第七章 平均数差异的显著性检验
显著性差异分析
显著性差异分析显著性差异分析是统计学中常用的一种方法,用于确定两个或多个样本之间是否存在显著性差异。
这种分析方法可以帮助研究人员确定研究对象在不同条件下的表现是否存在实质性的差异,从而为科学研究和决策提供依据。
本文将介绍显著性差异分析的基本原理、相关统计指标以及实际应用案例。
一、基本原理显著性差异分析基于假设检验的思想,通过对比不同观测值之间的差异,判断是否存在实质性的差异。
在进行显著性差异分析时,通常会制定一个原假设(H0)和一个备选假设(H1)。
原假设认为观测值之间不存在显著性差异,备选假设则认为观测值之间存在显著性差异。
二、相关统计指标在显著性差异分析中,常用的统计指标包括均值、方差和标准差。
均值用于衡量不同样本之间的平均表现,方差和标准差则用于衡量不同样本之间的离散程度。
此外,还有一些统计指标如t值、p值和置信区间等,用于判断差异是否达到统计学上的显著性。
三、实际应用案例显著性差异分析在各个领域都有广泛的应用。
以下以医学领域为例,介绍显著性差异分析的一个实际案例。
研究人员想要比较两种不同药物对患者血压的影响是否存在显著性差异。
他们随机选取了100名患者,并将其分成两组,一组服用药物A,另一组服用药物B。
他们在实验开始前和结束后分别对患者的血压进行测量,得到了如下结果:药物A组:初始平均血压为120 mmHg,终止平均血压为110 mmHg。
药物B组:初始平均血压为122 mmHg,终止平均血压为115 mmHg。
为了确定这两组数据之间的差异是否显著,研究人员进行了显著性差异分析。
他们首先计算了每组的均值和标准差,然后使用t检验进行了统计显著性检验。
经过计算和统计分析,研究人员得到了以下结果:药物A组和药物B组之间的平均差异为2 mmHg,标准差为3 mmHg。
根据t检验的结果,他们得到了t值为1.33,p值为0.187。
根据统计结果可知,p值大于显著性水平(通常为0.05),即在此次研究中未能找到药物A和药物B之间的显著性差异。
7-2平均数差异的显著性检验
平均数差异的显著性检验
平均数差异的显著性检验是指通过从两个总 体中抽取出的两个样本来判断这两个总体的均值 的大小关系。 一、理论依据
抽样分布理论
• 两个平均数之差的标准误,是用一切可能的样本 平均数之差在抽样分布上的标准差来表示的: 1.相关样本:
SEX X
1 2
2 12 2 2r 1 2
Z X1 X 2
2 X 1
n1
2 X 2
n2
•
决断规则(查Z值表): 同前
2.独立小样本(n1≤30或n2≤30):
X1 X 2
2 2 n1 X 1 n2 X 2 n1 n2 n1 n2 2 n1n2
• •
检验统计量:
t
df n1 n2 2
决断规则(查t值表): 同前
2.独立样本:
SEX
1X2
12
n1
2 2
n2
平均数差异的显著性检验
二、相关样本平均数差异的显著性检验 相关样本的两种情况: 1.同组前后测 2.配对组 1.相关大样本(n=n1=n2>30): • • 检验统计量: Z
X1 X 2
2 2 X 1 X 2 2r X 1 X 2
n
决断规则(查Z值表): 同前 2.相关小样本(n=n1=n2≤30):
X1 X 2
2 2 X 1 X 2 2r X 1 X 2
• •
检验统计量:
t
df n 1
n 1
决断规则(查t值表): 同前
平均数差异的显著性检验
三、独立样本平均数差异的显著性检验 1.独立大样本(n1>30、n2>30): • 检验统计量:
平均数差异分析
)
X1 − X 2 统计量 = SEDX
25
1.两总体正态,总体标准差已知 两总体正态,
总体标准差已知条件下,平均数之差的抽样分布服从正态分布, 总体标准差已知条件下,平均数之差的抽样分布服从正态分布, 作为检验统计量,计算公式为: 以Z作为检验统计量,计算公式为:
X1 − X 2 Z = SE D X
极其显著**
显著性水平拒绝H 在0.01显著性水平拒绝 0, 显著性水平拒绝 接受H 接受 1
17
表10-4 10-
单侧t 单侧t检验统计决断规则
∣t∣与临界值比较 ∣
P值 值
显著性
检验结果
∣t∣<t(df)0.
