最新极坐标与参数方程测试题(有详解答案)
高中数学极坐标与参数方程大题(详解)
参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。
高中数学极坐标与参数方程练习题及参考答案2023
高中数学极坐标与参数方程练习题及参考答案2023一、选择题:1. 下列哪个不是一个极坐标?A. (2, π/3)B. (-3, 4π/3)C. (2, -5π/6)D. (5, 4π/7)2. 以下哪个函数是参数方程?A. y = 3x + 1B. x^2 + y^2 = 4C. y = sin 2xD. x = t - 1, y = t + 23. 一个曲线的极坐标方程为r = 4 sinθ,该曲线的形状是?A. 玫瑰线B. 半径为4的圆C. 极坐标线段D. 直线二、计算题:1. 已知曲线的极坐标方程为r = 3sinθ,计算该曲线在θ∈[0,π/2]的弧长。
解:由弧长公式可知,弧长需要对r关于θ求导,并同时进行积分操作。
{l = ∫[0,π/2 {√[r^2 + (dr/dθ)^2]}dθ = ∫[0,π/2] {√[9cos^2θ + 9sin^2θ]}dθ= ∫[0,π/2] {3dθ} = 3π/2所以该曲线在θ∈[0,π/2]的弧长为3π/2。
2. 已知曲线的参数方程为 x = t^2 + 2t,y = t^2 - 2t,求该曲线的极坐标方程。
解:根据极坐标与参数方程的转换公式,可得:r^2 = (x-1)^2 + y^2替换x和y,得到:r^2 = [(t^2 + 2t - 1)^2 + (t^2 - 2t)^2]= (t^2 + 2t - 1)^2 + (t^2 - 2t)^2展开式子,得到:r^2 = 2t^4 + 2t^2 + 2因为π是常数,所以就能得到该曲线在极坐标下的表示:r = √[2t^4 + 2t^2 + 2]三、应用题:一艘船沿着曲线r = 2sinθ 前进,求当船越过双极点时速度的大小和方向。
解:当船越过双极点时,θ的值从π- ε 到π+ε (ε接近0),根据速度的定义,得到速度v的表达式:v = ds/dt = √[(dr/dt)^2 + (rdθ/dt)^2]因为θ的变化非常小,所以可认为θ是常数,dθ/dt = 0。
极坐标与参数方程测试题(有详解答案)
极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标与参数方程经典练习题 带详细解答
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程. 8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标参数方程大题(含答案)
1、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程; (2与圆交于点,求线段的长.2、在直角坐标系中,以原点为极点,点的,点,曲线.(1和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.3、在平面直角坐标系中,直线(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为 (1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求xOy C O xC C ,M N MN O A B 22:(1)1C x y -+=AB O l C M AB N ||||2OM ON =l xOy l t O x C l C P C l B A ,4、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线和曲线的普通方程; (2)已知点,且直线和曲线交于两点,求的值5、在平面直角坐标系中,直线经过点,倾斜角为在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)写出直线的参数方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,求.6、在平面直角坐标系中,直线(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为.(1)求直线的极坐标方程及曲线C 的直角坐标方程;(2)若是直线C最大值.xOy C 244x k y k ⎧=⎨=⎩k x l l C (2,0)P l C A B ,||||||PA PB -l ()0,1P x C 4sin ρθ=l C l C A B 、xoy l t x 2sin ρθ=l ()1,A ρθl参考答案1、【答案】(1(2试题分析:(1)由,得到圆的极坐标方程;(2)将直线的极坐标代入,得到,所以试题解析: (1(2得,∴,,∴2、【答案】(1),;(2).试题分析:(1)将代入化简得.同理求出点,的直角坐标分别为,,所以的直角坐标方程为,极坐标方程为;(2)设射线,代入曲线得,代入直线得:,代入求得,即方程为. 试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:所以射线所在直线的直角坐标方程为 考点:坐标系与参数方程.cos ,sin x y ρθρθ==2250ρρ--=2250ρρ--=122ρρ+=125ρρ=-2cos ρθ=sin 3ρθ=3y x =cos ,sin x y ρθρθ==22(1)1x y -+=2cos ρθ=A B (0,3)A AB 3y =sin 3ρθ=:l θα=C 2cos M ρα=AB ||||2OM ON =tan 3α=3y x =A B (0,3)A AB sin 3ρθ=C 2cos ρθ=:l θα=C 2cos M ρα=AB l 3y x =3、【答案】(1(2试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.