倡”态度包含的基本事件个数m==10,∴年龄在[20,25)中被抽到的2人都持“提倡”态度的概率p==.(2)年龄在[40,45)中共有5人,其中持“提倡”态度的人数为3, 其中抽两人,基本事件总数n′==10,年龄在[40,45)中被抽到的2人至少1人持“提倡”态度包含的基本事件个数m′==9,∴年龄在[40,45)中被抽到的2人至少1人持“提倡”态度的概率p′==.20.(12分)若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.【解答】解:(1)设AB的中点为M,则M(1,)由,得=0∴⇒即k AB=﹣,∴线段AB的垂直平分线的斜率为.∴线段AB的垂直平分线的方程为y﹣=,即9x﹣2y﹣8=0为所求.(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①∵A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,∴k<0,m >0…②△=(18km)2﹣4(1+9k2)(9m2﹣9)>0⇒9k2﹣m2+1>0…③,结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.此时,k=﹣满足③.∴直线AB在y轴上截距的最小值为.21.(12分)定义运算a⊗b=,设函数f(x)=x⊗(2﹣x).(1)用代数方法证明:函数f(x)的图象关于直线x=1对称;(2)设g(x)=m2x+2+m,若f(e x)≤g(x)在区间[0,+∞)上恒成立,求实数m的取值范围.【解答】解:(1)f(x)=x⊗(2﹣x)==1﹣|1﹣x|设点(x0,y0)为y=f(x)上任意一点,则f(2﹣x0)=(1﹣|2﹣x0﹣1|)=(1﹣|1﹣x0|)=(1﹣|x0﹣1|)=y0=f(x0)∴f(2﹣x0)=f(x0),令2﹣x0=1+x,则x0=1﹣x,∴f(1+x)=f(1﹣x),即x=1是函数f(x)的对称轴,∴函数f(x)的图象关于直线x=1对称,(2)∵x∈[0,+∞),∴e x≥1,∴f(e x)=2﹣e x,∵f(e x)≤g(x)在区间[0,+∞)上恒成立,∴2﹣e x≤m2x+2+m,∴﹣e x≤m2x+m,∵﹣e x≤﹣1,∴m2x+m≥﹣1,当m=0时,恒成立,当m≠时,∴y=m2x+m在[0,+∞)为增函数,∴y≥m,∴m≥﹣1,故m的取值范围为[﹣1,+∞).请考生在第22、23两题中选一题作答.[选修4-4:坐标系与参数方程] 22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x 轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求证:|PA|×|PB|为定值.【解答】解:(1)圆C的方程为ρ=6sinθ.转化为直角坐标方程:x2+y2﹣6y=0.证明:(2)点P(1,2),设圆C与直线l交于点A,B,把直线l的参数方程为(t为参数),代入x2+y2﹣6y=0,整理得:t2+2(cosα﹣sinα)t﹣7=0,(t1和t2为A和B对应的参数),则:t1•t2=﹣7(定值),故:|PA|×|PB|=|t1t2|=7为定值.[选修4-5:不等式选讲]23.设函数f(x)=|2x+2|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)x∈R,f(x)≥t2﹣t恒成立,求实数t的取值范围.【解答】解:(1)函数f(x)=|2x+2|﹣|x﹣2|=,当x<﹣1时,不等式即﹣x﹣4>2,求得x<﹣6,∴x<﹣6.当﹣1≤x<2时,不等式即3x>2,求得x>,∴<x<2.当x≥2时,不等式即x+4>2,求得x>﹣2,∴x≥2.综上所述,不等式的解集为{x|x>或x<﹣6}.(2)由以上可得f(x)的最小值为f(﹣1)=﹣3,若∀x∈R,f(x)≥t2﹣t恒成立,只要﹣3≥t2﹣t,即2t2﹣7t+6≤0,求得≤t≤2.2018年四川省泸州市高考数学一诊试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|﹣1<x≤2,x∈N},B={2,3},则A∩B=()A.{0,1,2,3}B.{2}C.{﹣1,0,1,2} D.∅2.(5分)“x>0”是“x+1>0”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(5分)已知tan()=,则tanα的值为()A.B.C.3 D.﹣34.(5分)在正方体ABCD﹣A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5 C.6 D.75.(5分)定义在R上的函数f(x)=﹣x3+m与函数g(x)=f(x)﹣kx在[﹣1,1]上具有相同的单调性,则k的取值范围是()A.(﹣∞,0]B.(﹣∞,﹣3]C.[﹣3,+∞)D.[0,+∞)6.(5分)函数y=xln|x|的大致图象是()A. B.C.D.7.(5分)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A.α∥β,a⊂α,则a∥βB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.a∥b,b⊂α,则a∥α8.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称9.(5分)已知圆锥的高为5,底面圆的半径为,它的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为()A.4πB.36πC.48πD.24π10.(5分)已知函数f(x)=x(2x),若f(x﹣1)>f(x),则x的取值范围是()A.()B.()C.()D.()11.(5分)已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为()A.B.C.D.12.(5分)函数f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,其中e为自然对数的底数,若存在实数x0使f(x0)=3成立,则实数a的值为()A.ln2 B.ln2﹣1 C.