螺旋桨拉力计算
螺旋桨拉力公式 -回复
螺旋桨拉力公式 -回复
螺旋桨拉力公式用于计算飞机或船只上螺旋桨产生的推力。
该公
式可以表示为:
拉力= (2π * 螺旋桨半径 * 推力系数 * 进气流速度) / 螺旋
桨效率
其中,螺旋桨半径表示螺旋桨的半径大小,推力系数表示螺旋桨
的设计和性能参数,进气流速度表示螺旋桨旋转时所处的空气或水流
速度,螺旋桨效率表示螺旋桨转化进气流速度为推力的效率。
螺旋桨拉力公式是航空和航海领域中的重要公式,用于计算螺旋
桨的推力大小。
在实际应用中,需要根据具体的参数和数据进行计算,以获得准确的拉力数值。
模型飞机螺旋桨原理与拉力计算
模型飞机螺旋桨原理与拉力计算模型飞机螺旋桨原理与拉力计算模型飞机, 拉力, 原理, 螺旋桨一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随 J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
螺旋桨计算公式
螺旋桨计算公式直升机螺旋桨升力计算公式直升机螺旋桨升力计算公式一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。
也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。
1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。
有一定的弹性,不转时,桨叶略有下垂弯曲。
当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。
打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样,空中飞舞。
2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨)旋转产生的升力并操纵其大小和方向来实现的。
升力大于重量时,就上升,反之,就下降。
平衡时,就悬停在空中。
直升机的升力大小,不但决定于旋翼的转速,而且决定于旋翼的安装角(又称桨叶角)。
升力随着转速.桨叶角的增大而增大;随着转速.桨叶角的减小而减小。
直升机在飞行时,桨叶在转每一圈的过程中,桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。
这才使直升机能够前.后仰,左.右倾,完成各种姿态。
直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。
不管天空有风无风,直升机要稳定飞行,不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。
总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。
1,直接影响螺旋桨性能的主要参数有:a.直径D——相接于螺旋桨叶尖的圆的直径。
通常,直径越大,效率越高,但直径往往受到吃水和输出转速等的限制;b.桨叶数N;c.转速n——每分钟螺旋桨的转数;d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距;e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比;f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小;g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。
船用螺旋桨推力计算公式
螺旋桨的推力公式:推力F=通道面积*空气密度*流
速^2螺旋桨的翼型剖面和展长在很大程度上决定了
螺旋桨的推力,产生推力对应所需的扭转力矩(来自发动机)。
对于螺旋桨背风面被排出的流动结构(下洗气流-直升机,滑流-螺旋桨推进器),可以看作是每一小段螺旋桨翼型前飞所产生下洗气流的综合效果。
螺旋桨叶的拉力随转速的变化过程如下:由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
螺旋桨的定义及其效率计算
螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
螺旋桨的定义及其效率计算
螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
螺旋桨的定义及其效率计算
螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1 和r2(r1 <r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD 和升力ΔL ,见图1—1—19 ,合成后总空气动力为ΔR。
ΔR 沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P) 和效率(η)可用下列公式计算:T=Ct ρn2D4P=Cp ρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct 和Cp 取决于螺旋桨的几何参数,对每个螺旋桨其值随J 变化。
图1—1—21 称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
飞机螺旋桨推力计算公式 -回复
很高兴接到你的任务,我会尽力撰写一篇优质的文章来帮助你更好地理解飞机螺旋桨推力计算公式。
我会根据你提供的内容和主题进行全面评估,然后按照由浅入深的方式来探讨这个主题,以便你能更深入地理解。
在文章中,我会多次提及飞机螺旋桨推力计算公式,并包含总结和回顾性的内容,以便你全面、深刻和灵活地理解这个概念。
接下来,我会开始写作,然后共享我的个人观点和理解,希望能够帮助你更好地掌握这个主题。
1. 飞机螺旋桨推力计算公式飞机螺旋桨推力是飞机发动机产生的推力,它足以克服飞机的阻力并使其飞行。
根据牛顿定律,推力可以通过以下公式进行计算:推力 = 飞机速度 * 飞机阻力其中,飞机速度是指飞机在空气中前进的速度,飞机阻力是指在飞行过程中飞机所受到的阻力。
推力的计算公式需要考虑到多个因素,包括飞机的质量、空气密度、飞机速度、螺旋桨叶片的旋转速度等。
2. 飞机速度和螺旋桨推力飞机速度是计算推力时的重要参数,它直接影响飞机的动力性能。
在飞机设计中,工程师通常会根据飞机的使用需求和性能要求来确定最佳的飞行速度。
螺旋桨推力与飞机速度之间存在一定的关系,一般来说,飞机速度越大,螺旋桨产生的推力也会相应增加。
3. 飞机阻力与推力平衡飞机在飞行过程中受到的阻力包括气动阻力、重力阻力、推力和升力等因素的影响。
飞机螺旋桨推力的计算需要考虑到这些阻力因素,并通过合理的设计和调整来实现推力与阻力的平衡。
只有在推力和阻力平衡的情况下,飞机才能保持稳定的飞行状态。
4. 个人观点和理解在我看来,飞机螺旋桨推力计算公式是飞机设计和航空工程中的重要内容,它涉及到飞机的动力性能与运行安全。
理解和掌握这个公式对于航空专业人士来说是至关重要的,因为它直接关系到飞机的飞行稳定性和安全性。
通过深入学习和研究这个公式,我们可以更好地理解飞机的动力学原理,为飞机设计和飞行操作提供有力的支持。
在飞机设计和运行过程中,我们需要综合考虑飞机速度、阻力、推力等因素,通过合理的计算和调整来实现飞机的优化性能。
螺旋桨推力计算公式
螺旋桨推力计算公式
螺旋桨推力计算公式即为计算航空飞机螺旋桨推力的数学公式,也是航空工程中的基本理论之一。
其公式如下:
推力 = [(2 x PI x 螺旋桨半径) x (螺旋桨转速²)] ÷ 推进效率
其中, PI为圆周率,螺旋桨半径表示螺旋桨转动时其叶片边缘到转动轴的距离,螺旋桨转速表示螺旋桨每分钟旋转的圈数,推进效率是指螺旋桨输出动力的效率,通常在0.6~0.8之间变化。
该公式能够通过螺旋桨的基本参数,如半径、转速等,以及推进效率来计算螺旋桨所产生的推力。
而推力的大小直接影响着飞机的速度、飞行高度等因素。
因此,在航空工程领域中,推力计算是非常重要的一个计算环节。
螺旋桨的定义及其效率计算
螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
固定翼计算公式
固定翼计算公式⼀、发动机与螺旋桨1.飞机最⼤起飞重量W(公⽄)=发动机最⼤功率(千⽡)×10. 82.螺旋桨转速R(转/分钟)×螺旋桨直径D(⽶)=32503.螺旋桨转速R(转/分钟)=170÷(D直径×3.14÷60)4.螺旋桨直径D(⽶)=170÷转速(转/分钟)÷0.0523注:*桨尖线速度=50%⾳速5.螺旋桨的静拉⼒(kg)=直径3(⽶)×转速2(千转/分钟)×螺距(⽶)×6.86.推重⽐=(空⽓密度×翼⾯积(平⽶)×最⼤速度2(m/s)×阻⼒系数)÷(19.6×翼载)⼆、荷载与翼⾯积7.功载=总重(公⽄)W÷功率(千⽡)P8.翼载=总重(公⽄)W÷翼⾯积(平⽶)9.升⼒(n)F=1/2空⽓密度×翼⾯积(平⽶)×速度2(m/s)×升⼒系数10.翼⾯积S=总重×2÷(空⽓密度×速度2×升⼒系数))11.副翼⾯积S副(m2)=10%翼⾯积(m2)12.尾⼒臂(重⼼到舵轴)L(⽶)=2.5×弦(⽶).13.尾容量V=【L尾⼒臂(⽶)×S垂】÷【b翼展(⽶)×S翼⾯积(平⽶)】14.垂尾总⾯积S垂(m2) =(0.04×b翼展×S翼⾯积)÷L尾⼒臂(⽶)15.平尾总⾯积S平(m2) =(翼展÷尾⼒臂)×弦2×0.5注:*如果尾翼⾯积太⼤,可以通过加长L来调整。