保留H 拒绝H 保留 0,拒绝 1
t(df)0.05≤∣t∣<t(df)0.01 ∣∣
8
3.平均数显著性检验的几种情形
⑴总体为正态,总体标准差σ已知 总体为正态,总体标准差 已知 平均数的抽样分布服从正态分布, 为检验统计量,其计算公式为: 平均数的抽样分布服从正态分布,以Z为检验统计量,其计算公式为:
Z =
X − µ0
σX
=
X − µ0
σ
n
9
例1:某小学历届毕业生汉语拼音测验平均分数为66分, 某小学历届毕业生汉语拼音测验平均分数为 分 标准差为11.7。现以同样的试题测验应届毕业生(假定应 。现以同样的试题测验应届毕业生( 标准差为 届与历届毕业生条件基本相同),并从中随机抽18份试卷 届与历届毕业生条件基本相同),并从中随机抽 份试卷, ),并从中随机抽 份试卷, 算得平均分为69分,问该校应届与历届毕业生汉语拼音测 算得平均分为 分 验成绩是否一样? 验成绩是否一样?
28
某幼儿园在儿童入园时对49名儿童进行了比奈智力测 例1:某幼儿园在儿童入园时对 名儿童进行了比奈智力测 某幼儿园在儿童入园时对 验(σ=16),结果平均智商为 ,结果平均智商为106。一年后再对同组被试施 。 测,结果平均智商分数为110。已知两次测验结果的相关 结果平均智商分数为 。 系数为r=0.74,问能否说随着年龄的增长和一年的教育, ,问能否说随着年龄的增长和一年的教育, 系数为 儿童智商有了显著提高? 儿童智商有了显著提高?
显著性差异分析
显著性差异分析显著性差异分析是一种常用的统计方法,用于确定两组或多组数据之间是否存在显著差异。
通过显著性差异分析,我们能够确定变量之间的差异性程度,进而得到有关数据的重要结论。
本文将介绍显著性差异分析的概念、原理以及常用的方法。
一、显著性差异分析的概念显著性差异分析是基于统计学的假设检验方法,旨在帮助我们判断两组或多组数据在某个或某些变量上是否存在显著的统计差异。
通过显著性差异分析,我们可以对数据进行全面的比较和评估,从而得出科学、客观的结论。
二、显著性差异分析的原理显著性差异分析的原理基于概率论和数理统计学的基本假设检验方法。
在进行显著性差异分析时,我们首先需要设置一个原假设(H0)和一个备择假设(H1)。
原假设通常假定两组或多组数据在某个或某些变量上没有显著差异,备择假设则假设存在显著差异。
基于原假设和备择假设,我们选取适当的统计检验方法来计算数据集的统计量,并与理论分布进行比较。
根据计算得到的统计量和临界值进行比较,我们可以得出关于数据差异性的结论,判断是否拒绝或接受原假设。
三、常用的显著性差异分析方法1. t检验t检验是一种用于小样本(样本容量较小)的显著性差异分析方法。
常见的 t检验包括独立样本t检验和配对样本t检验。
独立样本t检验用于比较两组不相关的样本数据之间的差异,而配对样本t检验则用于比较同一组样本在不同时间或条件下的差异。
2. 方差分析(ANOVA)方差分析是用于比较三组或三组以上数据之间差异的显著性分析方法。
方差分析将总变异分解为组内变异和组间变异,通过比较组间和组内的方差来判断数据是否存在显著差异。
方差分析广泛应用于实验设计、医学研究等领域。
3. 非参数检验非参数检验是一种用于无法满足正态分布假设的数据进行显著性差异分析的方法。
非参数检验不对样本数据的分布进行特定要求,而是通过排列、秩和等方法来进行统计推断。
常用的非参数检验方法包括Wilcoxon秩和检验、Mann-Whitney U检验等。
显著性差异
非参数统计方法 验
符号检验、秩和检验和Ridit检验
三者均属非参数统计方法,共同特点是简便、快捷、实用。可用 于各种非正态分布的资料、未知分布资料及半定量资料的分析。其主要 缺点是容易丢失数据中包含的信息。所以凡是正态分布或可通过数据转 换成正态分布者尽量不用这些方法。
显著性检验
刘上元 2015年10月8日
2
CONTENT
01
02 03 04
含义
原理
技术标准 常用检验
03
01
PART ONE
含义
显著性检验 即用于实验处理组与对照组或两种不同处理的效应之 间是否有差异,以及这种差异是否显著的方法。 就是事先对总体(随机变量)的参数或总体分布形式 做出一个假设,然后利用样本信息来判断这个假设 (原假设)是否合理,即判断总体的真实情况与原假 设是否有显著性差异。
