计算机图形学Bresenham算法
中点bresenham算法过程
中点Bresenham算法是一种用于计算在直线上的格点的算法。
它是由Bresenham在1965年提出的,是一种高效的计算机图形学算法,通常用于直线、圆、椭圆等形状的绘制。
通过这篇文章,我们将详细介绍中点Bresenham算法的过程。
1. 背景知识在计算机图形学中,我们经常需要在屏幕上绘制直线、圆、椭圆等形状。
而计算机屏幕上的图像是由像素组成的,因此我们需要一种算法来计算出这些形状上的像素坐标,从而进行绘制。
中点Bresenham算法就是用来解决这个问题的。
2. 中点Bresenham算法的原理中点Bresenham算法的原理是通过巧妙的数学推导,找到离直线最近的像素点,从而确定需要绘制的像素坐标。
该算法通过利用误差项来判断下一个像素点的位置,具有高效、简洁的特点。
3. 中点Bresenham算法的过程中点Bresenham算法的过程可以分为以下几个步骤:3.1 初始化变量:首先需要确定直线的起点和终点,并初始化相关变量,如起点坐标(x0, y0)、终点坐标(x1, y1)、误差项d和增量变化量dx、dy等。
3.2 计算斜率k和误差项初始值:通过计算直线的斜率k,并根据斜率确定误差项的初始值。
3.3 循环计算像素点的坐标:根据误差项的大小,确定下一个像素点的位置,并更新误差项的值,直到绘制完整条直线。
4. 中点Bresenham算法的优势* 算法简洁高效:中点Bresenham算法通过简单的数学计算,即可确定直线上的像素坐标,避免了直接计算斜率导致的浮点数运算,因此在计算速度上具有较大优势。
* 适用范围广泛:中点Bresenham算法不仅适用于直线,还可以用于绘制圆、椭圆等图形,具有良好的通用性。
5. 中点Bresenham算法的应用中点Bresenham算法广泛应用于计算机图形学中的直线、圆、椭圆等图形的绘制。
其高效、简洁的特点使得它成为了计算机图形学中不可或缺的算法之一。
中点Bresenham算法是计算机图形学中的重要算法之一,通过巧妙的数学计算,实现了高效、简洁的直线绘制。
任意斜率bresenham算法
任意斜率bresenham算法Bresenham算法是一种经典的计算机图形学算法,用于在计算机屏幕上绘制直线。
它的主要特点是高效快速,并且不需要浮点数运算。
本文将介绍任意斜率下的Bresenham算法原理及实现方法。
一、原理介绍Bresenham算法的核心思想是利用整数计算代替浮点数计算,从而提高计算速度。
算法的基本原理是通过在直线路径上的每个像素点处做决策,选择最接近直线路径的像素点来绘制线段。
二、实现步骤1. 输入起点坐标(x0, y0)和终点坐标(x1, y1);2. 计算斜率的绝对值的倒数:dx = x1 - x0,dy = y1 - y0,abs(dx) > abs(dy)时,倒数为1/abs(dx),否则为1/abs(dy);3. 初始化误差项:e = -1/2;4. 初始化绘制点坐标:x = x0,y = y0;5. 进行循环,直到绘制到终点坐标:- 绘制当前点(x, y);- 更新误差项:e = e + abs(dy/dx);- 若误差项大于等于1,则纵坐标y加1,并更新误差项:e = e - 1;- 横坐标x加1;6. 绘制终点坐标。
三、代码实现下面是使用C语言实现任意斜率Bresenham算法的代码示例:```c#include <stdio.h>void drawLine(int x0, int y0, int x1, int y1) {int dx = x1 - x0;int dy = y1 - y0;int stepx = (dx > 0) ? 1 : -1;int stepy = (dy > 0) ? 1 : -1;dx = abs(dx);dy = abs(dy);int e = 0;int x = x0;int y = y0;if (dx > dy) {for (int i = 0; i <= dx; i++) {// 绘制当前点(x, y)if (e >= 0) {y += stepy;e -= dx;}x += stepx;e += dy;}} else {for (int i = 0; i <= dy; i++) { // 绘制当前点(x, y)if (e >= 0) {x += stepx;e -= dy;}y += stepy;e += dx;}}}int main() {int x0 = 0, y0 = 0;int x1 = 10, y1 = 5;drawLine(x0, y0, x1, y1);return 0;}```四、实例分析以起点坐标(0, 0)和终点坐标(10, 5)为例,通过Bresenham算法计算得到的直线路径如下图所示:```(0,0) (1,0) (2,1) (3,1) (4,2) (5,2) (6,3) (7,3) (8,4) (9,4) (10,5)```五、总结Bresenham算法是一种高效快速绘制直线的算法,通过利用整数计算代替浮点数计算,避免了浮点数运算的开销。
bresenham圆生成算法
bresenham圆生成算法Bresenham圆生成算法是一种经典的计算机图形学算法,用于在计算机屏幕上绘制圆形。
该算法是由美国计算机科学家Jack E. Bresenham于1965年发明的。
这个算法非常简单,但是它却非常有效,因为它只需要使用整数运算。
Bresenham圆生成算法的基本思想是使用一个叫做“决策参数”的变量来决定下一个像素点的位置。
该变量根据当前像素点到圆心的距离和半径之间的差异进行调整。
如果该差异小于0,则移动到右上方的像素点;否则,移动到右上方和正上方之间的像素点。
具体来说,Bresenham圆生成算法可以通过以下步骤来实现:1. 输入圆心坐标和半径。
2. 初始化x和y坐标为0,并计算出初始决策参数d=3-2r。
3. 在每个步骤中,检查当前像素点是否在圆内。
如果是,则将该像素点绘制出来;否则,不绘制。
4. 计算下一个像素点的位置。
如果d小于0,则移动到右上方;否则,移动到右上方和正上方之间。
5. 更新决策参数d。
Bresenham圆生成算法的优点是它非常快速和有效。
它只需要使用整数运算,因此可以在计算机上非常快速地执行。
此外,该算法还可以轻松地扩展到三维空间中的球体和其他形状。
尽管Bresenham圆生成算法已经有几十年的历史了,但它仍然是计算机图形学中最常用的算法之一。
它被广泛应用于游戏开发、计算机辅助设计、虚拟现实等领域。
此外,该算法还被用于许多其他领域,如数字信号处理和图像处理。
总之,Bresenham圆生成算法是一种简单而有效的计算机图形学算法。
它可以快速地绘制出圆形,并且可以轻松地扩展到其他形状。
尽管这个算法已经有几十年的历史了,但它仍然是计算机图形学中最常用的算法之一,并且在许多其他领域也得到了广泛应用。
bresenham算法实现直线段插值函数
在计算机图形学中,Bresenham算法是一种用于在离散坐标系上绘制直线段的算法。
它是一种高效的算法,能够准确地计算出直线段上的所有像素点,使得在计算机屏幕上显示出直线段来。
Bresenham算法的实现可以帮助我们更好地理解画线原理,并且在计算机视觉、图像处理等领域有着广泛的应用。
1. Bresenham算法的原理Bresenham算法是通过计算直线段的斜率来确定每个像素点的位置。