﹣ln2 D.﹣ln2﹣1二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知sinα+cosα=,则sinαcosα=.14.(5分)设函数f(x)=,若f(a)=9,则a的值.15.(5分)如图,CD是山的高,一辆汽车在一条水平的公路上从正东方向往正西方向行驶,在点A处时测得点D的仰角为30°,行驶300m后到达B处,此时测得点C在点B的正北方向上,且测得点D的仰角为45°,则此山的高CD= m.16.(5分)一个长,宽,高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,液面的形状都不可能是三角形,那么液体体积的取值范围是.三、解答题(共5小题,满分60分)17.(12分)已知函数f(x)=sinxcosx﹣cos2x+a的最大值为.(1)求a的值;(2)求f(x)≥0使成立的x的集合.18.(12分)设f(x)=ae x﹣cosx,其中a∈R.(1)求证:曲线y=f(x)在点(0,f(0))处的切线过定点;(2)若函数f(x)在(0,)上存在极值,求实数a的取值范围.19.(12分)如图,在△ABC中,角A,B,C所对的边分别为a,b,c,sinA=2sin (A+B),它的面积S=c2.(1)求sinB的值;(2)若D是BC边上的一点,cos,求的值.20.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.21.(12分)已知函数f(x)=﹣ax+alnx.(Ⅰ)当a<0时,论f(x)的单调性;(Ⅱ)当a=1时.若方程f(x)=+m(m<﹣2)有两个相异实根x1,x2,且x1<x2.证明x1<.请考生在22.23题中任选一题作答,[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为=3,曲线C的极坐标方程为ρ=4acosθ(a>0).(1)设t为参数,若y=﹣2,求直线l参数方程;(2)已知直线l与曲线C交于P,Q,设M(0,),且|PQ|2=|MP|•|MQ|,求实数a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数a,使得不等式f(x)≤1﹣a﹣4|2+x|成立,求实数a的取值范围.2018年四川省泸州市高考数学一诊试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|﹣1<x≤2,x∈N},B={2,3},则A∩B=()A.{0,1,2,3}B.{2}C.{﹣1,0,1,2} D.∅【解答】解:∵集合A={x|﹣1<x≤2,x∈N}={0,1,2},B={2,3},∴A∩B={2}.故选:B.2.(5分)“x>0”是“x+1>0”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:“x+1>0”⇔“x>﹣1”,故“x>0”是“x+1>0”的充分不必要条件,故选:B.3.(5分)已知tan()=,则tanα的值为()A.B.C.3 D.﹣3【解答】解:由tan()=,得,∴,解得tanα=.故选:A.4.(5分)在正方体ABCD﹣A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5 C.6 D.7【解答】解:由右边的正方体ABCD﹣A1B1C1D1中,直线CD,C1D1,C1C,D1D,B1C1,AD,共有6条直线与直线BA1是异面直线,故选:C.5.(5分)定义在R上的函数f(x)=﹣x3+m与函数g(x)=f(x)﹣kx在[﹣1,1]上具有相同的单调性,则k的取值范围是()A.(﹣∞,0]B.(﹣∞,﹣3]C.[﹣3,+∞)D.[0,+∞)【解答】解:f′(x)=﹣3x2≤0在[﹣1,1]恒成立,故f(x)在[﹣1,1]递减,结合题意g(x)=﹣x3+m﹣kx在[﹣1,1]递减,故g′(x)=﹣3x2﹣k≤0在[﹣1,1]恒成立,故k≥﹣3x2在[﹣1,1]恒成立,故k≥0,故选:D.6.(5分)函数y=xln|x|的大致图象是()A. B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.7.(5分)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A.α∥β,a⊂α,则a∥βB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.a∥b,b⊂α,则a∥α【解答】解:由a,b是空间中不同的直线,α,β是不同的平面,知:在A中,α∥β,a⊂α,则由直线与平面平行的判定定理得a∥β,故A正确;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,a∥b,b⊂α,则a∥α或a⊂α,故D错误.故选:A.8.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称【解答】解:∵函数y=sin(2x+φ)在x=处取得最大值,∴sin(+φ)=1,∴cos(+φ)=0,∴函数y=cos(2x+φ)的图象关于点(,0)对称,故选:A.9.(5分)已知圆锥的高为5,底面圆的半径为,它的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为()A.4πB.36πC.48πD.24π【解答】解:设球的半径为R,则∵圆锥的高h=5,底面圆的半径r=,∴R2=(R﹣h)2+r2,即R2=(R﹣5)2+5,解得:R=3,故该球的表面积S=4πR2=36π,故选:B10.(5分)已知函数f(x)=x(2x),若f(x﹣1)>f(x),则x的取值范围是()A.()B.()C.()D.()【解答】解:x>0时,f(x)在(0,+∞)递增,而f(﹣x)=f(x),f(x)是偶函数,故f(x)在(﹣∞,0)递减,若f(x﹣1)>f(x),则|x﹣1|>|x|,即(x﹣1)2>x2,解得:x<,故选:A.11.(5分)已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为()A.B.C.D.