significancetest
08
原理 *“无效假设”成立的机率水平 检验“无效假设”成立的机率水平一般定为5%,其 含义是将同一实验重复100次,两者结果间的差异有 5次以上是由抽样误差造成的,则“无效假设”成立, 可认为两组间的差异为不显著,常记为p>0.05。 若两者结果间的差异5次以下是由抽样误差造成的, 则“无效假设”不成立,可认为两组间的差异为显著, 常记为p≤0.05。如果p≤0.01,则认为两组间的差异为 非常显著。
19
感谢各位聆听
Thanks for Listening
如有不足 请多指教
7
原理 提出“无效假设”和检验“无效假设”成立 的机率 (P)水平的选择。 *无效假设 经统计学分析后,如发现两组间差异是抽样引起的, 则“无效假设”成立,可认为这种差异为不显著(即 实验处理无效)。 若两组间差异不是由抽样引起的,则“无效假设”不 成立,可认为这种差异是显著的(即实验处理有效)。
显著性差异分析
显著性差异分析显著性差异分析是统计学中常用的一种方法,用于比较两组或多组数据之间是否存在显著性差异。
通过对比不同组别之间的差异,我们可以更好地了解数据的特点和相互关系,为研究和决策提供有力的依据。
一、显著性差异的定义在进行显著性差异分析之前,我们首先需要明确什么是显著性差异。
显著性差异通常是指两组或多组数据之间的差异达到了统计学的显著水平,即通过统计检验得出的P值小于某个预设的显著性水平(通常是0.05)。
二、显著性差异分析的步骤1. 确定研究问题和假设在进行显著性差异分析之前,我们需要明确研究的目的和研究假设。
研究问题可以是比较两组样本的差异,也可以是比较多组样本之间的差异。
根据不同的研究问题,我们可以建立相应的研究假设,如零假设(H0)和备择假设(Ha)。
2. 收集数据并描述数据在进行显著性差异分析之前,我们需要收集所需的数据。
数据可以通过实验设计、调查问卷等方式获得。
在获得数据后,我们需要对数据进行描述性统计分析,包括计算均值、标准差、频数等。
3. 检验数据的正态性和方差齐性显著性差异分析通常基于一些假设前提,比如数据符合正态分布和各组数据的方差相等。
我们可以通过正态性检验和方差齐性检验来验证这些假设前提,常见的方法有Shapiro-Wilk检验、Kolmogorov-Smirnov检验和Levene检验等。
4. 选择适当的显著性差异分析方法根据数据的类型和研究问题的特点,我们可以选择适当的显著性差异分析方法。
常见的方法包括t检验、方差分析(ANOVA)、非参数检验等。
对于不同的研究问题,我们需要选择不同的方法进行分析。
5. 进行显著性差异分析在选择了适当的显著性差异分析方法后,我们可以进行具体的数据分析。
根据选择的方法,我们需要计算相应的统计量和P值,以判断两组或多组数据之间的差异是否显著。
6. 结果解释和结论最后,我们可以根据显著性差异分析的结果进行结果解释和结论。
如果P值小于显著性水平(通常是0.05),我们可以拒绝零假设,认为两组或多组数据之间存在显著性差异;如果P值大于显著性水平,则无法拒绝零假设,认为两组或多组数据之间的差异不显著。
第七章 平均数差异的显著性检验
n
——第一个与第二个变量的总体方差; r——两个变量的相关系数 n——样本的容量(n对相关样本)
2 12 2
10
第一节 平均数差异显著性检验的基本原理
二、平均数之差的标准误 平均数之差的标准误——两个总体标准差已知 2、独立样本——
D
2 1
n1
2 2
n2
n1、n2——第一个与第二个样本的容量
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: 分别用平均数差异的标准误的三种不同形式计算t值: ①用D计算
t
D
D D
2
n( n 1)
( D ) / n
2
19
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: ②用总体标准差估计值S计算
23
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 32人的射击小组经过三天集中训练,训练前后分数如表, 问三天集训有无明显效果?