具体来说,它利用了直线的对称性和整数的特性,通过计算像素点与真实直线的距离来判断下一个像素点应该取的位置。
这样可以避免使用浮点运算,使得算法更加高效。
2. 实现Bresenham算法的关键步骤在实现Bresenham算法时,需要考虑以下几个关键步骤:- 初始化各个变量,包括起始点(x0, y0)和终点(x1, y1),以及斜率的计算值,例如dx和dy。
- 根据斜率的正负情况,确定每个像素点的增量步长,以便在遍历过程中准确计算出像素点来。
- 利用对称性和整数特性,进行迭代计算,逐步确定直线段上的所有像素点的位置。
3. Bresenham算法的优缺点Bresenham算法作为一种离散直线段插值算法,具有以下几个优点:- 算法简单高效,节省存储空间和运算时间。
- 可以高效地解决像素化显示问题,避免了浮点运算的复杂性。
- 在硬件上实现时,只需少量的资源就能完成计算,适合嵌入式系统和图形处理器。
然而,Bresenham算法也存在一些缺点,比如对于曲线的绘制就不太奏效,因为它是基于直线段的形式来处理的。
4. 我对Bresenham算法的理解在我看来,Bresenham算法是一种经典的离散直线段插值算法,其思想简洁高效。
它通过逐步迭代的方式,计算出直线段上的所有像素点位置,使得在计算机屏幕上显示出直线段来更加精确。
这种算法的实现可以帮助我们更好地理解画线的原理,对于理解计算机图形学和计算机视觉都有着重要的意义。
总结起来,Bresenham算法作为一种高效的离散直线段插值算法,具有着重要的理论和实际价值。
计算机图形学实验数值微分(DDA)法中点画线法Bresenham算法
计算机图形学实验数值微分(DDA)法中点画线法Bresenham算法实验名称数值微分(DDA)法、中点画线法、Breenham算法实验时间年月日专业姓名学号预习操作座位号教师签名总评一、实验目的:1.了解数值微分(DDA)法、中点画线法、Breenham算法的基本思想;2.掌握数值微分(DDA)法、中点画线法、Breenham算法的基本步骤;二、实验原理:1.数值微分(DDA)法y1y0k已知过端点P00,y(某的直线段L:y=k某+b,直线斜率为(某0),P11,y1)某1某0某从某的左端点0开始,向某右端点步进。
步长=1(个象素),计算相应的y坐标y=k某+b;取象素点(某,round(y))作为当前点的坐标。
2.中点画线法当前象素点为(某p,yp)下一个象素点为P1或P2设M=(某p+1,yp+0.5),为p1与p2之中点,Q为理想直线与某=某p+1垂线的交点。
将Q与M的y坐标进行比较。
当M在Q的下方,则P2应为下一个象素点;当M在Q的上方,应取P1为下一点。
构造判别式:d=F(M)=F(某p+1,yp+0.5)=a(某p+1)+b(yp+0.5)+c,其中a=y0-y1,b=某1-某0,c=某0y1-某1y0。
当d<0,M在L(Q点)下方,取右上方P2为下一个象素;当d>0,M在L(Q点)上方,取右方P1为下一个象素;当d=0,选P1或P2均可,约定取P1为下一个象素;但这样做,每一个象素的计算量是4个加法,两个乘法。
d是某p,yp的线性函数,因此可采用增量计算,提高运算效率。
若当前象素处于d0情况,则取正右方象素P1(某p+1,yp),要判下一个象素位置,应计算d1=F(某p+2,yp+0.5)=a(某p+2)+b(yp+0.5)=d+a;增量为a。
若d<0时,则取右上方象素P2(某p+1,yp+1)。
要判断再下一象素,则要计算d2=F(某p+2,yp+1.5)=a(某p+2)+b(yp+1.5)+c=d+a+b;增量为a+b。
bresenham算法画直线例题
Bresenham算法是计算机图形学中常用的一种画直线的算法。
它的原理是利用像素点在屏幕上的排列规律,从而高效地计算出直线上的像素点。
本文将以一个具体的例题来说明Bresenham算法的原理及应用。
1. 问题描述假设我们需要在一个分辨率为800x600的屏幕上,画一条直线,起点坐标为(100, 200),终点坐标为(400, 300)。
请使用Bresenham算法计算直线上的像素点,并用符号“*”表示出来。
2. Bresenham算法原理Bresenham算法的核心思想是利用像素点的整数坐标值与直线的斜率之间的关系,从而逐个确定直线上的像素点。
具体步骤如下:- 计算直线的斜率k,即k = (y2 - y1) / (x2 - x1),其中(x1, y1)为起点坐标,(x2, y2)为终点坐标。
- 以起点坐标作为初始值,从左至右依次求解直线上各点像素的坐标。
- 对于每一个x坐标,根据斜率k的大小确定y坐标的增长方向。
3. Bresenham算法应用根据上述原理,我们来解决具体的例题。
计算直线的斜率k:k = (300 - 200) / (400 - 100) = 1/3以起点坐标(100, 200)作为初始值,从左至右依次求解直线上各点像素的坐标。
当x坐标从100递增至400时,y坐标的增长方向由斜率k来确定。
具体计算如下:- 当x=100时,y=200- 当x=101时,y=200+1/3≈200- 当x=102时,y=200+2/3≈201- ...- 当x=400时,y=300现在,我们可以得到直线上的像素点坐标,并用符号“*”表示出来。
4. 结果展示根据上述计算,我们可以得到该直线上的像素点坐标,展示如下:(100, 200) *(101, 200) *(102, 201) *...(400, 300) *通过Bresenham算法,我们成功地计算出了直线上的像素点,并用符号“*”进行了展示。
中点bresenham算法过程描述
中点Bresenham算法是一种在计算机图形学中用于绘制直线的算法。
它是由Bresenham在1965年提出的,经过研究和改良后,成为一种非常高效的直线绘制算法。
1. 算法描述中点Bresenham算法的基本思想是利用线的对称性来进行计算,通过计算线上的各个像素点与理想直线的距离来确定下一个要绘制的像素点,从而高效地绘制直线。
2. 算法过程具体来说,中点Bresenham算法的计算过程如下:1) 首先确定直线的起点(x0, y0)和终点(x1, y1),并计算直线的斜率k = (y1 - y0) / (x1 - x0)。
2) 然后计算直线的斜率误差delta = |k| - 0.5。
3) 初始化绘制像素点的坐标(x, y),初始误差值为0。
4) 对于直线斜率绝对值小于1的情况:a) 如果斜率k大于0,则初始误差值为0.5,否则为-0.5。
b) 从x0到x1的范围内,依次计算每个像素点的y坐标,并根据误差值确定下一个像素点的位置,并更新误差值。
c) 如果误差值大于0,表示下一个像素点在直线的下边,否则在上边。
5) 对于直线斜率绝对值大于1的情况,可以通过将直线绘制区域进行旋转并交换x和y坐标来处理。
6) 最终绘制直线时,可以根据具体的应用场景选择存储像素点的方式,比如直接在屏幕上绘制,或者存储在像素数组中后再一次性绘制等。
3. 算法优势中点Bresenham算法相对于其他直线绘制算法的优势在于:它避免了复杂的浮点数计算,减少了计算量,提高了绘制的效率。
尤其在早期计算机硬件性能有限的情况下,该算法表现出了明显的优势,成为了广泛使用的直线绘制算法。
4. 算法应用中点Bresenham算法不仅仅局限于直线的绘制,它还可以应用于其他图形的绘制,比如圆、椭圆、矩形等。
