微积分的发明历程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分的发明历程

如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

从 世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个 世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。

微积分的思想

从微积分成为一门学科来说,是在 世纪,但是,微分和积分的思想早在古代就已经产生了。公元前 世纪,古希腊的数学家、力学家阿基米德(公元前 前 )的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在 年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。意大利数学家卡瓦列利在 年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。

解析几何为微积分的创立奠定了基础

由于 世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。

到了 世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。

笛卡尔 年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。他不仅用坐标表示点的位置,而且把点的坐标运用到曲线上。他认为点移动成线,所以方程不仅可表示已知数与未知数之间的关系,表示变量与变量之间的关系,还可以表示曲线,于是方程与曲线之间建立起对应关系。此外,笛卡尔打破了表示体积面积及长度的量之间不可相加减的束缚。于是几何图形各种量之间可以化为代数量之间的关系,使得几何与代数在数量上统一了起来。笛卡尔就这样把相互对立着的“数”与“形”统一起来,从而实现了数学史的一次飞跃,而且更重要的是它为微积分的成熟提供了必要的条件,从而开拓了变量数学的广阔空间。

牛顿的“流数术”

数学史的另一次飞跃就是研究“形”的变化。 世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化

着的量的一般性和它们之间的依赖关系。到了 世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克 牛顿( )是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力不概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形――线、角、体,都看作力学位移的结果。因而,一切变量都是流量。

牛顿指出,“流数术”基本上包括三类问题。

( )已知流量之间的关系,求它们的流数的关系,这相当于微分学。

( )已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。

( )“流数术”应用范围包括计算曲线的极大值、极小值,求曲线的切线和曲率,求曲线长度及计算曲边形面积等。

牛顿已完全清楚上述( )与( )两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。

牛顿在 年 月 日的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。

莱布尼茨使微积分更加简洁和准确

而德国数学家莱布尼茨( )则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是他们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一等,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。

莱布尼茨创造的微积分符号,正像印度――阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展。莱布尼茨是数学史上最杰出的符号创造者之一。

牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。

留给后人的思考

从始创微积分的时间说牛顿比莱布尼茨大约早 年,但从正式公开发表的时间说牛顿却比莱布尼茨要晚。牛顿系统论述“流数术”的重要著作《流数术和无穷极数》是 年写成的,但因 年伦敦大火殃及印刷厂,致使该书 年才发表,这比莱布尼茨的论文要晚半个世纪。另外也有书中记载:牛顿于 年 月,用拉丁文发表了他的巨著《自然哲学的数学原理》,在此文中提出了微积分的思想。他用“ ”表示无限小增量,求出瞬时变化率,后来他把变量 称为流量, 的瞬时变化率称为流

数,整个微积分学称为“流数学”,事实上,他们二人是各自独立地建立了微积分。最后还应当指出的是,牛顿的“流数术”,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念。牛顿和莱布尼茨的特殊功绩在于,他们站在更高的角度,分析和综合了前人的工作,将前人解决各种具体问题的特殊技巧,统一为两类普通的算法――微分与积分,并发现了微分和积分互为逆运算,建立了所谓的微积分基本定理(现今称为牛顿――莱布尼茨公式),从而完成了微积分发明中最关键的一步,并为其深入发展和广泛应用铺平了道路。由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨。经过 、 世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证明了微积分基本定理即牛顿―莱布尼茨公式,才给微积分建立了一个基本严格的完整体系。

不幸的是牛顿和莱布尼茨各自创立了微积分之后,历史上发生了优先权的争论,从而使数学家分为两派,欧洲大陆数学家两派,欧洲大陆的数学家,尤其是瑞士数学家雅科布 贝努利( )和约翰 贝努利( )兄弟支持莱布尼茨,而英国数学家捍卫牛顿,两派争吵激烈,甚至尖锐到互相敌对、嘲笑。牛顿死后,经过调查核实,事实上,他们各自独立地创立了微积分。这件事的结果致使英国和欧洲大陆的数学家停止了思想交流,使英国人在数学上落后了一百多年,因为牛顿在《自然哲学的数学原理》中使用的是几何方法,英国人差不多在一百多年中照旧使用几何工具,而大陆的数学家继续使用莱布尼茨的分析方法,并使微积分更加完善,在这

相关文档
最新文档