试题解析:(1得直线得圆的直角坐标方程为把直线的参数方程代入圆的直角坐标方程,得故可设,又直线l ,两点对应的参数分别为,,考点:1、参数方程与普通方程的互化;2、直线与圆的综合问题.4、【答案】(1)(2试题分析:(1)消去曲线C 中的参数可得C 的普通方程,利用极坐标与直角坐标的互化公式可得直线的普通方程.(2)由直线的普通方程可知直线过P ,写出直线的参数方程,与曲线C 的普通方程联立,利用直线参数的几何意义及韦达定理可得结果. 【详解】(1)因为曲线的参数方程为(为参数),所以消去参数,得曲线的普通方程为y x ,y x ,θρcos =x θρsin =y θρcos θρsin 2ρρl C l C 1t 2t B A ,1t 2t 24y x =l l l C 244x k y k ⎧=⎨=⎩k k C 24y x =因为直线所以直线(2)因为直线经过点,所以得到直线(为参数)把直线的参数方程代入曲线的普通方程,得【点睛】本题考查了直角坐标方程与极坐标方程及参数方程的互化,考查了直线参数方程及参数的几何意义,属于中档题.5、【答案】(1)直线(为参数);曲线的直角坐标方程为;(2试题分析:(1)先根据直线参数方程标准式写直线的参数方程,利用化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方试题解析:(1)直线(为参数). ∵,∴,∴,即, 故曲线的直角坐标方程为.l l l 20P (,)l t l C l t C ()2224x y +-=l y sin ,x cos ρθρθ==l t 4sin ρθ=24sin ρρθ=224x y y +=()2224x y +-=C ()2224x y +-=(2)将的参数方程代入曲线的直角坐标方程,得,显然,∴,∴6、【答案】(1,曲线;(2)2试题分析:(1)消去参数可得直线的普通方程,利用公式可把极坐标方程与直角坐标方程互化;(2这个最大值易求.【详解】(1)∵直线(为参数),∴消去参数,得直线由,得直线C的极坐标方程为,即,∴由,,得曲线C的直角坐标方程为.(2)∵在直线C上,l C230t t--=∆>2121,3lt t t t+==-2220x y y+-=cos,sinx yρθρθ==l tlcos,sinx yρθρθ==l2sinρθ=22sinρρθ=222x yρ=+sin yρθ=2220x y y+-=()1,Aρθl2【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公是解题基础,在求论易得,学习时应注意体会.cos,sinx yρθρθ==。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
极坐标与参数方程题型及答案
极坐标与参数方程题型及答案数学选择题:1. 下列哪个极坐标表示点(3, 5)?A. (5, 53.13°)B. (3, 53.13°)C. (5, 37.12°)D. (3, 37.12°)答案:A2. 唯一表示点(-4, 60°)的极坐标是A. (4, 60°)B. (4, 120°)C. (-4, 60°)D. (-4, 240°)答案:C3. 参数方程x = 2cosθ、y = 3sinθ (0 ≤ θ ≤ π/2) 表示的图形是A. 长方形B. 正方形C. 长椭圆D. 圆答案:C4. 必要条件方程x = 1 + cosθ、y = 2 + sinθ (0 ≤ θ ≤ 2π)表示的图形是A. 点B. 圆C. 椭圆D. 双曲线答案:B填空题:1. 将极坐标(4, 240°)转化为直角坐标形式,其对应的坐标为(______, ______)。
答案:(-2, -3.46)2. 给出参数方程x = 2cosθ、y = 5sinθ (0 ≤ θ ≤ π/2) 所表示直线的斜率,其斜率为 _______。
答案:2.5判断题:1. 下列哪些图形可以由参数方程表示?I. 点 II. 圆 III. 双曲线 IV. 三角形A. I、II、IIIB. I、II、IVC. II、III、IVD. I、II、III、IV答案:B2. 唯一表示点(4, 30°)的极坐标是(4, π/6) 。
答案:正确简答题:1. 极坐标系表示的是平面直角坐标系的哪些信息不同?答案:极坐标系表示的是点与极点之间的距离和点与极轴的夹角,而直角坐标系则表示的是点在x、y轴之间的坐标。
2. 怎样将一个极坐标转换为另一个等价的极坐标?答案:若(r, θ)为一个点在极坐标系中的坐标,则其等效于(r, θ + 2kπ) (k 为整数)。
3. 参数方程x = cosθ、y = sinθ 表示的图形是什么?有何特点?答案:参数方程x = cosθ、y = sinθ 表示的是单位圆,其特点是对于任意θ值,点到原点的距离都是1。
极坐标参数方程15道典型题(有答案)
联立方程解得交点坐标为 ………5分
(2)由(1)知: , 所以直线 : ,
化参数方程为普通方程: ,
对比系数得: , ………10分
2.极坐标系与直角坐标系 有相同的长度单位,以原点 为极点,以 轴正半轴为极轴,曲线 的极坐标方程为 ,曲线 的参数方程为 ,( 是参数, 是常数)
(1)求 的直角坐标方程和 的普通方程;
【解答】解:(I)设P(x,y),则由条件知M( , ).由于M点在C1上,
所以 即
从而C2的参数方程为
(α为参数)
(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ= 与C1的交点A的极径为ρ1=4sin ,
射线θ= 与C2的交点B的极径为ρ2=8sin .
所以|AB|=|ρ2﹣ρ1|= .
(Ⅱ)设MN的中点为P,求直线OP的极坐标方程.
解:(1)将极坐标方程ρcos =1化为:
ρcosθ+ ρsinθ=1.