【解答】解:由已知中的三视图可得:该几何体是一个三棱锥与半圆柱的组合体,三棱锥的长宽高分别为:2,1,2,故体积为:,半圆柱的底面半径为1,高为2,故体积为:π,故组合体的体积V=+π,故选:D12.(5分)函数f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,其中e为自然对数的底数,若存在实数x0使f(x0)=3成立,则实数a的值为()A.ln2 B.ln2﹣1 C.﹣ln2 D.﹣ln2﹣1【解答】解:令f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,令g(x)=x﹣ln(x+2),g′(x)=1﹣=,故g(x)=x﹣ln(x+2)在(﹣2,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,g(x)有最小值﹣1﹣0=﹣1,而e x﹣a+4e a﹣x≥4,(当且仅当e x﹣a=4e a﹣x,即x=a+ln2时,等号成立);故f(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln2=﹣1,即a=﹣1﹣ln2.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知sinα+cosα=,则sinαcosα=﹣.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=,∴1+2sinαcosα=,解得sinαcosα=﹣,故答案为:﹣.14.(5分)设函数f(x)=,若f(a)=9,则a的值3.【解答】解:若a>2,由f(a)=9,得2a+1=9,得a=3,若0<a≤2,由f(a)=9,得log2a+4=9,得a=32,舍去.综上a=3,故答案为:3.15.(5分)如图,CD是山的高,一辆汽车在一条水平的公路上从正东方向往正西方向行驶,在点A处时测得点D的仰角为30°,行驶300m后到达B处,此时测得点C在点B的正北方向上,且测得点D的仰角为45°,则此山的高CD=150 m.【解答】解:设此山高h(m),由题意在点A处时测得点D的仰角为30°,得AC=h,在△ABC中,∠CBA=90°,测得点D的仰角为45°,∴BC=h,AB=300.根据勾股定理得,3h2=h2+90000,∴h=150.即CD=150m.故答案为:150.16.(5分)一个长,宽,高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,液面的形状都不可能是三角形,那么液体体积的取值范围是(,).【解答】解:长方体ABCD﹣EFGH,若要使液面不为三角形,则液面必须高于平面EHD,且低于平面AFC;而当平面EHD平行水平面放置时,若满足上述条件,则任意转动该长方体,液面的形状都不可能是三角形;所以液体体积必须大于三棱柱G﹣EHD的体积,并且小于长方体ABCD﹣EFGH体积﹣三棱柱B﹣AFC体积1﹣=,故答案为:(,).三、解答题(共5小题,满分60分)17.(12分)已知函数f(x)=sinxcosx﹣cos2x+a的最大值为.(1)求a的值;(2)求f(x)≥0使成立的x的集合.【解答】解:(1)∵f(x)=sinxcosx﹣cos2x+a==,∴=,∴a=;(2)由(1)知,f(x)=,由f(x)≥0,得≥0,即,k∈Z.∴,k∈Z.∴f(x)≥0成立的x的集合为[],k∈Z.18.(12分)设f(x)=ae x﹣cosx,其中a∈R.(1)求证:曲线y=f(x)在点(0,f(0))处的切线过定点;(2)若函数f(x)在(0,)上存在极值,求实数a的取值范围.【解答】解:(1)设f(x)=ae x﹣cosx,其中a∈R.可得f′(x)=ae x+sinx,f′(0)=a,f(0)=a﹣1,曲线y=f(x)在点(0,f(0))处的切线方程为:y﹣(a﹣1)=ax,即a(x+1)﹣(y+1)=0,切线恒过(﹣1,﹣1)点.(2)由(1)可知:f′(x)=ae x+sinx=0,函数f(x)在(0,)上存在极值,说明方程有解,可得a=,令h(x)=,h′(x)=,x∈(0,),当x∈(0,)时,h′(x)<0,函数是减函数,当x∈(,)时,h′(x)>0,函数是增函数,函数的最小值为:=,函数的最大值为:x=0时的函数值,即:h(0)=0.所以实数a的取值范围:[,0).19.(12分)如图,在△ABC中,角A,B,C所对的边分别为a,b,c,sinA=2sin (A+B),它的面积S=c2.(1)求sinB的值;(2)若D是BC边上的一点,cos,求的值.【解答】解:(1)∵sinA=2sin(A+B),∴sinA=2sinC,a=2c,∴S=sinB•c•2c=c2,故sinB=;(2)由(1)sinB=,cos,∴cosB=,sin∠ADB=,∴sin∠BAD=sin(B+∠ADB)=sinBcos∠ADB+cosBsin∠ADB=×+×=,由=,得:=,解得:BD=c,故=3.20.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,由余弦定理可得AD==a,则BD⊥AD,由面SAD⊥底面ABCD.可得BD⊥平面SAD,又BD⊂平面SBD,可得平面SBD⊥平面SAD;(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,由AD=SD=a,在△SAD中,可得SA=2SDsin60°=a,△SAD的边AD上的高SH=SDsin60°=a,由SH⊥平面BCD,可得×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,SB===2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则△SAB的面积为×SA×a=a=.21.(12分)已知函数f(x)=﹣ax+alnx.(Ⅰ)当a<0时,论f(x)的单调性;(Ⅱ)当a=1时.若方程f(x)=+m(m<﹣2)有两个相异实根x1,x2,且x1<x2.证明x1<.【解答】(Ⅰ)解:函数f(x)=﹣ax+alnx(a>0)的定义域为(0,+∞)f′(x)=x﹣a+=,(a<0),△=a2﹣4a.