数字信号处理上机第一次实验
数字信号处理上机实验1
数字信号处理实验信息252120502123赵梦然实验一快速傅里叶变换与信号频谱分析一.实验目的1. 在理论学习的基础上,通过本实验加深对离散傅里叶变换的理解。
2. 熟悉并掌握按时间抽取编写快速傅里叶变换(FFT)算法的程序。
3. 了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如频谱混淆、泄漏、栅栏效应等,以便在实际中正确使用FFT 算法进行信号处理。
二.实验内容1. 仔细分析教材第六章“时间抽取法FFT 的FORTRAN 程序”,编写出相应的使用FFT 进行信号频谱分析的Matlab 程序。
2. 用FFT 程序分析正弦信号,分别在以下情况进行分析,并讨论所得的结果:a) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.000625s;b) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.005s;c) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.0046875s;d) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.004s;e) 信号频率F=50Hz,采样点数N=64,采样间隔T=0.000625s;f) 信号频率F=250Hz,采样点数N=32,采样间隔T=0.005s;g) 将c)中信号后补32 个0,做64 点FFT,并与直接采样64 个点做FFT 的结果进行对比。
3. 思考题:1) 在实验a)、b)、c)和d)中,正弦信号的初始相位对频谱图中的幅度特性是否有影响?为什么?信号补零后做FFT 是否可以提高信号频谱的分辨率?为什么?三.实验程序function pushbutton1_Callback(hObject, eventdata, handles)F=str2double(get(handles.f,'string'));N=str2double(get(handles.n,'string'));T=str2double(get(handles.t,'string'));fai=str2double(get(handles.fai,'string'));zero=get(handles.zero,'value');%进行采样t=0:T:(N-1)*T;x=cos(2*pi*F*t+fai);%进行fft运算if zeroy=abs(fft(x,N+32));y=y/max(y);elsey=abs(fft(x));y=y/max(y);end%画图axes(handles.axes2);stem((0:N-1),x,'*');axes(handles.axes1);if zerostem((0:N+31),y,'.');elsestem((0:N-1),y);endxlabel('频率/Hz');ylabel('振幅');grid on;四.实验结果实验数据记录:(a)输入信号频率:50输入采样点数:32输入间隔时间:0.000625是否增加零点?否信号频率F=50Hz,采样长N=32,采样周期T=0.000625s,fs=1/T=1600Hz,基频为fs/N=50Hz,50/50=1.故此在频谱图上的第1个点和第31个点有值。
2016年北航数字信号处理上机实验一实验报告
离散时间信号处理实验报告实验一信号的采样与重构班级学号姓名同组者日期实验介绍连续时间信号采样是获得离散时间信号的一种重要方式,但是时域上的离散化会带来信号在频域上发生相应的变化。
在本实验中,我们将分别看到低通信号和带通信号在不同的采样率下得到的离散信号波形与连续信号波形在时域和频域上的对应关系。
同时,离散信号的二次采样在实际的应用中可能是必须的,有时甚至是非常重要的。
在实验的最后,我们也会看到离散信号的抽取和内插所带来的频谱变化。
由于matlab 语言无法表达连续信号,实验中我们采用足够密的采样点来模拟连续信号(远大于奈奎斯特采样的要求),即:t=0:Ts:T (Ts=1/fs<<奈奎斯特采样频率)实验中,为了分析离散信号与连续信号之间的频谱关系,加深对采样定理的理解,了解模拟频谱、数字频谱、以及离散信号被加窗后各自的频谱,从而直观的理解采样频率对频谱的影响和加窗后对频谱的影响。
由此可以掌握数字处理方法对模拟信号进行频谱分析的基本原则,即:如何选择合适的信号长度、采样周期以使得对模拟信号的频谱分析的误差达到分析的要求。
在该实验中,用到的Matlab 函数有:plot(x,y),其作用是在坐标中以x 为横坐标、y 为纵坐标的曲线,注意x 和y 都是长度相同的离散向量; xlabel(‘xxx ’),其作用是对x 轴加上坐标轴说明“xxx ”; ylabel(‘yyy ’),其作用是对y 轴加上坐标轴说明“yyy ”; title(‘ttt ’),其作用是对坐标系加上坐标轴说明“ttt ”;subplot(m,n,w),其作用是当需要在同一显示面板中显示多个不同的坐标系时,m 、n分别指明每行和每列的坐标系个数,w 为当前显示坐标系的流水号(1到m*n 之间)。
在实验中我们需要画出信号的频谱,对于连续信号频谱的逼近需要你自己编写,原理如下:连续时间非周期信号()x t 的傅里叶变换对为: ()()j t X j x t e dt ∞-Ω-∞Ω=⎰用DFT 方法对该变换逼近的方法如下:1、将)(t x 在t 轴上等间隔(宽度为T )分段,每一段用一个矩形脉冲代替,脉冲的幅度为其起始点的抽样值)(()(n x nT x t x nT t ===),然后把所有矩形脉冲的面积相加。
西电数字信号实验第一次上机实验报告
实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理与方法1.连续时间信号的采样采样是从连续时间信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、z 变换和序列傅氏变换之间关系的理解。