翼载与失速速度参考值:翼载(kg/m2)5 10 15 20 25 30 35 40 45 50薄翼型(km/h)32 37 45 51 57 62 69 72 77 83厚翼型(km/h)28 32 38 45 51 55 58 62 68 74三、性能与配平16.失速速度(km/h)=10.15×【翼载÷因素系数】开平⽅17.最⼤速度(km/h)=84.5×【翼载÷功载】开⽴⽅18.机翼展弦⽐(AR)=翼展÷平均弦=翼展2÷翼⾯积19.静稳定余度=俯仰⼒矩系数÷升⼒系数20.配平公式1:前重=后⼒臂÷总⼒臂×总重后重=前⼒臂÷总⼒臂×总重21.配平公式2 :前各点重量×到重⼼点距离=后各点重量×到重⼼点距离。
关于螺旋桨的一些知识
螺旋桨有效功率与发动机输出功率之比,叫螺旋桨效率。
航空模型入门必读
请版主置顶,我一有时间就慢慢写哈.开始一定有点乱,慢慢整理。
由于本人只对固定翼比较熟悉,只是想用此贴让一批初入模道者尽快成魔。
若有漏洞和错误,请老鸟跟贴补充和更正。
缺点:难安装、要收费。(有破解的方法哦 ,见下面软件的安装部分)
(3)Aerofly
优点:象真度高
练习:中高级模友
缺点:要米米,目前我还没发现破解
2、 软件的安装
在这儿有点多,都是精品:
/bbs/forumdisplay.php?fid=16&filter=digest
关于螺旋桨的一些知识(转)
螺旋桨
一、工作原理
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气 流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。
(3)电池插头
/bbs/viewthread.php?tid=129114&highlight=%B7%D6%C0%E0
(4)遥控器
/bbs/viewthread.php?tid=40945&highlight=%B7%D6%C0%E0
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后 总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉 力和阻止螺旋桨转动的力矩。
螺旋桨拉力计算公式
螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。
在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。
对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。
滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。
如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。
旋螺桨作用力计算公式
旋螺桨作用力计算公式旋螺桨是一种常见的推进器,它通过旋转产生推进力,用于推动船只或飞机等交通工具。
在工程设计和运行过程中,了解旋螺桨的作用力计算公式是非常重要的。
本文将介绍旋螺桨作用力的计算公式及其相关知识。
旋螺桨作用力的计算公式可以通过流体力学的理论推导得到。
在流体力学中,旋螺桨的推进力可以通过螺旋桨的推进效率和流体动力学的基本原理来计算。
一般而言,旋螺桨的推进力可以通过以下公式来计算:F = ρ n^2 D^4 P。
其中,F表示旋螺桨的推进力,ρ表示流体的密度,n表示旋螺桨的转速,D表示旋螺桨的直径,P表示旋螺桨的推进效率。
从上述公式可以看出,旋螺桨的推进力与流体的密度、旋螺桨的转速、直径以及推进效率有关。
下面将分别介绍这些参数对旋螺桨推进力的影响。
首先是流体的密度。
流体的密度是旋螺桨推进力计算中的重要参数,它决定了流体对旋螺桨的阻力大小。
一般而言,流体的密度越大,旋螺桨所受到的阻力也越大,从而推进力也会增加。
其次是旋螺桨的转速。
旋螺桨的转速直接影响着推进力的大小。
一般而言,旋螺桨的转速越大,推进力也会越大。