当a<0时,△>0,f′(x)=0的根<0,>0x∈(0,x2)时,f′(x)<0,x∈(x2,+∞)时,f′(x)>0,∴f(x)在(0,x2)递减,(x2,+∞)上单调递增,(Ⅱ)证明:当a=1时,若方程f(x)=+m(m<﹣2)有两个相异实根x1,x2⇔方程lnx﹣x﹣m=0(m<﹣2)有两个相异实根x1,x2.令g(x)=lnx﹣x﹣m,定义域为(0,+∞),g′(x)=﹣1令g′(x)<0得x>1,令g′(x)>0得0<x<1所以函数g(x)=lnx﹣x﹣m的单调减区间是(1,+∞),单调递增区间(0,1),又lnx1﹣x1﹣m=lnx2﹣x2﹣m=0,由题意可知lnx2﹣x2=m<﹣2<ln2﹣2,又可知g(x)=lnx﹣x﹣m在(1,+∞)递减,故x2>2,令h(x)=g(x)﹣g(),(x>2),h(x)=g(x)﹣g()=)=﹣x++3lnx﹣ln2(x>2),h′(x)=﹣,当x>2时,h′(x)<0,h(x)是减函数,所以h(x)<h(2)=2ln2﹣<0.所以当x2>2 时,g(x2)﹣g()<0,即g(x1)<g(),因为g(x)在(0,1)上单调递增,所以x1<,请考生在22.23题中任选一题作答,[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为=3,曲线C的极坐标方程为ρ=4acosθ(a>0).(1)设t为参数,若y=﹣2,求直线l参数方程;(2)已知直线l与曲线C交于P,Q,设M(0,),且|PQ|2=|MP|•|MQ|,求实数a的值.【解答】解:(1)由=3,即ρcosθcos﹣ρsinθsin=3,直线l的极坐标方程为ρcosθ﹣ρsinθ=3,化为直角坐标方程:x﹣y﹣6=0.∵y=﹣2+t,∴x=y+6=t,∴直线l的参数方程为:(t为参数).(2)曲线C的极坐标方程为ρ=4acosθ,∴ρ2=4aρcosθ,∴曲线C的直角坐标方程为x2+y2﹣4ax=0.将(1)中的直线参数方程代x2+y2﹣4ax=0,并整理得:t2﹣2(1+a)t+12=0,又△=12(1+a)2﹣4×12=12(a2+2a﹣3)>0,解得:a>1,设P、Q对应参数分别为t1,t2,则t1+t2=2(1+a),t1•t2=12,由t的几何意义得|PQ|2=|t1﹣t2|2=(t1+t2)2﹣4t1•t2=12(1+a)2﹣4×12,|MP|•|MQ|=|t1|•|t2|=|t1t2|=12,所以12(1+a)2﹣4×12=12,解得:a=﹣1,∴实数a的值﹣1.[选修4-5:不等式选讲]23.已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数a,使得不等式f(x)≤1﹣a﹣4|2+x|成立,求实数a的取值范围.【解答】解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,可得或或,解得:﹣≤x≤;故不等式的解集是[﹣,];(2)不等式f(x)≤1﹣a﹣4|2+x|成立,即|3x﹣a|﹣|3x+6|≤1﹣a,由绝对值不等式的性质可得:||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,即有f(x)的最大值为|a+6|,∴或,解得:a≥﹣.2018年四川省绵阳市高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}2.(5分)若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<13.(5分)已知向量,,若,则x的值是()A.﹣1 B.0 C.1 D.24.(5分)若,则tan2α=()A.﹣3 B.3 C.D.5.(5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.166.(5分)已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b ﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q7.(5分)函数f(x)满足f(x+2)=f(x),且当﹣1≤x≤1时,f(x)=|x|.若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为()A.(4,5) B.(4,6) C.{5}D.{6}8.(5分)已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是()A.x=0 B.C.D.9.(5分)在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(5分)已知0<a<b<1,给出以下结论:①;②;③.则其中正确的结论个数是()A.3个 B.2个 C.1个 D.0个11.(5分)已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣112.(5分)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知变量x,y满足约束条件,则z=2x+y的最小值是.14.(5分)已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是.15.(5分)在△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,则=.16.(5分)已知数列{a n}的首项a1=m,且a n+1+a n=2n+1,如果{a n}是单调递增数列,则实数m的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)若函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求函数f(x)的解析式;(2)设,且,求sin2α的值.18.(12分)设公差大于0的等差数列{a n}的前n项和为S n,已知S3=15,且a1,a4,a13成等比数列,记数列的前n项和为T n.(Ⅰ)求T n;(Ⅱ)若对于任意的n∈N*,tT n<a n+11恒成立,求实数t的取值范围.19.(12分)在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;(2)若,求△ABC的面积.20.