对一个连续时间信号进行理想采样的过程可以表示为该信号和个周期冲激脉冲的乘积,即)()()(ˆt M t x t x a a = (1-1) 其中)(ˆt x a 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 ∑+∞-∞=-=n nT t t M )()(δ (1-2)它也可以用傅立叶级数表示为: ∑+∞-∞=Ω=n t jm s e T t M 1)( (1-3)其中T 为采样周期,T s /2π=Ω是采样角频率。
设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:⎰+∞∞--=dt e t x s X st a a )()( (1-4)此时理想采样信号)(ˆt x a 的拉氏变换为∑⎰+∞-∞=+∞∞--Ω-===m s a st a ajm s X T dt e t x s X )(1)(ˆ)(ˆ (1-5) 作为拉氏变换的一种特例,信号理想采样的傅立叶变换 []∑+∞-∞=Ω-Ω=Ωm s a a m j X T j X )(1)(ˆ (1-6)由式(1-5)和式(1-6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。
根据Shannon 采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混淆现象。
《数字信号处理》上机实验指导
《数字信号处理》上机实验指导《数字信号处理》上机实验指导实验一、Z 变换及离散时间系统分析(一)、实验目的1、通过本实验熟悉Z 变换在离散时间系统分析中的地位和作用。
2、掌握并熟练使用有关离散系统分析的MATLAB 调用函数及格式,以深入理解离散时间系统的频率特性。
(二)、实验内容及步骤对于一个给定的LSI 系统,其转移函数H(z)习惯被定义为H(z)=B(z)/A(z),即:abn a n b z n a z a z a z n b z b z b A B H ------++++++++++==)1(...)3()2(1)1(...)3()2()1(b )z ()z ()z (2121 公式中b n 和an 分别是H(Z)分子与分母多项式的阶次,在有关MATLAB 的系统分析的文件中,分子和分母的系数被定义为向量,即)]1(),...,2(),1([)]1(),...,2(),1([+=+=a b n a a a a n b b b b并要求)1(a =1,如果)1(a ≠1,则程序将自动的将其归一化为1。
1、系统的阶跃响应调用格式为:y=filter(b,a,x),其中x,y,a,b 都是向量。
例1 令4321432155075.02925.28291.30544.31001836.0007374.0011 016.0007344.0001836.0)z (--------+-+-++++=z z z z z z z z H 求该系统的阶跃响应(y (n ))。
实现该任务的程序如下:clear;x=ones(100);% x(n)=1,n=1~100;t=1:100;% t 用于后面的绘图;b=[.001836,.007344,.011016,.007374,.001836]; % 形成向量b ;a=[1,-3.0544,3.8291,-2.2925,.55075]; % 形成向量a ;y=filter(b,a,x);% 求所给系统的输出,本例实际上是求所给系统的阶跃响应;plot(t,x,'r.',t,y,'k-');grid on;% 将x(n)(绿色)y(n)(黑色)画在同一个%图上;ylabel('x(n) and y(n)')xlabel('n')2、单位抽样响应h(n)调用格式为:h=impz(b ,a ,N) 或 [h ,t]=impz(b ,a ,N)其中N 是所需的h(n)的长度,前者绘图时n 从1开始,而后者从0开始。
《数字信号处理》上机实验指导书
《数字信号处理》上机实验指导书实验1 离散时间信号的产生1.实验目的数字信号处理系统中的信号都是以离散时间形态存在,所以对离散时间信号的研究是数字信号处理的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
MATLAB 是一套功能强大的工程计算及数据处理软件,广泛应用于工业,电子,医疗和建筑等众多领域。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大的绘图功能,便于用户直观地输出处理结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号的理解。
2.实验要求本实验要求学生运用MATLAB编程产生一些基本的离散时间信号,并通过MATLAB的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB的使用。
3.实验原理(1)常见的离散时间信号1)单位抽样序列,或称为离散时间冲激,单位冲激:?(n)???1?0n?0 n?0如果?(n)在时间轴上延迟了k个单位,得到?(n?k)即:?1n?k ?(n?k)??0n?0?2)单位阶跃序列n?0?1 u(n)?n?0?0在MATLAB中可以利用ones( )函数实现。
x?ones(1,N);3)正弦序列x(n)?Acos(?0n??)这里,A,?0,和?都是实数,它们分别称为本正弦信号x(n)的振幅,角频率和初始相位。
f0??02?为频率。
x(n)?ej?n4)复正弦序列5)实指数序列x(n)?A?n(2)MATLAB编程介绍MATLAB是一套功能强大,但使用方便的工程计算及数据处理软件。
其编程风格很简洁,没有太多的语法限制,所以使用起来非常方便,尤其对初学者来说,可以避免去阅读大量的指令系统,以便很快上手编程。
值得注意得就是,MATLAB中把所有参与处理的数据都视为矩阵,并且其函数众多,希望同学注意查看帮助,经过一段时间的训练就会慢慢熟练使用本软件了。
数字信号处理实验一(上机)报告
数字信号处理实验报告实验名称:实验一离散时间信号的时域表示实验时间: 2014 年 9 月 16 日学号:201211106134 姓名:孙舸成绩:评语:一、实验目的1、熟悉MATLAB命令,掌握离散时间信号-序列的时域表示方法;2、掌握用MATLAB描绘二维图像的方法;3、掌握用MATLAB对序列进行基本的运算和时域变换的方法。