因此,在设计旋螺桨时,需要根据具体的使用需求来确定旋螺桨的转速。
再次是旋螺桨的直径。
旋螺桨的直径也是影响推进力的重要参数。
一般而言,旋螺桨的直径越大,推进力也会越大。
因此,在设计旋螺桨时,需要根据船只或飞机的尺寸和使用需求来确定旋螺桨的直径。
最后是旋螺桨的推进效率。
旋螺桨的推进效率是指旋螺桨在推进过程中所产生的推进力与输入功率之比。
一般而言,推进效率越高,旋螺桨的推进力也会越大。
因此,在设计旋螺桨时,需要考虑如何提高旋螺桨的推进效率,以获得更大的推进力。
除了上述参数外,旋螺桨的推进力还受到流体的粘性、旋螺桨的形状和旋螺桨与船体或飞机的配合等因素的影响。
因此,在实际工程设计中,需要综合考虑这些因素,以确定旋螺桨的最佳设计参数。
在实际应用中,旋螺桨的推进力计算公式可以帮助工程师和设计师更好地设计和选择旋螺桨,以满足不同交通工具的推进需求。
螺旋桨拉力计算式
螺旋桨拉力计算式————————————————————————————————作者:————————————————————————————————日期:螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。
在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。
对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。
滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。
模型飞机螺旋桨原理与拉力计算
模型飞机螺旋桨原理与拉力计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
螺旋桨计算公式
直升机螺旋桨升力计算公式直升机螺旋桨升力计算公式一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。
也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。
1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。
有一定的弹性,不转时,桨叶略有下垂弯曲。
当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。
打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样,空中飞舞。
2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨)旋转产生的升力并操纵其大小和方向来实现的。
升力大于重量时,就上升,反之,就下降。
平衡时,就悬停在空中。
直升机的升力大小,不但决定于旋翼的转速,而且决定于旋翼的安装角(又称桨叶角)。
升力随着转速.桨叶角的增大而增大;随着转速.桨叶角的减小而减小。
直升机在飞行时,桨叶在转每一圈的过程中,桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。
这才使直升机能够前.后仰,左.右倾,完成各种姿态。
直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。
不管天空有风无风,直升机要稳定飞行,不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。
总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。
1,直接影响螺旋桨性能的主要参数有:a.直径D——相接于螺旋桨叶尖的圆的直径。
通常,直径越大,效率越高,但直径往往受到吃水和输出转速等的限制;b.桨叶数N;c.转速n——每分钟螺旋桨的转数;d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距;e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比;f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小;g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。
在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。