检验的步骤:
(1)提出假设
H0:μ1≤μ2(或μD≤0) H1:μ1>μ2(或μD>0)
24
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 检验的步骤: (2)选择检验统计量并计算其值 ——假定训练前后射击得分是从两个正态总体抽出的相关样 本,那么它们差数的总体也呈正态分布; ——而差数的总体标准差σD未知, ——于是样本的差数平均数与差数的总体平均数的离差统计 量呈t分布。 ——但因差数的数目n=32>30,t分布接近正态,也可以用 Z检验近似处理。
25
第二节 相关样本平均数差异的显著性检验
第七章方差分析第一节单因素)
一、各处理重复数相等的方差分析
【例1】 某水产研究所为了比较四种不同 配合饲料对鱼的饲喂效果, 配合饲料对鱼的饲喂效果,选取了条件基 本相同的鱼20尾,随机分成四组, 随机分成四组,投喂不 同饲料, 同饲料,经一个月试验以后, 经一个月试验以后,各组鱼的增 重结果列于下表。 重结果列于下表。
上一张 下一张 主 页
型。在这个模型中表示为总平均数μ、处理效 应αi、试验误差εij之和。尽管各总体的均数可 以不等或相等,σ2则必须是相等的。 所以,单因素试验的数学模型可归纳为: 效应的可加性(additivity)、分布的正态性 (normality)、方差的同质性 (homogeneity)。这也是进行其它类型方差分
F=MSt/MSe =46.5×20/38.84×4=5.99**
3.统计推断: 统计推断: F0.05(4,20) =2.87,F0.01(4,20) =4.43,F> F0.01(4,20),P<0.01,表明品种间差异极显著。 表明品种间差异极显著。
上一张 下一张 主 页
退 出
SS MS e = e = df e =
t
t
1 = n
∑
T
∑
e
= SS
ni ≠ n
Ti2 − C ni
j
总自由度的剖分
总自由度
dfT = kn −1 = N −1
处理自由度 dft = k −1 误差自由度 dfe = dfT − dft = kn − k = N − K
MSt = SSt / df t MSe = SS e / df e MSt F= MS e
析的前提或基本假定。
xij = µ + α i + ε ij = µ + ( µi − µ ) + ( xij − µi )
教育统计学-笔记公式
教育统计学王孝玲第一章绪论教育统计学是运用数理统计的原理和方法研究教育问题的一门应用科学。
它的主要任务是研究如何搜集、整理、分析由教育调查和教育实验等途径所获得的数字资料,并以此为依据,进行科学推断,从而揭示蕴含在教育现象中的客观规律.统计学和教育统计学的内容:从具体应用角度来分,可以分成:描述统计、推断和实验设计三部分。
描述统计:对已获得的数据进行整理、概括,显现其分布特征的统计方法。
通过教育调查和教育实验获得了大量的数据,用归组、编表、绘图等统计方法对这进行归纳、整理,以直观形象的形式反映其分布特征;通过计算各种特征量,来反映它们分布上的数字特征.推断统计:根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上对总体分布特征进行估计、推测。
描述统计是推断统计的基础,推断统计是通过样本信息估计、推测总体,从已知情况估计、推测未知情况。
学习统计学和教育统计的学的意义:一、统计学为科学研究提供了一种科学方法,统计推理的方法是归纳法。
二、教育统计学是教育科研定量分析的重要工具。
三、广大教育工作者学习教育统计学的具体意义:1、可以顺利地阅读运用统计方法进行定量分析的科研报告.2、可以提高教育工作的科学性和效率。
3、为学习教育测量及教育评价打下基础。
随机现象:1、一次试验有多种可能结果,其所有可能结果是已知的;2、试验之前不能预料哪一种可能结果会出现;3、在相同的条件下可以重复试验。
随机现象的每一种结果叫做一个随机事件。
总体:研究的具有某种共同特性的个体的总和。
总体中的每个单位称为个体。
样本是从总体中抽取的作为观察对象的一部分个体。
样本上的数字特征是统计量.总体上的各种数字特征是参数。
在进行统计推断时,就是根据样本统计量来推断总体相应的参数。