在计算机图形学和图像处理领域,Bresenham算法及其改进版本被广泛应用于各种图形的绘制和处理中。
5. 算法总结中点Bresenham算法是一种非常经典且高效的直线绘制算法,它通过简单的整数运算和位操作实现了高效的直线绘制,成为了计算机图形学中不可或缺的重要工具之一。
Bresenham算法
Bresenham算法1 算法原理基本原理从某处摘得:设直线⽅程为y i+1=y i+k(x i+1-x i)+k。
假设列坐标象素已经确定为x i,其⾏坐标为y i。
那么下⼀个象素的列坐标为x i+1,⽽⾏坐标要么为y i,要么递增1为y i+1。
是否增1取决于误差项d的值。
误差项d的初值d0=0,x坐标每增加1,d的值相应递增直线的斜率值k,即d=d+k。
⼀旦d≥1,就把它减去1,这样保证d在0、1之间。
当d≥0.5时,直线与垂线x=x i+1交点最接近于当前象素(x i,y i)的右上⽅象素(x i+1,y i+1);⽽当d<0.5时,更接近于右⽅象素(x i+1,y i)。
为⽅便计算,令e=d-0.5,e的初值为-0.5,增量为k。
当e≥0时,取当前象素(x i,y i)的右上⽅象素(x i+1,y i+1);⽽当e<0时,取(x i,y i)右⽅象素(x i+1,y i)。
由于显⽰直线的像素点只能取整数值坐标,可以假设直线上第i个像素点的坐标为(X i,Y i),它是直线上点(X i,Y i)最佳近似,并且X i=X i(假设m<1),如下图所⽰.那么直线上下⼀个像素点的可能位置是(X i+1,Y i)或者(X i+1,Y i+1).由图可知:在x=X i+1处,直线上的点y的值是:y=m(X i+1)+b,该点离像素点(X i+1,Y i)和像素点(X i+1,Y i+1)的距离分别为d1和d2。
d1 = Y - Y i = m(X i+1)+b - Y i; (1) d2 = (Y i+1) - Y = (Y i+1) - m(X i+1) - b; (2) 两个距离的差是: d1-d2 = 2m(X i+1) - 2Y i + 2b -1; (3) 对于公式(3): a:当此值为正时,d1>d2,说明直线上理论点离(X i+1,Y i+1)像素较近,下⼀个像素点应取(X i+1,Y i+1); b:当此值为负时,d1<d2,说明直线上理论点离(X i+1,Y i)像素较近,下⼀个像素点赢取(X i+1,Y i); c:当此值为零时,d1=d2,说明直线上理论点离上、下两个像素点的距离相等,取那个点都⾏,假设算法规定这种情况下取(X i+1,Y i+1)作为下⼀个像素点。
计算机图形学实验Bresenham算法
{
double tx=x0;
double ty=y0;
x0=x1;y0=y1;
x1=tx;
y1=ty;
}
x=x0;y=y0;
d=1-0.5*k;
for(y=y0;y<=y1;y++)
{
dc.SetPixel(ROUND(x),ROUND(y),rgb);
if(d>=0)
{
x++;
d+=1-k;
double ty=y0;
x0=x1;y0=y1;
x1=tx;
y1=ty;
}
x=x0;y=y0;
d=0.5-k;
for(x=x0;x<=x1;x++)
{
dc.SetPixel(ROUND(x),ROUND(y),rgb);
if(d<0){y++;d+=1-k;
}
else
d-=k;
}
}
if(k>1)
{
使用对话框输入直线的起点和终点坐标试以屏幕中心为二维坐标系原点绘制任意斜率的直线段
实验一1-3
一、实验题目
将中点Bresenham算法推广到绘制任意斜率的直线段。使用对话框输入直线的起点和终点坐标,试以屏幕中心为二维坐标系原点,绘制任意斜率的直线段。要求编制CLine类,成员函数为MoveTo()和LineTo()。对边界像素的处理原则是“起点闭区间、终点开区间”,即要求所绘直线达到VC++的MoveTo()和LineTo()函数的绘制效果。
}
}
}
四、程序结果截图
}
else
生成圆的bresenham算法原理描述详细
生成圆的bresenham算法原理描述详细Bresenham算法是计算机图形学中非常重要的算法之一,可以生成各种形状的图像。
其中,生成圆形图像的Bresenham算法也是应用比较广泛的算法之一。
本文将详细描述生成圆的Bresenham算法原理。
1. 圆的数学表示圆是一个几何图形,其数学表示为:x² + y² = r²,其中,x、y是圆上点的坐标,r是圆的半径。
因此,生成圆的Bresenham算法需要计算出符合该数学表示的所有点的坐标。
2. Bresenham算法的核心思想Bresenham算法的核心思想是利用对称性和递推式来快速计算出每个点的坐标。
对于圆而言,其有四分之一的区域可以通过对称性计算出来,而另外四分之三的区域可以通过递推式来得出。
3. 圆的对称性对于圆而言,其具有对称性,即当坐标为(x,y)在圆上时,也必然存在(y,x)、(y,-x)、(x,-y)、(-x,-y)、(-y,-x)、(-y,x)、(-x,y)在圆上的点,也就是说,直接通过圆的对称性可以得到大约四分之一的在圆上的点。
4. 圆的递推式对于圆的另外四分之三的部分,我们可以使用递推式来获得。
根据圆的坐标表示式x² + y² = r²,我们可以得到下届式:x² + y² - r² = 0根据这个方程,可以计算出下一个点的坐标为:x + 1, y 或 x + 1, y - 1如果采用当前点(x,y)的对称点来计算,比如(y,x),那么坐标可以改成:y + 1, x 或 y + 1, x - 1通过这种方式,就可以逐个计算出每个点的坐标了。
5. 算法步骤生成圆的Bresenham算法的步骤如下:1)确定圆的中心点的坐标和半径;2)以圆心为原点建立坐标系,以x轴为基准线向右,y轴向上;3)通过圆的对称性计算出直径上的点的坐标;4)使用递推式计算出剩余的坐标;5)根据得到的坐标渲染圆的边缘。
任意斜率bresenham算法
任意斜率bresenham算法Bresenham算法是一种用于计算线段上像素点的算法,它的特点是具有高效和简单的特点,特别适合在计算机图形学中使用。
它可以根据给定的斜率,通过递增的方式计算出线段上的所有像素点。
本文将详细介绍Bresenham算法的原理和具体实现步骤。
一、Bresenham算法的原理Bresenham算法的核心思想是通过递增的方式计算出线段上的所有像素点,以实现高效的绘制线段的目的。
它基于以下两个关键观察:1. 如果直线斜率大于1,则将直线沿y轴方向递增,否则沿x轴方向递增。
2. 对于每个递增的步骤,根据当前像素点的位置和理想的线段位置之间的距离,选择最接近理想位置的像素点。
二、Bresenham算法的实现步骤Bresenham算法的实现步骤如下:1. 根据起点和终点的坐标,计算出线段的斜率。
如果斜率大于1,则将直线沿y轴方向递增,否则沿x轴方向递增。
2. 根据起点的坐标,计算出第一个像素点的位置,并将其绘制出来。
3. 计算出理想位置和当前像素点位置之间的距离,并记录下来。
4. 根据距离的大小,判断下一个像素点的位置。
如果距离小于等于0.5,则选择当前像素点的下一个位置作为下一个像素点;否则选择当前像素点的下一个位置的上方或右方作为下一个像素点。
5. 重复步骤4,直到绘制到终点的像素点为止。