对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。
滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。
如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。
这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。
螺旋桨拉力计算公式(静态拉力估算)你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50²×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100²×1×0.00025=125公斤展弦比:展弦比即机翼翼展和平均几何弦之比,常用以下公式表示:λ=l/b=l^2/S这里l为机翼展长,b为几何弦长,S为机翼面积。
因此它也可以表述成翼展(机翼的长度)的平方除以机翼面积,如圆形机翼就是直径的平方除以圆面积,用以表现机翼相对的展张程度。
从空气动力学基础理论来说!展弦比越大,诱导阻力会越小,升阻比会提高。
但同时,较大的展弦比会降低飞机的机动能力,因为较大的展弦比会使诱导阻力减小,但同时使翼面切向阻力加大。
飞机维持平飞时稳定性极好,但一旦需要机动,则翼载和阻力都很大。
加速性和超音速性能都很差。
相反,随着后掠角的加大,展弦比会呈现一次函数线性衰减,此时诱导阻力增加,升阻比降低,但飞机在超音速飞行时的性能明显改善,机动性也提高。
所以,对于要求长航程,稳定飞行的飞机而言,需要大展弦比设计。
而战斗机多采用小展弦比设计。
例如:B-52轰炸机展弦比为6.5,U-2侦察机展弦比10.6,全球鹰无人机展弦比更是高达25;而小航程、高机动性飞机,如歼-8展弦比为2,Su-27展弦比为3.5,F-117展弦比为1.65。
低速飞机设计的关键一是加大升力面积二是减轻重量,通过降低翼载荷实现低速。
加大翼展可获得大升力面积但从结构强度考虑将大大增加重量,而仅仅通过加大翼弦获得大升力面积时整体重量增加较少,所以低速飞机展弦比不宜太大,建议要想以3米/秒或4米/秒飞行的展弦比为4--5,而一般的滑翔机准备以8--10米/秒飞行不太计较重量的话展弦比可做到10以上。
这仅是我个人很局限的看法,希望有百家争鸣。
大展弦比表明机翼比较长且窄,小展弦比则表明机翼比较短且宽短而宽的机翼(低展弦比)诱导阻力较大,适合高速物体而低速的滑翔机或是长时间、高高度滞空的则多采高展弦比以降低诱导阻力比如需要长时间飞行的信天翁,翅膀展弦比高,而如隼或老鹰等需要掠食的鸟类,攻击或向下俯冲时收回翅膀以求高速、灵活如果机翼面积相同,在相同条件下展弦比大的机翼产生的升力也大,因而能减小飞机的起飞和降落滑跑距离和提高机动性气动布局:气动布局同飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。
关系到飞机的飞行特征及性能。
故将飞机外部总体形态布局与位置安排称作气动布局。
简单地说,气动布局就是指飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。
气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。
飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。
现代作战飞机的气动布局有很多种,主要有常规布局、鸭式布局、无尾布局、三翼面布局和飞翼布局等。
这些布局都有各自的特殊性及优缺点。
鸭式布局:鸭式布局,是一种十分适合于超音速空战的气动布局。
早在二战前,前苏联已经发现如果将水平尾翼移到主翼之前的机头两侧,就可以用较小的翼面来达到同样的操纵效能,而且前翼和机翼可以同时产生升力,而不像水平尾翼那样,平衡俯仰力矩多数情况下会产生负升力。
在大迎角状态下,鸭翼只需要减少产生升力即可产生低头力矩(称为卸载控制面),从而有效保证大迎角下抑制过度抬头的可控性。
早期的鸭式布局飞起来像一只鸭子,“鸭式布局”由此得名。
采用鸭式布局的飞机的前翼称为“鸭翼”。
战机的鸭翼有两种,一种是不能操纵的,其功能是当飞机处在大迎角状态时加强机翼的前缘涡流,改善飞机大迎角状态的性能,也利于飞机的短距起降。
真正有可操纵鸭翼的战机目前有欧洲的EF-2000(台风)、法国的“阵风”、瑞典的JAS-39等,还有如今我国最先进的三代歼击机歼-10,以及我国最新研制的歼-20。