第二章数据的初步整理教育统计资料的来源:经常性资料、专题性资料(教育调查、教育实验)数据的种类:按来源分:点计数据和度量数据,按随机变量取值情况分:间断型(取值个数有限的数据,一般为整数)和连续型随机变量(取值个数无限的不可数的数据可用小数表示)。
平均数差异显著性检验
配对样本:符号检验法(方法一)
适用资料 所谓符号检验法是以正负号作为资料的一种非参数方法,它适用于相关样本的
差异检验,与参数检验中相关样本差异显著性t 检验相对应。 符号检验法也是将中数作为集中趋势的度量,主要用来检验与某些差值的中数
有关的零假设。 计算过程
(1)当样本容量 N≤25 时 对于样本每对数据之差(Xi,Yj)不计大小,只记符号,求出(Xi,Yj)为正号
的有多少,记为n+ ,(Xi,Yj)为负号的记为n- ,(Xi,Yj)为零的不计在内。这样 记N = n+ + n-,r = min(n+,n-)。检验时根据N 与r ,查符号检验表(附表15)得r 的临界值,如果实得r 值大于表中r 的临界值时,表示差异无统计学意义。
Z r 0.5 N 2
但它的精确度比符号法高。 计算过程
(1)当N≤25时 ① 把相关样本对应数据之差值按绝对值从小到大作等级排列(注意差 值为零时,零不参加等级排列); ② 在各个等级前面添上原来的正负号; ③ 分别求出带正号的等级和( T+ )与带负号的等级和( T- ),取两 者之中较小的记作( T= min(T+,T-)。 ); ④ 根据N 来查符号等级检验表(附表16),当T 大于表中临界值时表明 差异不显著;小于临界值时表明差异显著。
配对样本:符号等级检验法(方法二)
(2)当N>25 时 当N>25 时,一般认为T 的分布接近正态分布。 其平均数、标准差分别为:
T
NN1
4
T
s12s222r1ss2
n1
( dfn1)
(三)两总体均非正态(n>30或n>50)
(1)独立样本
ZDXDX X1X2 12 或
05第七章_平均数差异的显著性检验
计算
t
X1 X2
n1
S12
n2
S
2 2
n1
n2
n1 n2 2
n1 n2
59.9 50.3
10 6.6402 9 7.2722 10 9
10 9 2
10 9
2.835
3.两总体非正态, n1和n2大于30(或50)
总体标准差未知条件下,平均数之差的 抽样分布服从t分布,但样本容量较大,t分 布接近于正态分布,可以以Z近似处理,因 此以Z′作为检验统计量,计算公式为:
计算
t
X1 X2
n1
S12
n2
S
2 2
n1
n2
n1 n2 2
n1 n2
59.9 50.3
10 6.6402 9 7.2722 10 9
10 9 2
10 9
2.835
对本题做方差齐性检验
1.提出假设
H0
:
2 1
2 2
H1
:
2 1
2 2
2.选择检验统计量并计算
对两总体方差是否齐性进行检验,应选F 做检验统计量,其计算公式为
2.选择检验统计量并计算 两种识字教学法的测验得分假定是从两个正
态总体中随机抽出的样本,它们差数的总体也呈 正态分布。两总体标准差未知,因此平均数之差 的抽样分布服从t分布,应以t为检验统计量。
两样本为配对实验结果,属于相关样本,已 计算出相关系数,因此选公式(11.5)计算。
t
X1 X2
S12
106 110
162 162 2 0.741616
49
1.71
确定显著性水平 显著性水平为α=0.05 做出统计结论 单侧检验时Z0.05=1.65,Z0.01=2.33 而计算得到的Z=1.71﹡ Z0.05 <|Z|<Z0.01,则概率 0.05>P>0.01 差异显著,应在0.05显著性水平接受零假设 结论:可以说随着年龄的增长和一年的教育, 儿童智商有了显著提高。
显著性差异分析
显著性差异分析在统计学中,显著性差异分析是一种比较两个或多个样本之间差异是否具有统计学意义的方法。
通过显著性差异分析,我们可以确定样本之间是否存在显著差异,进而推断总体的差异是否具有实质性意义。
本文将介绍显著性差异分析的基本概念、常用方法以及应用场景。
一、基本概念显著性差异分析的核心概念是“显著性”。
在统计学中,显著性表示一个结果或差异是否偶然发生的概率。
通常使用p值来衡量差异的显著性程度,p值越小,说明差异越显著。
一般将p值小于0.05定义为显著差异,即差异不是由随机因素引起的。