(12分)已知函数f(x)=x3+x2﹣x+a(a∈R).(1)求f(x)在区间[﹣1,2]上的最值;(2)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围.21.(12分)函数f(x)=﹣lnx+2+(a﹣1)x﹣2(a∈R).(1)求f(x)的单调区间;(2)若a>0,求证:f(x)≥﹣.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)设,,若l1,l2与曲线C分别交于异于原点的A,B 两点,求△AOB的面积..[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|2x+3|.(1)解不等式f(x)≥6;(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.2018年四川省绵阳市高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}【解答】解:集合A={x∈Z|(x﹣4)(x+1)<0}={x∈Z|﹣1<x<4}={0,1,2,3},B={2,3,4},则A∩B={2,3},故选:D2.(5分)若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<1【解答】解:∵x>y,且x+y=2,∴x>2﹣x,∴x>1,故x2>1正确,故选:C3.(5分)已知向量,,若,则x的值是()A.﹣1 B.0 C.1 D.2【解答】解:根据题意,向量,,若,则有2x=(x﹣1),解可得x=﹣1,故选:A.4.(5分)若,则tan2α=()A.﹣3 B.3 C.D.【解答】解:∵=,可求tanα=﹣3,∴tan2α===.故选:D.5.(5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.16【解答】解:设该职工这个月实际用水为x立方米,∵每位职工每月用水不超过10立方米的,按每立方米3元水费收费,∴用水不超过10立方米的缴水费不超过30元,∵该职工这个月缴水费55元,∴该职工这个月实际用水超过10立方米,超过部分的水费=(x﹣10)×5,∴由题意可列出一元一次方程式:30+(x﹣10)×5=55,解得:x=15,故选:C.6.(5分)已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b ﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q【解答】解:由指数函数的值域为(0,+∞)可得:命题p:∃x0∈R,使得e x0≤0为假命题,若|a﹣1|=|b﹣2|,则a﹣1=b﹣2或a﹣1=﹣b+2即a﹣b=﹣1,或a+b=3,故命题q为假命题,故¬q为真命题;p∨q,p∧q为假命题,故选:B7.(5分)函数f(x)满足f(x+2)=f(x),且当﹣1≤x≤1时,f(x)=|x|.若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为()A.(4,5) B.(4,6) C.{5}D.{6}【解答】解:因为f(x+2)=f(x),所以f(x)的周期为2,在x∈[﹣1,1]时,f(x)=|x|.画出函数f(x)与g(x)=log a x的图象如下图所示;若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则函数g(x)=log a x的图象过(5,1)点,即a=5,故选:C8.(5分)已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是()A.x=0 B.C.D.。

解三角形、数列2018年全国数学高考分类真题(含答案)(精编文档).doc

解三角形、数列2018年全国数学高考分类真题(含答案)(精编文档).doc

【最新整理,下载后即可编辑】解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为,则C=( ) A . B . C . D .2.在△ABC 中,cos =,BC=1,AC=5,则AB=( )A .4B .C .D .2 3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 44.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .﹣12B .﹣10C .10D .12二.填空题(共4小题)5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 .6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=,b=2,A=60°,则sinB= ,c= .7.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .8.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 三.解答题(共9小题)9.在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.10.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (﹣,﹣).(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cosβ的值.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知bsinA=acos (B ﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求b 和sin (2A ﹣B )的值.12.在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos ∠ADB ;(2)若DC=2,求BC .13.