三、Bresenham算法的优势相比于其他绘制线段的算法,Bresenham算法具有以下优势:1. 算法简单:Bresenham算法只需要进行简单的递增和判断操作,而没有复杂的计算和判断过程。
2. 高效性:Bresenham算法通过选择最接近理想位置的像素点,减少了不必要的计算和绘制,从而提高了绘制线段的效率。
3. 精度高:Bresenham算法通过选择最接近理想位置的像素点,可以实现精确绘制线段,避免了像素点之间的缺失或重叠现象。
四、Bresenham算法的应用领域Bresenham算法在计算机图形学中有着广泛的应用,特别是在线段绘制和扫描转换等方面。
布雷森汉姆直线算法
布雷森汉姆直线算法布雷森汉姆直线算法(Bresenham's Line Algorithm)是一种计算机图形学中常用的直线绘制算法,其通过在离散的像素格上选择最接近实际直线路径的点来实现高效绘制直线的目的。
该算法由Jack Elton Bresenham在1962年首次提出,被广泛应用于图形显示、打印机及数码扫描仪等领域。
布雷森汉姆直线算法的核心思想是利用整数运算来代替浮点运算,从而提高计算效率。
该算法通过仅使用加法、减法和位移等基本运算,不需要乘法运算和浮点数运算,从而适用于资源有限的嵌入式系统和低成本的图形设备。
算法的基本步骤如下:1. 根据起点P1(x1,y1)和终点P2(x2,y2)确定直线斜率k。
2. 如果|k|≤1,则沿x轴方向递增遍历起点P1到终点P2,并在每个像素上绘制。
若k>1,则沿y轴方向递增遍历P1到P2,绘制每个像素。
3. 对于每一步,根据递增的方向选择相应的像素。
4. 根据斜率k来决定误差累积量,调整绘制位置,保证直线的连续性。
该算法的优势在于其简单而高效的原理,使得绘制直线的速度非常快。
与传统的基于浮点运算的算法相比,布雷森汉姆直线算法的计算开销较小,而且能够得到非常接近实际直线路径的结果,几乎没有明显的视觉差异。
这使得该算法在计算资源有限的场景下非常有用,例如在嵌入式系统中,可以利用该算法绘制图形界面的边界、线条等。
然而,布雷森汉姆直线算法也存在一些局限性。
由于只考虑了整数坐标,因此绘制出来的直线可能会有些锯齿状,这在一些高精度要求的场景下可能会表现出明显的视觉噪点。
此外,该算法仅适用于绘制直线,并不能直接应用于曲线、圆等其他形状的绘制。
总之,布雷森汉姆直线算法是一种非常经典和实用的绘制直线的算法。
它通过巧妙地利用整数计算来取代浮点计算,以提高效率和减少计算资源开销。
虽然存在一些局限性,但在大多数场景下,它仍然是一种高效且精确的绘制直线的选择,对于计算机图形学的发展和应用有着重要的指导意义。
bresenham算法计算步骤
bresenham算法计算步骤Bresenham算法是一种经典的线段生成算法,其原理是利用递增的整数计算来逼近直线的路径,从而快速高效地绘制线段。
本文将详细介绍Bresenham算法的计算步骤。
1. 确定起点和终点我们需要确定线段的起点和终点的坐标。
假设起点为(x0, y0),终点为(x1, y1)。
2. 计算斜率接下来,我们需要计算线段的斜率。
斜率可以通过以下公式来计算:m = (y1 - y0) / (x1 - x0)其中m表示斜率。
3. 判断斜率绝对值是否小于1判断斜率的绝对值是否小于1,如果小于1,则说明直线在x方向上变化的幅度更大;反之,如果斜率的绝对值大于等于1,则说明直线在y方向上变化的幅度更大。
4. 计算增量根据斜率的值,我们可以计算出在每个步骤中需要增加的x和y的值。
如果斜率的绝对值小于1,则每次x增加1,y增加斜率m;反之,如果斜率的绝对值大于等于1,则每次y增加1,x增加1/斜率m。
5. 计算初始误差计算初始误差值,初始误差值为0。
初始误差用于判断应该向x方向还是y方向进行绘制。
6. 迭代绘制线段根据初始误差值和增量,使用迭代的方式来绘制线段。
具体步骤如下:- 根据初始误差值,判断当前点应该绘制在哪个像素上。
如果误差大于等于0,则绘制在下一个像素上,同时误差减去1;反之,如果误差小于0,则绘制在当前像素上。
- 根据斜率的绝对值大小,更新初始误差的值。
如果斜率的绝对值小于1,则初始误差加上y的增量;反之,如果斜率的绝对值大于等于1,则初始误差加上x的增量。
- 根据斜率的绝对值大小,更新x和y的值。
如果斜率的绝对值小于1,则x加上1;反之,如果斜率的绝对值大于等于1,则y加上1。
7. 绘制结果将线段绘制在屏幕上,直到终点被绘制到。
通过以上步骤,我们可以使用Bresenham算法快速高效地绘制直线。
这个算法的优点是计算简单、速度快,并且不需要浮点运算,因此非常适合在计算能力较弱的设备上使用。
计算机图形学--Bresenham完整算法-画直线、椭圆和圆
#include<windows.h>#include<gl/glut.h>#include"stdio.h"int m_PointNumber = 0; //动画时绘制点的数目int m_DrawMode = 1; //绘制模式 1 DDA算法画直线// 2 中点Bresenham算法画直线// 3 改进Bresenham算法画直线// 4 八分法绘制圆// 5 四分法绘制椭圆//绘制坐标线void DrawCordinateLine(void){int i = -250 ;//坐标线为黑色glColor3f(0.0f, 0.0f ,0.0f);glBegin(GL_LINES);for (i=-250;i<=250;i=i+10){glVertex2f((float)(i), -250.0f);glVertex2f((float)(i), 250.0f);glVertex2f(-250.0f, (float)(i));glVertex2f(250.0f, (float)(i));}glEnd();}//绘制一个点,这里用一个正方形表示一个点void putpixel(GLsizei x, GLsizei y){glRectf(10*x,10*y,10*x+10,10*y+10);}/////////////////////////////////////////////////////////////////////DDA画线算法 //// //// //// /////////////////////////////////////////////////////////////////////void DDACreateLine(GLsizei x0, GLsizei y0, GLsizei x1, GLsizei y1, GLsizei num) {//设置颜色glColor3f(1.0f,0.0f,0.0f);//对画线动画进行控制if(num == 1)printf("DDA画线算法:各点坐标\n");else if(num==0)return;//画线算法的实现GLsizei dx,dy,epsl,k;GLfloat x,y,xIncre,yIncre;dx = x1-x0;dy = y1-y0;x = x0;y = y0;if(abs(dx) > abs(dy)) epsl = abs(dx);else epsl = abs(dy);xIncre = (float)dx / epsl ;yIncre = (float)dy / epsl ;for(k = 0; k<=epsl; k++){putpixel((int)(x+0.5), (int)(y+0.5));if (k>=num-1) {printf("x=%f , y=%f,取整后 x=%d,y=%d\n", x, y, (int)(x+0.5),(int)(y+0.5));break;}x += xIncre;y += yIncre;if(x >= 25 || y >= 25) break;}}/////////////////////////////////////////////////////////////////////中点Bresenham算法画直线(0<=k<=1) //// //// //// /////////////////////////////////////////////////////////////////////void BresenhamLine(GLsizei x0, GLsizei y0, GLsizei x1, GLsizei y1, GLsizei num){glColor3f(1.0f,0.0f,0.0f);if(num == 1)printf("中点Bresenham算法画直线各点坐标及判别式的值\n");else if(num==0)return;//画线算法的实现GLsizei p=0;GLfloat UpIncre,DownIncre,x,y,d,k,dx,dy;if(x0>x1){x=x1;x1=x0;x0=x;y=y1;y1=y0;y0=y;}x=x0;y=y0;dx=x1-x0;dy=y1-y0;k=dy/dx;if(k>=0&&k<=1){d=dx-2*dy;UpIncre=2*dx-2*dy;DownIncre=-2*dy;while(x<=x1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;x++;if(d<0){y++;d+=UpIncre;}else d+=DownIncre;}}if(k>1){d=dy-2*dx;UpIncre=2*dy-2*dx;DownIncre=-2*dx;while(y<=y1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;y++;if(d<0){x++;d+=UpIncre;}else d+=DownIncre;}}if(k<0&&k>=-1){d=dx-2*dy;UpIncre=-2*dy;DownIncre=-2*dx-2*dy;while(x<=x1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;x++;if(d>0){y--;d+=DownIncre;}else d+=UpIncre;}}if(k<-1){d=-dy-2*dx;UpIncre=-2*dx-2*dy;DownIncre=-2*dx;while(y>=y1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;y--;if(d<0){x++;d+=UpIncre;}else d+=DownIncre;}}}/////////////////////////////////////////////////////////////////////改进的Bresenham算法画直线(0<=k<=1) //// //// x1,y1 终点坐标 //// /////////////////////////////////////////////////////////////////////void Bresenham2Line(GLsizei x0, GLsizei y0, GLsizei x1, GLsizei y1, GLsizei num) {glColor3f(1.0f,0.0f,0.0f);GLsizei x,y,dx,dy,e,k;if(num == 1)printf("改进的Bresenham算法画直线各点坐标及判别式的值\n");else if(num==0)return;//画线算法的实现GLsizei p=0;if(x0>x1){x=x1;x1=x0;x0=x;y=y1;y1=y0;y0=y;}dx=x1-x0;dy=y1-y0;k=dy/dx;if(k>=0&&k<=1){e=-dx;x=x0;y=y0;while(x<=x1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;x++;e=e+2*dy;if(e>0){y++;e=e-2*dx;}}}if(k>1){e=-dy;x=x0;y=y0;while(y<=y1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;y++;e=e+2*dx;if(e>0){x++;e=e-2*dy;}}}if(k<0&&k>=-1){e=-dx;x=x0;y=y0;while(x<=x1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;x++;e=e+2*dy;if(e<0){y--;e=e+2*dx;}}}if(k<-1){e=-dy;x=x0;y=y0;while(y>=y1){putpixel(x,y);if (p>=num-1) {printf("x=%d,y=%d\n", x, y);break;}p++;y--;e=e-2*dx;if(e<0){x++;e=e-2*dy;}}}}///////////////////////////////////////////////////////////Bresenham算法画圆 //// //// //// ///////////////////////////////////////////////////////////void CirclePoint(GLsizei x,GLsizei y){ putpixel(x,y);putpixel(x,-y);putpixel(y,-x);putpixel(-y,-x);putpixel(-x,-y);putpixel(-x,y);putpixel(-y,x);putpixel(y,x);}void BresenhamCircle(GLsizei x, GLsizei y, GLsizei R, GLsizei num) {glColor3f(1.0f,0.0f,0.0f);GLsizei d;x=0;y=R;d=1-R;if(num == 1)printf("Bresenham算法画圆:各点坐标及判别式的值\n");else if(num==0)return;while(x<=y){CirclePoint(x,y);if (x>=num-1) {printf("x=%d,y=%d,d=%d\n", x, y,d);break;}if(d<0)d+=2*x+3;else{d+=2*(x-y)+5;y--;}x++;}}void Bresenham2Circle(GLsizei a,GLsizei b,GLsizei num){glColor3f(1.0f,0.0f,0.0f);if(num==1)printf("Bresenham算法画椭圆:各点坐标及判别式的值\n");else if(num==0)return;GLsizei x,y;float