这些飞机的鸭翼除了用以产生涡流外,还用于改善跨音速过程中安定性骤降的问题,同时也可减少配平阻力、有利于超音速空战。
在降落时,鸭翼还可偏转一个很大的负角,起减速板的作用。
但是鸭式布局一定程度上会牺牲隐身性能,因此美国追求的极致隐身就让美国放弃了加强机动格斗性能优异的鸭式布局,所以我们看到美国的新一代战机F-22与F-35都没有使用鸭式布局。
俄罗斯的最新一代T-50也没使用鸭式布局,而唯有中国在4代战机上大胆尝试,孰优孰劣,还要通过实战考验。
无尾布局:无平尾、无垂尾和飞翼布局也可以统称为无尾布局。
对于无平尾布局,其基本优点为超音速阻力小和飞机重量较轻,但其起降性能及其它一些性能不佳,总之以常规观点而言,无尾布局不能算是一种理想的选择。
然而,随着隐身成为现代军用飞机的主要要求之一以及新一代战斗机对超音速巡航能力的要求,使得无尾——特别是无垂尾形式的战斗机方案越来越受到更多的重视。
对于一架战斗机而言,实现无尾布局将带来诸多优点。
首先是飞机重量显著减少;其次,因为取消尾部使全机质量更趋合理地沿机翼翼展分布,从而可以减小机翼弯曲载荷,使结构重量进一步减轻;另外,尾翼的取消可以明显减小飞机的气动阻力,同常规布局相比,其型阻可减小60%以上;不言而喻,取消尾翼之后将使飞机的目标特征尺寸大为减小,隐身性能得到极大提高;最后尾翼的取消同时减少了操纵面、作动器和液压系统,从而也改善了维修性和具有了更低的全寿命周期成本。
在有垂尾的常规飞机上,垂尾的作用是提供偏航/滚转稳定性,尤其是偏航稳定性,此外垂尾的方向舵还参与飞机的偏航控制。
取消垂尾之后,飞机将变为航向静不稳定,同时丧失偏航控制能力。
采用放宽静稳技术之后,无垂尾飞机可以是航向静不稳的,但不能是不可控的。
针对这一问题可以采用推力矢量技术加以解决。
推力矢量技术作为新一代战斗机高机动性的主要动力目前已经得到了较为完善的发展,大量实验都证明,在无垂尾的情况下,推力矢量具有足够有效的操纵功能。
一个不容忽视的问题是,推力矢量系统发生故障或者在作战中受伤后飞机如何操纵。
在最低的要求下,推力矢量系统失效后飞机至少还应具有安全返航的能力,因此无垂尾飞机的平飞、不太剧烈的转弯机动以及着陆所需的偏航控制能力应该能够由气动力控制来满足。
作为无尾飞机的余度保险操纵方式之一的是与传统机翼设计方法完全不同的所谓“主动气动弹性机翼”(AAW)。
在传统机翼设计中,一般都要保证刚度以使机翼变形最小,而AAW利用机翼的柔度作为一种对飞机进行操纵的方式,它通过使整个机翼发生一定的变形而得到操纵飞机所需的气动力。
通常规舵面相比,AAW具有效率高而翼面变形小的特点。
除了AAW技术之外,还有其它一些传统非传统的气动操纵方式也可以推力矢量系统的余度保险和补充。
它们包括开裂式副翼、机翼扰流板、全动翼梢、差动前翼、非对称机头边条、扰流片-开缝-折流板(SSD)、前缘襟翼等等。
无论是采用AAW还是采用气动操纵面的方式,无尾飞机都需要有全新的飞行控制律。
无尾飞机在纵向和航向都将是静不稳定的,这就要求飞机上的各类操纵装置共同协作产生所需的各种力和力矩,各操纵装置还将存在各种线性或非线性的相互干扰,使得控制律变得相当复杂。
此外在部分操纵装置失效的情况下,剩下的操纵装置需要实时重新构型,并且需要实时地采用新的控制律,即所谓“重构系统”。
这些都是无尾飞机设计中需要加以解决的问题。
三翼面:在常规布局的飞机主翼前机身两侧增加一对鸭翼的布局称为“三翼面布局”。
三翼面布局形式可以说最早出现在六十年代初,米高扬设计局由米格-21改型而得的Е-6Т3和Е-8试验机。
三翼面的采用使得飞机机动性得到提高,而且宜于实现直接力控制达到对飞行轨迹的精确控制,同时使飞机在载荷分配上也更趋合理。
俄罗斯的苏-34、苏-37和苏-47都采用这种布局。
美国在F-18上也试过这种布局,但没有发展为生产型号。
三翼面布局的前翼所起的作用与鸭式布局的前翼相同,使飞机跨音速和超音速飞行时的机动性较好。
但目前这种布局的飞机大多是用常规布局的飞机改装成的。
三翼面布局的缺点是增加了鸭翼,阻力和重量自然也会增大,电传操纵系统也会复杂一些。
不过这种布局对改进常规布局战机的机动性会有较好的效果。
飞翼布局:早在二战期间,美国和德国就开始研究这种布局的飞机。
现代采用飞翼布局的最新式飞机,就是大名鼎鼎的美国B-2隐型轰炸机。
由于飞翼布局没有水平尾翼,连垂直尾翼都没有,只是像一片飘在天空中的树叶,所以其雷达反射波很弱,据说B-2在雷达上的反射面积只有同类大小飞机的百分之一。
过去,飞机没有电传操纵系统,也没有计算机帮助飞机员操纵飞机,因此,飞翼式飞机的飞行控制问题一直难以解决。