二、常用方法显著性差异分析的方法有很多,常用的包括以下几种:1. t检验:适用于比较两组样本均值的差异是否显著。
例如,我们可以使用t检验来比较男性和女性的身高是否有显著差异。
2. 方差分析(ANOVA):适用于比较多个样本之间的平均值是否存在显著差异。
例如,我们可以使用ANOVA来比较不同教育程度人员的收入是否有显著差异。
3. 卡方检验:适用于比较两个或多个样本之间的分布是否有显著差异。
例如,我们可以使用卡方检验来比较各个年龄段人群中有无购买某种产品的差异。
4. Wilcoxon秩和检验:适用于比较两个相关样本或两组配对样本的差异是否显著。
例如,我们可以使用Wilcoxon秩和检验来比较同一组学生在考试前后成绩的变化是否显著。
三、应用场景显著性差异分析在各个领域都有广泛的应用,以下列举几个典型的应用场景:1. 医学研究:显著性差异分析被广泛用于比较不同治疗方法的疗效。
通过分析不同治疗组和对照组的效果差异,可以为临床决策提供科学依据。
2. 教育评估:显著性差异分析可以用于比较不同学校、不同教育方法的教育效果。
通过分析学生的考试成绩差异,可以评估不同因素对学生成绩的影响。
3. 社会科学调查:显著性差异分析可以用于比较不同人群之间的差异。
例如,通过分析不同年龄段、不同性别之间的意见差异,可以了解社会问题在不同人群中的认知差异。
显著性差异分析
显著性差异分析显著性差异分析是一种常用的统计方法,用于确定两个或多个样本之间的差异是否具有统计学意义。
通过显著性差异分析,我们可以得出结论,确定变量之间是否存在显著差异。
本文将介绍显著性差异分析的基本概念、方法和应用。
一、基本概念显著性差异指的是两个或多个样本的均值、中位数、比例等之间的差异是否真实存在,而非由于随机因素引起的。
在统计学中,我们关注的是统计意义上的差异,即差异是否具有显著性。
显著性水平通常设定为0.05或0.01,表示差异发生的概率小于这个阈值时,我们认为差异具有显著性。
二、方法显著性差异分析常用的方法包括t检验、方差分析(ANOVA)、卡方检验等。
下面以t检验为例,介绍显著性差异分析的步骤。
1. 确定研究问题:首先需要明确研究问题,确定要比较的变量和样本。
2. 建立假设:根据研究问题,我们可以提出原假设(H0)和备择假设(H1)。
原假设通常是变量之间没有显著差异,备择假设则相反。
3. 收集数据:收集所需的样本数据,对样本进行测量。
4. 计算统计量:根据样本数据,计算t统计量的值。
5. 计算p值:根据t统计量的值和自由度,查找t分布表,得出p 值。
6. 判断显著性:根据设定的显著性水平,比较p值和显著性水平的大小,如果p值小于显著性水平,则拒绝原假设,认为差异具有统计学意义。
三、应用显著性差异分析广泛应用于各个领域的研究中,比如医学、经济、社会学等。
举例来说,一个医学研究想要比较两种药物对疾病治疗效果的差异,可以使用显著性差异分析来确定两种药物是否具有显著差异。
在经济学中,研究人员可能想要比较两个群体的平均收入是否有显著差异,也可以使用显著性差异分析来验证此假设。
结论:显著性差异分析是一种常见的统计方法,用于确定两个或多个样本之间的差异是否具有统计学意义。
通过建立假设、收集数据、计算统计量和判断显著性,我们可以得出结论并进行相应的推断。
在实际研究中,显著性差异分析帮助我们判断变量之间是否存在显著差异,从而为科学决策提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 平均数差异性检验的基本原理
• 含义: – 平均数差异的显著性检验是指对两个样本平均数之间 差异进行的显著性检验。 • 差异显著的表达: – 两个样本平均数所代表的总体之间的平均数有差异;
– 两样本平均数的差异已不能认为完全是抽样误差造成
的,两个样本平均数分别来自于不同的总体。
σ1、σ2分别表示第一个和第二个变量的总体标准差 r 表示两个变量的相关系数 n 表示样本的容量
一 平均数差异性检验的基本原理
• 2)当两个变量互相独立(相关系数为0)这两个变量之差
平均数标准误,即独立样本平均数之差的标准误:
• n1、n2分别表示第一个和第二个样本的容量
二
相关样本平均数差异的显著性检验
五
方差不齐性独立样本平均数差异的 显著性检验
练习
• 课后完成本章练习题。
感谢各位的参与!