d1,d2;x=0;y=b;d1=b*b+a*a*(-b+0.5);putpixel(x,y); putpixel(-x,-y);putpixel(-x,y);putpixel(x,-y);while(b*b*(x+1)<a*a*(y-0.5)){if (x>=num-1) {printf("x=%d,y=%d,d1=%d\n", x, y,d1);break;}if(d1<=0){d1+=b*b*(2*x+3);x++;}else{d1+=b*b*(2*x+3)+a*a*(-2*y+2);x++;y--;}putpixel(x,y); putpixel(-x,-y);putpixel(-x,y);putpixel(x,-y);}//while上半部分d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;while(y>0){if (x>=num-1) {printf("x=%d,y=%d,d2=%d\n", x, y,d2);break;}if(d2<=0){d2+=b*b*(2*x+2)+a*a*(-2*y+3);x++;y--;}else{d2+=a*a*(-2*y+3);y--;}putpixel(x,y); putpixel(-x,-y);putpixel(-x,y);putpixel(x,-y);}}//初始化窗口void Initial(void){// 设置窗口颜色为蓝色glClearColor(0.0f, 0.0f, 1.0f, 1.0f);}// 窗口大小改变时调用的登记函数void ChangeSize(GLsizei w, GLsizei h){if(h == 0) h = 1;// 设置视区尺寸glViewport(0,0, w, h);// 重置坐标系统glMatrixMode(GL_PROJECTION);glLoadIdentity();// 建立修剪空间的范围if (w <= h)glOrtho (-250.0f, 250.0f, -250.0f, 250.0f*h/w, 1.0, -1.0);elseglOrtho (-250.0f, 250.0f*w/h, -250.0f, 250.0f, 1.0, -1.0);}// 在窗口中绘制图形void ReDraw(void){//用当前背景色填充窗口glClear(GL_COLOR_BUFFER_BIT);//画出坐标线DrawCordinateLine();switch(m_DrawMode){case 1:DDACreateLine(0,0,20,15,m_PointNumber);break;case 2:BresenhamLine(0,0,-20,15,m_PointNumber);break;case 3:Bresenham2Line(1,1,8,6,m_PointNumber);break;case 4:BresenhamCircle(0,0,20,m_PointNumber);break;case 5:Bresenham2Circle(10,8,m_PointNumber);default:break;}glFlush();}//设置时间回调函数void TimerFunc(int value){if(m_PointNumber == 0)value = 1;m_PointNumber = value;glutPostRedisplay();glutTimerFunc(500, TimerFunc, value+1);}//设置键盘回调函数void Keyboard(unsigned char key, int x, int y) {if (key == '1') m_DrawMode = 1;if (key == '2') m_DrawMode = 2;if (key == '3') m_DrawMode = 3;if (key == '4') m_DrawMode = 4;if (key == '5') m_DrawMode = 5;m_PointNumber = 0;glutPostRedisplay();}//void main(void)int main(int argc, char* argv[]){glutInit(&argc, argv);//初始化GLUT库OpenGL窗口的显示模式glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);glutInitWindowSize(600,600);glutInitWindowPosition(100,100);glutCreateWindow("基本图元绘制程序);glutDisplayFunc(ReDraw);glutReshapeFunc(ChangeSize);glutKeyboardFunc(Keyboard);//键盘响应回调函数glutTimerFunc(500, TimerFunc, 1);// 窗口初始化Initial();glutMainLoop(); //启动事件处理循环return 0;}。
计算机图形学实验Bresenham算法
根据理想直线的斜率k,除垂线外(k=±∞)将直线划分为k>1、0≤k≤1、-1≤k<0和k<-1四种情况。当0≤k≤1时或-1≤k<0时,x方向为主位移方向;当k>1时或k<-1时,y方向为主位移方向。对于|k|=∞的垂线,可以直接画出。
具体算法:
1.确定主位移方向。在主位移方向上每次加1,另一个方向上加不加1,取决于中点误差项。
if(y0>y1)
{
double tx=x0;
double ty=y0;
x0=x1;y0=y1;
x1=tx;
y1=ty;
}
x=x0;y=y0;
d=1-0.5*k;
for(y=y0;y<=y1;y++)
{
dc.SetPixel(ROUND(x),ROUND(y),rgb);
if(d>=0)
{
x++;
d+=1-k;
}
else
d+=1;
}
}
if(k<-1)
{
if(y0<y1)
{
double tx=x0;
double ty=y0;
x0=x1;y0=y1;
x1=tx;
y1=ty;;
for(y=y0;y>y1;y--)
{
dc.SetPixel(ROUND(x),ROUND(y),rgb);
if(d>0)
{
y--;
d-=1+k;
}
else
d-=k;
}
}
if(fabs(x0-x1)<1e-6)
{
if(y0>y1){
double tx=x0;
中点bresenham算法的基本原理与递推公式
中点Bresenham算法是一种用于绘制直线的光栅化算法,它可以在计算机图形学中高效地绘制直线,尤其适用于嵌入式系统和低性能设备。
本文将介绍中点Bresenham算法的基本原理和递推公式。
一、中点Bresenham算法的基本原理1.1 数值方式直线的差值算法在了解中点Bresenham算法之前,我们需要先了解数值方式直线的差值算法。
通过计算两个端点的坐标差值,可以得到直线的斜率和步长,从而在光栅化的像素网格上绘制直线。
然而,这种算法需要进行浮点数运算,对于嵌入式系统和低性能设备来说,性能较差。
1.2 中点Bresenham算法的优势中点Bresenham算法通过整数运算和递推公式来高效地绘制直线,避免了浮点数运算的开销,因此在嵌入式系统和低性能设备上具有很高的应用价值。
它利用了直线的对称性和整数坐标的特点,通过逐个像素的递推计算来实现直线的绘制。