设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n ﹣b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N*,q ∈(1,],证明:存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m ,q 表示).14.已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1﹣b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.15.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N*),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N*),(i )求T n ;(ii )证明=﹣2(n ∈N*).16.等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .17.记S n 为等差数列{a n }的前n 项和,已知a 1=﹣7,S 3=﹣15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B. C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A .3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4【解答】解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),不成立,即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D . 当q=﹣1时,a 1+a 2+a 3+a 4=0,ln (a 1+a 2+a 3)>0,等式不成立,所以q ≠﹣1;当q <﹣1时,a 1+a 2+a 3+a 4<0,ln (a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3)不成立,当q ∈(﹣1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),能够成立,故选:B .4.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .﹣12B .﹣10C .10D .12【解答】解:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2, ∴=a 1+a 1+d+4a 1+d ,把a 1=2,代入得d=﹣3∴a 5=2+4×(﹣3)=﹣10.故选:B .二.填空题(共4小题)5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 9 .【解答】解:由题意得acsin120°=asin60°+csin60°, 即ac=a+c ,得+=1, 得4a+c=(4a+c )(+)=++5≥2+5=4+5=9, 当且仅当=,即c=2a 时,取等号,故答案为:9.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=,b=2,A=60°,则sinB= ,c= 3 .【解答】解:∵在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==. 由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 a n =6n ﹣3 .【解答】解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴,解得a 1=3,d=6,∴a n =a 1+(n ﹣1)d=3+(n ﹣1)×6=6n ﹣3.∴{a n }的通项公式为a n =6n ﹣3.故答案为:a n =6n ﹣3.8.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= ﹣63 .【解答】解:S n 为数列{a n }的前n 项和,S n =2a n +1,①当n=1时,a 1=2a 1+1,解得a 1=﹣1,当n ≥2时,S n ﹣1=2a n ﹣1+1,②, 由①﹣②可得a n =2a n ﹣2a n ﹣1,∴a n =2a n ﹣1,∴{a n }是以﹣1为首项,以2为公比的等比数列,∴S 6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)∵a <b ,∴A <B ,即A 是锐角,∵cosB=﹣,∴sinB===, 由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n ﹣b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N*,q ∈(1,],证明:存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m ,q 表示).【解答】解:(1)由题意可知|a n ﹣b n |≤1对任意n=1,2,3,4均成立, ∵a 1=0,q=2,∴,解得.即≤d ≤.证明:(2)∵a n =a 1+(n ﹣1)d ,b n =b 1•q n ﹣1,若存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,则|b 1+(n ﹣1)d ﹣b 1•q n ﹣1|≤b 1,(n=2,3,…,m+1), 即b 1≤d ≤,(n=2,3,…,m+1),∵q ∈(1,],∴则1<q n ﹣1≤q m ≤2,(n=2,3,…,m+1),∴b 1≤0,>0,因此取d=0时,|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立, 下面讨论数列{}的最大值和数列{}的最小值, ①当2≤n≤m时,﹣==,当1<q ≤时,有q n ≤q m ≤2,从而n (q n ﹣q n ﹣1)﹣q n +2>0, 因此当2≤n ≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f (x )=2x (1﹣x ),当x >0时,f′(x )=(ln2﹣1﹣xln2)2x <0,∴f (x )单调递减,从而f (x )<f (0)=1, 当2≤n ≤m 时,=≤(1﹣)=f ()<1,因此当2≤n ≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d 的取值范围是d ∈[,].14.