二、实验原理与计算方法(一)序列的表示方法序列的表示方法有列举法、解析法和图形法,相应的用MATLAB也可以有这样几种表示方法,分别介绍如下:1、列举法在MATLAB中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n和表示量值的x两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4];>>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则MATLAB 默认该序列的起始位置为n=0。
由于内存有限,MATLAB 不能表示一个无限序列。
2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列n n x )9.0()(=,100≤≤n 的MATLAB 程序为: >>n=[0:10];>>x=(0.9).^n;例1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的MATLAB 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n);3、图形法在MATLAB 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n的值决定,为-3到4,纵坐标的范围由向量x的值决定,为-1到7。
《数字信号处理》上机实习报告 (3)
数字信号实习报告第一次6.21一、从给定的程序(文件包Friday.rar)中,选择一个源程序做详细标注。
(目的:熟悉Matlab 程序)参见程序Gibbs_Phenomena_CFST.m第二次6.22二、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。
(1)在一副图上画出多幅小图;程序aa1.m(2)画出一组二维图形;程序aa2.m(3)画出一组三维图形;程序aa3.m(4)画出复数的实部与虚部。
程序aa4.m第三次6月23-24三、计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,指出循环褶积计算时所存在的边界效应现象;编写一个做相关分析的源程序。
线性褶积:程序bb1.m结果:循环褶积:程序bb2.m循环相关函数bb3.m第四次6月25四、设计一个病态(矩阵)系统,分析其病态程度;找出对应的解决方法(提示:添加白噪因子)。
程序cc.m结果第五次6月26-27五、设计一个一维滤波处理程序(1、分别做低通、高通、带通、带阻等理想滤波器进行处理;2、窗函数)。
低通程序dd.m窗函数dd1.m第六次6月28六、设计一个二维滤波处理程序(分别做低通、高通等处理)。
ee.m第七次6月29-30七、验证时间域的循环褶积对应的是频率域的乘积;线性褶积则不然。
程序ff.mC2=D2从而证明了时间域的循环褶积对应的是频率域的乘积;线性褶积则不然第八次7月1八、请用通俗、易懂的语言说明数字信号处理中的一种性质、一条定理或一个算例(顺便利用Matlab对其进行实现)。
程序gg.m证明:虚序列的频谱是共轭反对称的。
数字信号处理上机实验
实验1 抽样定理的实验体会实验内容:把下述三个连续时间信号()x t 转换成离散时间信号()s x nT ,在计算机上绘出()s x nT 的图形。
1/s s f T =为抽样频率。
自行依次选取不同的抽样频率,如00000.5,,2,5s f f f f f =等。
(1) 工频信号:10()sin(2)x t A f t π=,220A =,050f Hz =Dt=0.00005;t=-0.005:Dt:0.05; A=220; fo=50;xa=A*sin(2*pi*fo*t); Ts=0.04;n=-25:1:25; x=A*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;图1.1 fs=25Hz 时()s x nT 的图形x nT的图形图1.2 fs=50Hz时()sx nT的图形图1.3 fs=100Hz时()s图1.3 fs=250Hz 时()s x nT 的图形(2) 衰减正弦信号:20()sin(2)t x t Ae f t απ-=,2A =,0.5α=,02f Hz =Dt=0.00005;t=-0.005:Dt:0.05; A=2;a=0.5;fo=2;xa=A*exp(-a*t).*sin(2*pi*fo*t); Ts=1;n=-25:1:25;x=A*exp(-a*n*Ts).*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;图2.1 fs=1Hz 时()s x nT 的图形x nT的图形图2.2 fs=2Hz时()sx nT的图形图2.3 fs=4Hz时()sx nT的图形图2.4 fs=10Hz时()s(3)谐波信号:3201()sin(2)iix t A f itπ==∑,11A=,20.5A=,30.2A=,5f Hz=Dt=0.00005;t=-0.005:Dt:0.05;A1=1;A2=0.5;A3=0.2;fo=5;xa=A1*sin(2*pi*fo*t)+A2*sin(2*pi*fo*2*t)+A3*sin(2*pi*pi*3*t);Ts=0.4;n=-25:1:25;x=A1*sin(2*pi*fo*n*Ts)+A2*sin(2*pi*fo*2*n*Ts)+A3*sin(2*pi*pi*3* n*Ts);stem(n,x,'fill');grid on;图3.1 fs=2.5Hz时()sx nT的图图3.2 fs=5Hz时()sx nT的图形x nT的图形图3.3 fs=10Hz时()sx nT的图形图3.4 fs=25Hz时()s实验2 离散信号的DTFT 和DFT实验内容: 分别计算16点序列 150,165cos )(≤≤=n n n x π的16点和32点DFT ,绘出幅度谱图形,并绘出该序列的DTFT 图形。
数字信号处理上机实验
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数字信号处理第三版上机实验答案