1.3 算法的基本思想中点Bresenham算法的基本思想是从直线的起点到终点,在每一步选择最接近直线的像素作为下一个像素,从而逐步绘制整条直线。
通过比较像素的位置和理想直线的位置关系,选择最接近直线的像素进行绘制,从而得到了中点Bresenham算法的递推过程。
二、中点Bresenham算法的递推公式2.1 直线斜率的计算我们需要计算直线的斜率m。
对于给定的两个端点P1(x1, y1)和P2(x2, y2),直线的斜率可以通过以下公式计算得到:m = (y2 - y1) / (x2 - x1)2.2 中点Bresenham算法的关键递推公式中点Bresenham算法通过比较像素的位置和理想直线的位置关系,选择最接近直线的像素进行绘制。
其关键递推公式如下:对于斜率0 ≤ m ≤ 1的直线:d = 2 * (y - y0) - (x - x0)若d < 0,则选择(x, y)为下一个像素,d = d + 2 * (y1 - y0)若d ≥ 0,则选择(x, y)为下一个像素,d = d + 2 * (y1 - y0) - 2 * (x1 - x0)对于斜率m > 1的直线:d = 2 * (x - x0) - (y - y0)若d < 0,则选择(x, y)为下一个像素,d = d + 2 * (x1 - x0)若d ≥ 0,则选择(x, y)为下一个像素,d = d + 2 * (x1 - x0) - 2 * (y1 - y0)2.3 递推过程通过以上递推公式,我们可以在每一步选择最接近直线的像素进行绘制,从而逐步绘制整条直线。
Bresenham算法
Bresenham算法Bresenham算法Bresenham算法的思想主要是通过判断y+1和y+0与直线上的点的距离远近来决定下⼀个像素点的y值到底是y还是y+1。
设直线y=kx+b,假设我第⼀点为(x,y),第⼆点为(x+1,y2)那么第⼆点我通过判断y+1和y哪个距离y2更近来选择下⼀个像素点的位置。
设y+1与y2的距离为D1,y与y2的距离为D2。
D1=y+1-y2=y+1-k(x+1)-b;D2=y2-y=k(x+1)+b-y我们通过判断D2-D1的符号来判断哪个距离更近D2-D1=k(x+1)+b-y-(y+1-k(x+1)+b)=2k(x+1)+2b-2y-1通过判断这个式⼦的符号即可知道我们要取哪个值。
但现在有⼀问题,就是这个式⼦中出现了k,k不是⼀个整数。
为了去掉k,我们可以通过把这个式⼦乘上▲x(k=▲y/▲x),⽽且设k为正数,即▲x为正)p=▲x(D2-D1)=2▲y*x-2▲x*y+c (c=2▲y+▲x(2b-1),是⼀个常量)通过判断p的符号我们即可选择绘制y+1还是y。
使⽤增量思想为了减少运算,我们使⽤增量思想,通过p i把p i+1推导出来p i+1=2▲y(x+1)-2▲x*y i+1+cp i=2▲y*x-2▲x*y i+cp i+1=p i+2▲y-2▲x(y i+1-y i)其中y i+1-y i是0或1,根据p i的符号来确定。
p0=2▲y*x0-2▲x((▲y/▲x)(x0+b))+2▲y+▲x(2b-1)=2▲y-▲x最后算法步骤如下:1.输⼊端点2.画出第⼀个点3.计算常量▲x,▲y,p0=2▲y-▲x4.判断p的符号,如果p<0绘制点(x+1,y)p next=p+2▲y否则,绘制点(x+1,y+1)p next=p+2▲y-2▲x5.重复第四步,共▲x-1次讨论k值其他情况关于▲x和▲y的问题补充说明:我们可以注意到,▲x是必定⼤于0的(因为我们总是⽤右边的点减左边的点⽽▲y则不⼀定,当|k|<1时不需要处理,因为都是乘以▲x,但是当|k|>1时要注意,k为负数时要改为乘以-▲y当-1<k<0时推导过程如下:结论:p0=-▲x-2▲yp i+1=p i-2▲y-2▲x(y i+1-y i)当1<k时推导过程如下:结论:p0=2▲x-▲yp i+1=p i+2▲x-2▲y(x i+1-x i)当<k<-1时推导过程如下:修改:应该从y0开始,每次-1.结论:p0=2▲x+▲yp i+1=p i+2▲x+2▲y(x i+1-x i)。
Bresenham算法
Bresenham算法⼀ Bresenham 绘直线使⽤ Bresenham 算法,可以在显⽰器上绘制⼀直线段。
该算法主要思想如下:1 给出直线段上两个端点,根据端点求出直线在X,Y⽅向上变化速率;2 当时,X ⽅向上变化速率快于 Y ⽅向上变化速率,选择在 X ⽅向上迭代,在每次迭代中计算 Y 轴上变化;当时,Y ⽅向上变化速率快于 X ⽅向上变化速率,选择在 Y ⽅向上迭代,在每次迭代中计算 X 轴上变化;3 现在仅考虑情形,在情况下仅需要交换变量即可。
直线斜率,当 d = 0 时,为⼀条⽔平直线,当 d > 0 或 d < 0 时,需要分开讨论,如下图:⼆ Bresenham 绘圆使⽤ Bresenham 绘制圆形,只需要绘制四分之⼀圆即可,其他部分通过翻转图形即可得到。
假设圆⼼位于 (0, 0) 点,半径为 R,绘制第⼀象限四分之⼀圆形,如下图:根据图形可知,从出发,下⼀个可能的选择分别为:1)⽔平⽅向上;2)对⾓⽅向上;3)垂直⽅向上;下⾯计算,根据差值可判断⼤致圆弧位置:1)当时,圆环落在与之间,进⼀步计算圆弧到与的距离以判断应该落在哪个点上;2),由于,,上式可化简为,,将改写为得:,已知,可根据上式快速求解出,当时,下⼀点落在上,当时,下⼀点落在上;3)当时,圆环落在与之间,进⼀步计算圆弧到和的距离以判断应该落在哪个点上;4),可化简为:,将改写为得:,已知,可根据上式快速求解出,当时,下⼀点落在上,当时,下⼀点落在上;5)以上推导中,已知可以快速求解,同时,已知也可以快速推导出,以下分类讨论:a. 当时,有:,进⼀步整理得:;b. 当时,有:,进⼀步整理得:;c. 当时,有:,进⼀步整理得:。
以下给出 Bresenham 绘圆实现:1void Bresenham_Circle(PairS center, int radius, std::vector<PairS>& circle)2 {3 PairS start(0, radius);4int Delta = (start.x + 1) * (start.x + 1) +5 (start.y - 1) * (start.y - 1) - radius * radius;67 std::vector<PairS> tmp;8 tmp.push_back(start);910while (start.y > 0)11 {12int state = -1;1314if (Delta < 0)15 {16int delta = (Delta + start.y) * 2 - 1;17if (delta < 0)18 {19 start.x += 1;20 state = 0;21 }22else23 {24 start.x += 1;25 start.y -= 1;26 state = 1;27 }28 }29else30 {31int delta = (Delta - start.x) * 2 - 1;32if (delta < 0)33 {34 start.x += 1;35 start.y -= 1;36 state = 1;37 }38else39 {40 start.y -= 1;41 state = 2;42 }43 }4445if (state == 0)46 Delta = Delta + start.x * 2 + 1;47else if (state == 1)48 Delta = Delta + start.x * 2 - start.y * 2, +2;49else if (state == 2)50 Delta = Delta - start.y * 2 + 1;51else52break;5354 tmp.push_back(start);55 }5657 std::vector<PairS> tmp2;58for (int i = 0; i < tmp.size(); ++i)59 {60 PairS p(tmp[i].x, tmp[i].y);61 tmp2.push_back(p);62 }63for (int i = tmp.size() - 1; i >= 0; --i)64 {65 PairS p(tmp[i].x, -tmp[i].y);66 tmp2.push_back(p);67 }68for (int i = 0; i < tmp2.size(); ++i)69 {70 PairS p(tmp2[i].x, tmp2[i].y);71 circle.push_back(p);72 }7374for (int i = tmp2.size() - 1; i >= 0; --i)75 {76 PairS p(-tmp2[i].x, tmp2[i].y);77 circle.push_back(p);78 }7980for (int i = 0; i < circle.size(); ++i)81 {82 circle[i].x += center.x;83 circle[i].y += center.y;84 }85 }参考资料计算机图形学得算法基础 David E Rogers。
Bresenham算法
举例:图3-4用Bresenham方法扫描转换连接两点P0(0,0)和 P1 (5,2)的直线段。△y = 2, △x = 5, d0 =-1。 Line: P0(0, 0), P1(5, 2) x y d 0 0 -1 1 0 3 2 1 -3 3 1 1 4 2 -5 5 2 -1
PLAY
2y x
以下是当0<k<1时的Bresenham画线算法程序: void Bresenham_Line (int x0,int y0,int x1, int y1,int color) { int dx,dy,d,i,x,y; 复杂度:加法。x每次注定 dx = x1-x0, dy = y1- y0, d=2*dy-dx; 前进1,对于0<k<1,y一定 x=x0, y=y0; 要么前进1,要么不变。如 for (i=0; i<=dx; i++) 果k的取值范围不在(0<k<1) { 之间,上述程序略作修改 SetPixel (x, y, color); 即可满足要求。例如,当 x++; if (d>=0) k>1时,y总是增1,再用 { Bresenham误差量判别式可 y++; 以确定x变量是否增加1。 d=d+2*dy-2*dx; 此时,上述程序只需交换x }else 和y的坐标即可实现。其次, d=d+2*dy; 当k<0,要考虑x或y不是递 } 增1,而是递减1。 }
c 2y x(2b 1) 是常量,与像素位置无关
令di x(d1 d 2 ) ,则di的符号与(d1-d2)的符号相同。
当di<0时,直线上理想位置与像素(xi+1,yi)更接近,应取 右方像素; 当di>0时,像素(xi+1,yi+1)与直线上理想位置更接近; 当di=0时,两个像素与直线上理想位置一样接近,可约定 取(xi+1,yi+1)。
Bresenham直线算法
Bresenham直线算法是用来描绘由两点所决定的直线的算法,它会算出一条线段在 n 维光栅上最接近的点。
这个算法只会用到较为快速的整数加法、减法和位元移位,常用于绘制电脑画面中的直线。
是计算机图形学中最先发展出来的算法。
经过少量的延伸之后,原本用来画直线的算法也可用来画圆。
且同样可用较简单的算术运算来完成,避免了计算二次方程式或三角函数,或递归地分解为较简单的步骤。
以上特性使其仍是一种重要的算法,并且用在绘图仪、绘图卡中的绘图芯片,以及各种图形程式库。
这个算法非常的精简,使它被实作于各种装置的固件,以及绘图芯片的硬件之中。
“Bresenham”至今仍经常作为一整个算法家族的名称,即使家族中绝大部份算法的实际开发者是其他人。
该家族的算法继承了 Bresenham 的基本方法并加以发展,详见参考资料。
目录[隐藏]∙ 1 演算方法∙ 2 一般化∙ 3 最佳化∙ 4 历史∙ 5 参考资料∙ 6 参阅∙7 外部链接[编辑]演算方法Bresenham直线算法描绘的直线。
假设我们需要由 (x0, y0) 这一点,绘画一直线至右下角的另一点(x1, y1),x,y分别代表其水平及垂直座标,并且x1 - x0 > y1 - y0。
在此我们使用电脑系统常用的座标系,即x座标值沿x轴向右增长,y座标值沿y轴向下增长。
因此x及y之值分别向右及向下增加,而两点之水平距离为x1−x0且垂直距离为y1-y0。
由此得之,该线的斜率必定介乎于1至0之间。
而此算法之目的,就是找出在x0与x1之间,第x行相对应的第y列,从而得出一像素点,使得该像素点的位置最接近原本的线。
对于由(x0, y0)及(x1, y1)两点所组成之直线,公式如下:因此,对于每一点的x,其y的值是因为x及y皆为整数,但并非每一点x所对应的y皆为整数,故此没有必要去计算每一点x所对应之y值。
反之由于此线之斜率介乎于1至0之间,故此我们只需要找出当x 到达那一个数值时,会使y上升1,若x尚未到此值,则y不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地理与生物信息学院
2010 / 2011 学年第二学期
实验报告
课程名称:计算机图形学
实验名称:Bresenham直线扫描算法的实现
班级学号 B08021730
学生姓名郭超伟
指导教师曹正林日期:2011 年4 月
计算机图形学
一、实验题目:
Bresenham直线扫描算法的实现
二、实验要求:
学习Visual C++ 6.0集成编程环境的使用、图形设备接口和常用图形程序设计、鼠标编程以及菜单设计等基础知识,从而掌握利用Visual C++进行图形程序设计的方法以及简单的图形画法,并编程实现Bresenham直线扫描转换程序,得出相应的输出图形。
三、实验内容:
1.学习Visual C++ 6.0集成编成环境的使用;
2.掌握Visual C++ 6.0图形设备接口和常用图形程序设计、菜单设计等方法;
3.编程实现Bresenham直线扫描转换程序,得出相应的输出图形;
四、实验过程:
1.算法的基本描述
// 假设该线段位于第一象限内且斜率大于0小于1,设起点为(x1,y1),终点为
(x2,y2).
// 根据对称性,可推导至全象限内的线段.
1.画起点(x1,y1).
2.准备画下个点。
x坐标增1,判断如果达到终点,则完成。
否则,由图中可知,下个要画的点要么为当前点的右邻接点,要么是当前点的右上邻接点.
2.1.如果线段ax+by+c=0与x=x1+1的交点的y坐标大于M点的y坐标的话,下个点为U(x1+1,y1+1)
2.2.否则,下个点为B(x1+1,y1)
3.画点(U或者B).
4.跳回第2步.
5.结束
2。