已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1﹣b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【解答】解:(Ⅰ)等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项, 可得2a 4+4=a 3+a 5=28﹣a 4, 解得a 4=8,由+8+8q=28,可得q=2(舍去), 则q 的值为2;(Ⅱ)设c n =(b n+1﹣b n )a n =(b n+1﹣b n )2n ﹣1, 可得n=1时,c 1=2+1=3,n ≥2时,可得c n =2n 2+n ﹣2(n ﹣1)2﹣(n ﹣1)=4n ﹣1, 上式对n=1也成立, 则(b n+1﹣b n )a n =4n ﹣1,即有b n+1﹣b n =(4n ﹣1)•()n ﹣1,可得b n =b 1+(b 2﹣b 1)+(b 3﹣b 2)+…+(b n ﹣b n ﹣1) =1+3•()0+7•()1+…+(4n ﹣5)•()n ﹣2, b n =+3•()+7•()2+…+(4n ﹣5)•()n ﹣1,相减可得b n =+4[()+()2+…+()n ﹣2]﹣(4n ﹣5)•()n ﹣1=+4•﹣(4n ﹣5)•()n ﹣1,化简可得b n =15﹣(4n+3)•()n ﹣2.15.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N*),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N*), (i )求T n ; (ii )证明=﹣2(n ∈N*).【解答】(Ⅰ)解:设等比数列{a n }的公比为q ,由a 1=1,a 3=a 2+2,可得q 2﹣q ﹣2=0. ∵q >0,可得q=2. 故.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,得b 1+3d=4,由a 5=b 4+2b 6,得3b 1+13d=16, ∴b 1=d=1. 故b n =n ;(Ⅱ)(i )解:由(Ⅰ),可得, 故=;(ii )证明:∵==.∴==﹣2.16.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【解答】解:(1)∵等比数列{a n }中,a 1=1,a 5=4a 3. ∴1×q 4=4×(1×q 2), 解得q=±2, 当q=2时,a n =2n ﹣1, 当q=﹣2时,a n =(﹣2)n ﹣1,∴{a n }的通项公式为,a n =2n ﹣1,或a n =(﹣2)n ﹣1. (2)记S n 为{a n }的前n 项和. 当a 1=1,q=﹣2时,S n ===,由S m =63,得S m ==63,m ∈N ,无解;当a 1=1,q=2时,S n ===2n ﹣1,由S m =63,得S m =2m ﹣1=63,m ∈N , 解得m=6.17.记S n 为等差数列{a n }的前n 项和,已知a 1=﹣7,S 3=﹣15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【解答】解:(1)∵等差数列{a n }中,a 1=﹣7,S 3=﹣15, ∴a 1=﹣7,3a 1+3d=﹣15,解得a 1=﹣7,d=2, ∴a n =﹣7+2(n ﹣1)=2n ﹣9; (2)∵a 1=﹣7,d=2,a n =2n ﹣9, ∴S n ===n 2﹣8n=(n ﹣4)2﹣16,∴当n=4时,前n 项的和S n 取得最小值为﹣16.。

2018年全国各地高考试题2018年浙江数学高考试题及参考答案

2018年全国各地高考试题2018年浙江数学高考试题及参考答案

2018年浙江数学高考试题及参考答案本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn kn nP k p p k n -=-=台体的体积公式11221()3V S S S S h =++ 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A.(−2,0),(2,0)B.(−2,0),(2,0)C.(0,−2),(0,2)D.(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是侧视图俯视图正视图2211A.2B.4C.6D.84.复数21i- (i 为虚数单位)的共轭复数是 A.1+i B.1−i C.−1+i D.−1−i5.函数y =||2x sin2x 的图象可能是A. B.C. D.6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ 012P12p - 122p 则当p 在(0,1)内增大时, A.D (ξ)减小B.D (ξ)增大C.D (ξ)先减小后增大D.D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A.3−1B.3+1C.2D.2−310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A.1324,a a a a <<B.1324,a a a a ><C.1324,a a a a <>D.1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ab
ab
即可满足.所以满足条件的一组 a , b 的值为 1, 1 .(答案不唯一)
2.(2018 北京文、理)若 x , y 满足 x 1 y 2x ,则 2 y x 的最小值是_________.