实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。
系统的稳态输出是指当∞→n 时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
3.实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
(2)给定一个低通滤波器的差分方程为)1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y输入信号 )()(81n R n x =)()(2n u n x =a) 分别求出系统对)()(81n R n x =和)()(2n u n x =的响应序列,并画出其波形。
Removed_数字信号处理上机实验
实验 1 抽样定理的实验体会
实验内容:把下述三个连续时间信号 x(t) 转换成离散时间信号 x(nTs ) ,在计算 机上绘出 x(nTs ) 的图形。 fs 1/ Ts 为抽样频率。自行依次选取不同的抽样频率, 如 fs 0.5 f0 , f0 , 2 f0 , 5 f0 等。 (1) 工频信号: x1(t) Asin(2 f0t) , A 220 , f0 50Hz
图 3.2 fs=5Hz 时 x(nTs ) 的图形 图 3.3 fs=10Hz 时 x(nTs ) 的图形 图 3.4 fs=25Hz 时 x(nTs ) 的图形
:50 45. 44. 43. by 42.41.——40.——39.—3—8.by3@7.—— 36.35. —3—4. ——333. 12. 1.2.3.340.5.—.6.—29.by28.by@27.26.—— 25. 24. 23. 22. by 21.20. ——19.by:18.by1:7.——16.——15.——14.—— 13. 12. 1110.“. ”by:M9.O“OOKN”b8y.—: —7.——6.——5.——4.——3.——2.——1.——
图 1.3 fs=250Hz 时 x(nTs ) 的图形
(2) 衰减正弦信号: x2 (t) Aet sin(2 f0t) , A 2 , 0.5 , f0 2Hz
数字信号处理上机实验
数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。
可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。
女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。
人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。
出色的女高音的泛音最高的可达2700hz。
童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。
FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。
四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。
3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。
数字信号处理上机报告-一
数字信号处理上机报告-一数字信号处理第一次上机实验报告实验一:设给定模拟信号()1000t a x t e -=,的单位是ms 。
(1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。
(2) 用两个不同的采样频率对给定的进行采样。
○1。
○2。
比较两种采样率下的信号频谱,并解释。
实验一MATLAB 程序:(1)N=10; Fs=5; Ts=1/Fs;n=[-N:Ts:N];xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn);title('x_a(t)时域波形');xlabel('t/ms');ylabel('x_a(t)');t ()a x t ()()15000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱()()11000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱axis([-10, 10, 0, 1]);subplot(212);plot(w/pi,abs(X));title('x_a(t)频谱图');xlabel('\omega/\pi');ylabel('X_a(e ^(j\omega))');ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind));fprintf('等效带宽为 %fKHZ\n',eband); 运行结果:等效带宽为 12.110000KHZ(2).N=10;omega=-3*pi:0.01:3*pi;%Fs=5000Fs=5;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(221);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]);title('时域波形(f_s=5000)');xlabel('n');ylabel('x_1(n)');subplot(222);plot(omega/pi,abs(X));title('频谱图(f_s=5000)');xlabel('\omega/\pi');ylabel('X_1(f)');%Fs=1000Fs=1;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(223);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]);title('时域波形(f_s=1000)');xlabel('n');ylabel('x_2(n)');subplot(224);plot(omega/pi,abs(X));title('频谱图(f_s=1000)');xlabel('\omega/\pi');ylabel('X_2(f)');运行结果:实验二:给定一指数型衰减信号,采样率,为采样周期。