1、两个总体均值之差的检验(配对样本的t检验)
• 检验两个相关总体的均值 – 配对或匹配 – 重复测量 (前/后) 利用相关样本可消除项目间的方差 假定条件 – 两个总体都服从正态分布 – 如果不服从正态分布,可用正态分布来近似 (n1 30 , n2 30 )
• •
二
相关样本平均数差异的显著性检验
• 检验统计量为:
t
X -X s
1 1 2 2 d d
2 2
X -X
1 1
n -1
d
2 2
n n(n - 1)
-
d
2 2
2 2
自由度df =nD - 1
• 有兴趣可以推导
二
相关样本平均数差异的显著性检验
2、同一组对象情况
从两个正态总体中抽出的相关样本,差数的总 体也呈正态分布,差数总体标准差未知,则样本差 数平均数与差数总体平均数离差统计量呈t 分布。 但n30,接近正态,可以用Z检验近似处理。
三 独立样本平均数差异的件
– – – 两个样本是独立的随机样本 两个总体都是正态分布 若不是正态分布, 可以用正态分布来近似(n130和 n230)
( x1 - x2 ) - (m1 - m 2 )
– 原假设:H0: m1- m2 =0;备择假设:H1: m1- m2 0 检验统计量为
总体1
s1
m1
s2 m2
总体2
抽取简单随机样 样本容量 n1 计算X1
计算每一对样本 的X1-X2
抽取简单随机样 样本容量 n2 计算X2
所有可能样本 的X1-X2
抽样分布
m1- m2
一 平均数差异性检验的基本原理
• 平均数之差的标准误
• 1)两个变量之差的平均数标准误,即相关样本平均数之差 的标准误:
将 F(n1-1,n2-1)称为第一自由度为(n1-1), 第二自由度为(n2-1)的F分布。
四
方差齐性检验
• 对两个总体的方差是否有显著性差异所进行的检验称为方 差齐性(相等)检验。对两个独立样本方差是否齐性,要 进行F 检验。 • 两个独立样本的方差齐性检验(见教材例题)
• 两个相关样本的方差齐性检验(t检验)
z
s s n1 n2
2 1
2 2
~ N (0,1)
三 独立样本平均数差异的显著性检验 2、独立小样本平均数差异的显著性检验
• • 检验具有等方差的两个总体的均值 假定条件 – 两个样本是独立的随机样本 – 两个总体都是正态分布 – 两个总体方差未知但相等s12 s22 检验统计量
t
•
X -X s
1 1 2 2 d d
2 2
n -1
d d 1 1 2 2 2 2
X -X
2 2
n n(n - 1)
•
注意汇合方差、方差齐性的概念
四
方差齐性检验
设X1,X2,…,Xn1是来自正态总体N~(μ1,σ12)的 一个样本,Y1,Y2,…,Yn2是来自正态总体N~(μ1, σ12)的一个样本,且Xi(i=1,2,….n1),Yi (i=1, 2,….n2)相互独立,则