2.【答案】3
【解析】作可行域,如图,则直线 z 2 y x 过点 A1, 2 时, z 取最小值 3.
x y 0, 3.(2018 浙江)若 x, y 满足约束条件 2x y 6, 则 z x 3y 的最小值是_______,最大值是________.
x y 2,
3..答案: - 2 8
解答:不等式组所表示的平面区域如图所示,当
ìïïíïïî
x y
= =
4 时, z = -2
x+
3y 取最小值,最小值
x 2 0.
3
________.
7.答案: 3
解答:由图可知在直线 x 2 y 4 0 和 x 2 的交点 (2,3) 处取得最大值,故 z 2 1 3 3 . 3
三、解答题
y y
4,
则目标函数
1,
z
3x
5
y
的最大值为
y 0,
()
(A)6 (B)19 (C)21 (D)45
2.【答案】C
【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点
A
处取得最大值,联立直线方程:
x y x
5 y 1
,可得点
A
的坐标为
A
2,
3

据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
5.(2018
天津文、理)已知 a,b∈R,且
a–3b+6=0,则
2a+
1 8b
的最小值为__________.
5.【答案】 1 4
【解析】由 a 3b 6
0 可知 a
3b
6
,且 2a
1 8b
2a
2 3b
,因为对于任意
x ,2x
0 恒成立,结
合均值不等式的结论可得: 2a 23b 2 2a 23b 2 26 1 . 4
6.【答案】9
【解析】不等式组表示的可行域是以 A5, 4 , B 1, 2 , C 5,0 为顶点的三角形区域,如下图所示,
目标函数 z x y 的最大值必在顶点处取得,易知当 x 5 , y 4 时, zmax 9 .
若变量 x ,y 满足约束条件 x 2 y 4 0 ,则 z x 1 y 的最大值是

-
2
;当
ìïïíïïî
x y
= =
2 时, z = 2
x+
3y 取最大值,最大值为 8 .
x 2y 2 0,
4.(2018
全国新课标Ⅰ文、理)若
x
,y
满足约束条件
x
y
1
0,

z
3x
2
y
的最大值为
y 0 ,
________.
4.答案: 6
解答:画出可行域如图所示, 可知目标函数过点 (2, 0) 时 取得最大值, zmax 3 2 2 0 6 .
D.当且仅当 a 3 时, 2,1 A
2
1.【答案】D
【解析】若 2,1 A ,则 a 3 且 a 0 ,即若 2,1 A ,则 a 3 ,此命题的逆否命题为,
2
2
若 a 3 ,则有 2,1 A ,故选 D.
2
x y 5,
2.(2018
天津文、理)设变量
x,
y
满足约束条件
2x x
2018 年全国各地高考数学试题及解答分类汇编大全
一、选择题
(05 不等式)
1.(2018 北京文、理)设集合 A x, y x y 1, ax y 4, x ay 2 ,则( )
A.对任意实数 a , 2,1 A
B.对任意实数 a , 2,1 A
C.当且仅当 a 0 时, 2,1 A
二、填空
1.(2018 北京文)能说明“若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为_________. ab
1.【答案】1, 1 (答案不唯一)
【解析】使“若 a b ,则 1 1 ”为假命题,则“若 a b ,则 1 1 ”为真命题即可,只需取 a 1,b 1
当且仅当
2a
23b
a 3b 6
a 3 ,即 b 1
时等号成立.综上可得 2a
1 8b
的最小值为
1 4

x 2 y 5≥ 0, 6.(2018 全国新课标Ⅱ文、理)若 x, y 满足约束条件 x 2 y 3≥ 0, 则 z x y 的最大值为
x 5 ≤ 0, __________.
相关文档
最新文档