西电数字信号处理上机实验报告
数字信号处理上机实验报告14020710021 张吉凯第一次上机实验一:设给定模拟信号()1000t a x t e -=,t 的单位是ms 。
(1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。
(2) 用两个不同的采样频率对给定的()a x t 进行采样。
○1()()15000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
○2()()11000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
比较两种采样率下的信号频谱,并解释。
(1)MATLAB 程序:N=10; Fs=5; Ts=1/Fs;n=[-N:Ts:N];xn=exp(-abs(n)); w=-4*pi:0.01:4*pi;X=xn*exp(-j*(n'*w));subplot(211)plot(n,xn);title('x_a(t)时域波形');xlabel('t/ms');ylabel('x_a(t)');axis([-10, 10, 0, 1]);subplot(212);plot(w/pi,abs(X));title('x_a(t)频谱图');xlabel('\omega/\pi');ylabel('X_a(e^(j\omega))'); ind = find(X >=0.03*max(X))*0.01;eband = (max(ind) -min(ind));fprintf('等效带宽为%fKHZ\n',eband);运行结果:等效带宽为12.110000KHZ(2)MATLAB程序:N=10;omega=-3*pi:0.01:3*pi;%Fs=5000Fs=5;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(2,2,1);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=5000)');xlabel('n');ylabel('x_1(n)');subplot(2,2,2);plot(omega/pi,abs(X));title('频谱图(f_s=5000)');xlabel('\omega/\pi');ylabel('X_1(f)');grid on;%Fs=1000Fs=1;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(2,2,3);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=1000)');xlabel('n');ylabel('x_2(n)');grid on; subplot(2,2,4); plot(omega/pi,abs(X)); title('频谱图(f_s=1000)'); xlabel('\omega/\pi'); ylabel('X_2(f)'); grid on;运行结果:实验二:给定一指数型衰减信号()()0cos 2at x t e f t π-=,采样率1s f T=,T 为采样周期。
数字信号处理(MATLAB版)上机实验操作
实验一离散时间信号与系统一、实验目的:1、熟悉常见离散时间信号的产生方法;2、熟悉离散时间系统的单位脉冲响应和单位阶跃响应的求解方法;3、熟悉离散时间信号经过离散时间系统的响应的求解方法。
二、实验内容:已知离散时间系统差分方程为y(n)-0.5y(n-1)+0.06y(n-2)=x(n)+x(n-1),求1、该系统的单位脉冲响应并绘图;2、该系统的单位阶跃响应并绘图;3、已知x(n)=可自己指定用filter函数经过系统的响应并绘图;4、用conv_m函数求系统响应并绘图。
三、实验平台:MA TLAB集成系统四、设计流程:此处写个人自己的设计流程五、程序清单:此处写程序内容六、调试和测试结果:此处写程序的执行结果和实验过程中的调试经过、出现的错误和对应的解决方法七、教师评语与成绩评定此处由老师填写上机操作:实验一离散时间信号与系统实验内容:1.脉冲响应>> b =[1,1]; a = [1,-0.5,0.06];n = [-10:25];>> impz(b,a,n);>> title('Impulse Response'); xlabel('n'); ylabel('h(n)')2.单位阶跃响应>> x = stepseq(0,-10,25); s = filter(b,a,x);Warning: Function call stepseq invokes inexact match d:\MATLAB7\work\STEPSEQ.M.>> stem(n,s)>> title('Step Response'); xlabel('n');ylabel('s(n)')3.>> a=[1,-0.5,0.06];b=[1,1];>> n=-20:120;>> x1=exp(-0.05*n).*sin(0.1*pi*n+pi/3);>> s1=filter(b,a,x1);>> stem(n,s1);;xlabel('n');ylabel('s1(n)');4.>> a=[1,-0.5,0.06];b=[1,1];>> n=-20:120;>> h=impz(b,a,n);>> x1=exp(-0.05*n).*sin(0.1*pi*n+pi/3);>> [y,m]=conv_m(x1,n,h,n);Warning: Function call conv_m invokes inexact match d:\MATLAB7\work\CONV_M.M. >> stem(m,y);title('系统响应');xlabel('m');ylabel('y(m)');实验二离散信号与系统的连续频域分析一、实验目的:1、掌握离散时间信号的DTFT的MATLAB实现;2、掌握离散时间系统的DTFT分析;3、掌握系统函数和频率相应之间的关系。
数字信号处理上机实验指导书(1)
《数字信号处理》上机实验指导书陈纯锴电子与信息工程学院一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第二章、三章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
采用实验二、实验三加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
二、关于使用计算机语言由于数字信号处理实验的主要目的是验证数字信号处理的有关理论,进一步理解巩固所学理论知识。
所以,实现实验用的算法语言可以有许多种,但为了提高实验效率,要求学生用编程效率比C语言高好几倍的MATLAB语言。
下面介绍MATLAB的主要特点。
(有关MATLAB的启动、程序运行和有关信号处理工具箱函数等内容将放到最后附录中介绍。
湘潭大学数字信号处理第一次实验报告
数字信号处理实验报告(第一次)学院:信息工程学院班级:姓名:学号:指导老师:姚志强完成日期:2012-03-31内容:实验一、CCS的安装与CCS操作界面的熟悉实验二、CCS操作实验三、CMD文件和Gel文件的编写实验一、CCS的安装与CCS操作界面的熟悉一、实验要求和目的1、学会安装与设置Code Composer Studio。
2、熟悉CCS软件的操作界面。
二、实验设备CCS安装光盘(本次安装程序在D:\DSP\ccs2.0ForC5000)、装有Windows 98以上操作系统的PC机三、实验内容及步骤S的安装安装前需要卸载系统原来的C5000,进入控制面板进行卸载完毕后,再开始下面的步骤。
(1)找到CCS的安装软件,点击安装程序setup.exe,双击启动安装。
安装完成后在桌面上会有“CCS 2 C5000”和“SETUP CCS 2 C5000”两个快捷方式图标,分别对应CCS应用程序和CCS配置程序。
(2)双击运行“SETUP CCS 2 C5000”配置程序,配置驱动程序。
本次实验没有用到实验箱,只需配置软件驱动程序。
在弹出的“Import Configurantions”对话框中,先点击“Clear”键,清除以前的配置,然后选择“C5402 Simulator”,点击“Import”,最后点击“Save and Quit”按钮,完成配置。
S操作界面的熟悉(1)在桌面上双击“CCS 2 C5000”,弹出一个TI仿真器并行调试管理器窗口。
(2)在管理器窗口的“open”菜单下选择“C54xx(C5402) Simulator”命令,将弹出一个CCS运行主窗口(如果直接弹出CCS运行主窗口,此步可略)。
(3) 点击Help_>Contents打开TMS320C54x Code Composer Stdio Help,在左边Contents列表中点击最后一个TMS320C5402 DSK,浏览了解其下所有子列表的内容,熟悉DSK板的基本硬件、配置及功能。
数字信号处理上机实习报告
数字信号处理上机实习报告————————————————————————————————作者:————————————————————————————————日期:2专题一 离散卷积的计算一、实验内容设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x (n) 1、h (n)=(0.8)n,0≤n ≤4; x (n)=u (n)—u (n-4) 2、h (n)=(0.8)n u (n), x (n )=u(n)—u (n-4) 3、h(n)=(0。
8)nu (n ), x(n)=u (n) 求以上三种情况下系统的输出y (n )。
二、实验目的1、掌握离散卷积计算机实现.2、进一步对离散信号卷积算法的理解.三、原理及算法概要算法:把冲激响应h(n)与输入序列x (n)分别输入到程序中,然后调用离散卷积函数y=conv (x 。
,h)即可得到所要求的结果.原理:离散卷积定义为 ∑∞-∞=-=k k n h k x n y )()()(当序列为有限长时,则∑=-=nk k n h k x n y 0)()()(四.理论计算1、h (n)=(0。
8)n,0≤n≤4; x(n )=u (n )—u(n —4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n 〈0 时,y (n )=0 (b ) 当30≤≤n 时,∑==nm n y 0)((0。
8)n(c ) 当74≤≤n 时,∑-==43)(n m n y (0.8)n(d ) 当n 〉7时,y (n )=0理论结果与上图实验结果图中所示吻合。
2、h(n)=(0.8)nu(n ), x(n )=u(n)—u(n-4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n <0 时,y (n )=0 (b) 当30≤≤n 时,∑==nm n y 0)((0。
数字信号处理MATLAB上机实验2014年概论
axis([0,N1,-4,6])
24
%convc.m
x=[-2 0 1 -1 3];
h=[1 2 0 -1 0];
y=conv(x,h)
N=length(y)-1;
n=0:1:N;
N1=5;
n1=0:1:N1-1;
hh=fft(h,N1);
xx=fft(x,N1);
yy=hh.*xx;
y1=ifft(yy,N1)
(1)采集数据长度N=16点,做N=16点的DFT。
(2)采集数据长度N=16点,补零到256点,
做256点的DFT。
(3)采集数据长度N=256点,做256点的DFT
。观察三幅不同频率特性图,分析和比较它们的特点
以及形成的原因。改变采样频率和数据长度比较频谱
分析结果,说明原因。
3、提交以上上机频谱分析过程及结果图。以学号或姓
subplot(3,1,3); stem(n2,y2,'fill');grid on; title('10 dot conv of x and h'); ylabel('y2');xlabel('Time index n'); %axis([0,N2,0,60])
27
28
上机实验三:IIR低通数字滤波器的设计
1
(2)编写用MATLAB矩阵运算的的M文件 dft2.m ,完成下列矩阵运算:
X
X
...
X
(0) (1)
(N
1)
WWNN00WWNN10WWNN20
...... ......
. .
. .
.... ....
.W. N0 .WNN 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理上机第一次实验实验一:设给定模拟信号()1000ta x t e-=,t 的单位是ms 。
(1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。
(2) 用两个不同的采样频率对给定的()a x t 进行采样。
○1()()15000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
○2()()11000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
比较两种采样率下的信号频谱,并解释。
实验一MA TLAB 程序: (1)N=10; Fs=5; Ts=1/Fs;n=[-N:Ts:N];xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn);title('x_a(t)时域波形');xlabel('t/ms');ylabel('x_a(t)'); axis([-10, 10, 0, 1]); subplot(212); plot(w/pi,abs(X));title('x_a(t)频谱图');xlabel('\omega/\pi');ylabel('X_a(e^(j\omega))'); ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind)); fprintf('等效带宽为 %fKHZ\n',eband);运行结果:-10-8-6-4-2024681000.51x a (t)时域波形t/ms x a (t )-4-3-2-101234051015x a (t)频谱图ω/πX a (e (j ω))等效带宽为 12.110000KHZ (2).N=10;omega=-3*pi:0.01:3*pi; %Fs=5000 Fs=5; Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n)); X=xn*exp(-j*(n'*omega));subplot(221);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=5000)'); xlabel('n');ylabel('x_1(n)');subplot(222);plot(omega/pi,abs(X)); title('频谱图(f_s=5000)');xlabel('\omega/\pi');ylabel('X_1(f)'); %Fs=1000 Fs=1; Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n)); X=xn*exp(-j*(n'*omega));subplot(223);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=1000)');xlabel('n');ylabel('x_2(n)'); subplot(224);plot(omega/pi,abs(X)); title('频谱图(f_s=1000)');xlabel('\omega/\pi');ylabel('X_2(f)'); 运行结果:-10-5051000.51时域波形(f s =5000)nx 1(n )-4-2024051015频谱图(f s =5000)ω/πX 1(f )-10-5051000.51时域波形(f s =1000)nx 2(n )-4-20240123频谱图(f s =1000)ω/πX 2(f )实验二:给定一指数型衰减信号()()0cos 2atx t ef t π-=,采样率1s f T=,T 为采样周期。
为方便起见,重写成复指数形式()02j f tat x t e e π-=。
采样后的信号为()02j f nTanT x nT e eπ-=,加窗后长度为L 的形式为:()(),0,1,,1L x nT x nT n L ==-这3个信号()x t ,()x nT ,()L x nT 的幅度谱平方分别为: 模拟信号:()()()222012X f a f f π=+-采样信号:()()()2201ˆ12cos 2aTaTXf ef f T eπ--=--+加窗(取有限个采样点)信号:()()()()()2202012cos 2ˆ12cos 2aTL aTL LaTaTe f f TL e X f ef f T eππ------+=--+且满足如下关系:()()()()ˆˆˆlim ,lim s LL f X f X f TX f X f →∞→∞== 实验内容100.2sec ,0.5Hz,1Hz 2Hz =10s s a f f f L -====取采样频率分别取和,。
(1) 在同一张图上画出:模型号幅度谱平方()2X f;()()2ˆ1Hz 2Hz 0Hz 3Hz s s f f TXf f ==≤≤和时,采样信号幅度谱平方(2) 在同一张图上画出:模型号幅度谱平方()2X f;()()2ˆ2Hz 0Hz 3Hz s f TXf f =≤≤时,采样信号幅度谱平方;改变L 值,结果又如何?(1) f=0:0.01:3; alpha=0.2; f0=0.5; L=10; T1=1; T2=0.5;Xa=1./(alpha^2+(2*pi*(f-f0)).^2);Xs1=T1*(1-2*exp(-alpha*T1*L)*cos(2*pi*(f-f0)*T1*L)+exp(-2*alpha*T1*L))./(1-2*exp(-alpha *T1)*cos(2*pi*(f-f0)*T1)+exp(-2*alpha*T1));Xs2=T2*(1-2*exp(-alpha*T2*L)*cos(2*pi*(f-f0)*T2*L)+exp(-2*alpha*T2*L))./(1-2*exp(-alpha *T2)*cos(2*pi*(f-f0)*T2)+exp(-2*alpha*T2));plot(f,Xa,'b');hold on;plot(f,Xs1,'g');hold on;plot(f,Xs2,'r'); xlabel('f/Hz');ylabel('|X(f)|^2');legend('模拟信号幅度谱平方|X(f)|^2', 'f_s=1Hz 时,采样信号幅度谱平方|TX(f)|^2', 'f_s=2Hz 时,采样信号幅度谱平方|TX(f)|^2');0.511.522.530510152025f/Hz|X (f )|2模拟信号幅度谱平方|X (f)|2f s =1Hz 时,采样信号幅度谱平方|TX (f)|2f s =2Hz 时,采样信号幅度谱平方|TX (f)|2(2) f=0:0.01:3; alpha=0.2; f0=0.5; L1=5; L2=10; L3=20; T1 = 0.5Xa=1./(alpha^2+(2*pi*(f-f0)).^2);Xs1=T1*(1-2*exp(-alpha*T1*L1)*cos(2*pi*(f-f0)*T1*L1)+exp(-2*alpha*T1*L1))./(1-2*exp(-al pha*T1)*cos(2*pi*(f-f0)*T1)+exp(-2*alpha*T1));Xs2=T1*(1-2*exp(-alpha*T1*L2)*cos(2*pi*(f-f0)*T1*L2)+exp(-2*alpha*T1*L2))./(1-2*exp(-al pha*T1)*cos(2*pi*(f-f0)*T1)+exp(-2*alpha*T1));Xs3=T1*(1-2*exp(-alpha*T1*L3)*cos(2*pi*(f-f0)*T1*L3)+exp(-2*alpha*T1*L3))./(1-2*exp(-al pha*T1)*cos(2*pi*(f-f0)*T1)+exp(-2*alpha*T1)); plot(f,Xa,'b');hold on;plot(f,Xs1,'g');hold on; plot(f,Xs2,'r');hold on;plot(f,Xs3,'y') xlabel('f/Hz');ylabel('|X(f)|^2');legend('模拟信号幅度谱平方|X(f)|^2', 'f_s=2Hz 时,采样信号幅度谱平方|TX(f)|^2(L=5)','f_s=2Hz 时,采样信号幅度谱平方|TX(f)|^2(L=10)','f_s=2Hz 时,采样信号幅度谱平方|TX(f)|^2(L=20)');0.511.522.530510152025f/Hz|X (f )|2模拟信号幅度谱平方|X (f)|2f s =1Hz 时,采样信号幅度谱平方|TX (f)|2f s =2Hz 时,采样信号幅度谱平方|TX (f)|2实验三:设(){}11,2,2x n =,(){}21,2,3,4x n =,编写MA TLAB 程序,计算: (1) 5点圆周卷积()1y n ; (2) 6点圆周卷积()2y n ; (3) 线性卷积()3y n ;(4) 画出的()1y n ,()2y n 和()3y n 时间轴对齐。
a = [1,2,2]; b = [1,2,3,4];y1 = cconv(a,b,5); y2 = cconv(a,b,6); y3 = conv(a,b); figure(1); subplot(311) stem(y1); grid ontitle('五点圆周卷积y1(n)');xlabel('n'),ylabel('y1(n)');axis([0 6 0 15]) subplot(312) stem(y2);grid ontitle('六点圆周卷积y2(n)');xlabel('n'),ylabel('y2(n)');axis([0 6 0 15])subplot(313) stem(y3); grid ontitle('线性卷积y3(n)');xlabel('n'),ylabel('y3(n)');axis([0 6 0 15])123456051015五点圆周卷积y1(n)ny 1(n )123456051015六点圆周卷积y2(n)ny 2(n )123456051015线性卷积y3(n)ny 3(n )x1=[1,2,2]; x2=[1,2,3,4]; n1=0:4;y1=cconv(x1,x2,5); n2=0:5;y2=cconv(x1,x2,6);n3=0:length(x1)+length(x2)-2; y3=conv(x1,x2);subplot(3,1,1);stem(n1,y1);axis([-1,6,0,16]); subplot(3,1,2);stem(n2,y2);axis([-1,6,0,16]); subplot(3,1,3);stem(n3,y3);axis([-1,6,0,16]);-10123456051015-10123456051015-1123456051015实验四:给定因果系统:()()()0.91y n y n x n =-+ (1) 求系统函数()H z 并画出零极点示意图。