则其直角坐标方程为: x+ y=1,M(2,0),N(0, ),其极坐标为M(2,0),N .
(2)由(1)知MN的中点P .
直线OP的直角坐标方程为y= x,化为极方程为:ρsinθ= ·ρcosθ.
(Ⅱ)设P(2cosθ, sinθ),则|AP|= =2-cosθ,
P到直线l的距离d= = .
由|AP|=d得3sinθ-4cosθ=5,又sin2θ+cos2θ=1,得sinθ= , cosθ=- .
故P(- , ).…10分
4..在极坐标系Ox中,直线C1的极坐标方程为ρsinθ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|·|OM|=4,记点P的轨迹为C2.
极坐标与参数方程含答案
极坐标系与参数方程一.高考真题1.设b a b a b a +=+∈则,62,,22R 的最小值( C )A .22-B .335-C .-3D .27-2.在极坐标系中,圆心在()2,π且过极点的圆的方程为( B )A.ρθ=22cosB.ρθ=-22c o sC.ρθ=22sinD.ρθ=-22s i n3.极坐标方程ρ=cos θ与ρcos θ= 12的图形是( B )A.C.D.4.极坐标方程ρ2cos2θ=1所表示的曲线是( D )A .两条相交直线B .圆C .椭圆D .双曲线5.在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 2 .6.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( B )(A )0 (B )1 (C )2 (D )27.在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t t y t x ∈⎩⎨⎧-=+=参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 (0,2) ,圆心到直线l 的距离为22.二.极坐标与参数方程 知识点回顾及练习(一)极坐标1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例1:在平面直角坐标系中,方程1y x 22=+所对应的图形经过伸缩变换⎩⎨⎧='='3y y 2x,x 后的图形所对应的方程是19422='+'y x .例2: 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy 3x,x 后,曲线C 变为曲线9y 9x 22='+',则曲线C 的方程是122=+y x例3:在同一平面直角坐标系中,使曲线2sin3x y =变为曲线sinx y =的伸缩变换是⎪⎩⎪⎨⎧='='y y x x 2132.极坐标系的概念如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对( , )叫做点M 的极坐标.例1:极坐标系中,点M )4,4(π表示的意思是 在正方向45°处的距极点距离为4的点。
极坐标与参数方程专项训练及详细答案
一.选择题(共4小题)1.在极坐标系中,圆C :ρ2+k 2cos ρ+ρsin θ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4,﹣)引圆ρ=4sin θ的一条切线,则切线长为( ). B C二.填空题(共11小题) 5.极坐标系下,直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为 _________ .7.在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=13.在平面直角坐标下,曲线,曲,若曲线C 1、C 2有公共点,则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|.15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值.17.在平面直角坐标系xOy中,圆C 的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()在直线所以,即2.过点A(4,﹣)引圆ρ=4sinθ的一条切线,则切线长为(),运算求得结果.)即==43.在平面直角坐标系xOy中,点P的坐标为(﹣1,1),若取原点O为极点,x轴正半轴为极轴,建(|OP|=﹣.∴圆心的极坐标二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是1.解:直线,即x+y=圆心到直线的距离等于=6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为.d=|CQ||PQ|=d+r=故答案为:7.(2004•上海)在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d=.,)化成直角坐标方程为()==故填:8.极坐标方程所表示曲线的直角坐标方程是.解:∵极坐标方程=59.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 .=,,根据中点坐标的性质可得中点对应的参数为中点的距离为×…故答案为:.10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 4 .,我们可以求出直线的一般方程,代入点到圆心距为.所以11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为1 .2|x 则由•,|x |x 12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=.解:把曲线化为普通方程得:=,即把曲线联立得:,消去,﹣.213.在平面直角坐标下,曲线,曲线,若曲线C 1、C 2有公共点,则实数a 的取值范围为 . 解:曲线曲线∴,﹣22,故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|. 的方程为∴的直角坐标方程:(Ⅱ),即由于所以15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= 7 .(其中×t=7=0三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.)=2化简为:ρ,即===﹣17.在平面直角坐标系xOy 中,圆C 的参数方程为(θ为参数),直线l 经过点P (1,1),倾斜角,(1)写出直线l 的参数方程;(2)设l 与圆圆C 相交与两点A ,B ,求点P 到A ,B 两点的距离之积. 化为普通方程为,把直线,∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.的距离为=。
极坐标与参数方程测试题及答案
极坐标与参数方程测试一、选择题(每题 4 分)1.点 M 的极坐标 (5,2) 化为直角坐标为(C )3A . (5 , 5 3 ) B .(5, 53) C .(5,5 3) D .(5,5 3)222222222.点 M 的直角坐标为 (3, 1) 化为极坐标为(B )A . (2, 5 )B. (2, 7 ) C .(2,11 ) D . (2, )66663.已知曲线 C 的参数方程为x 3t(t 为参数 ) 则点 M 1 (0,1), M 2 (5,4) 与曲线 Cy 2t21的地点关系是( A )A . M 1 在曲线 C 上,但 M 2不在。
B . M 1不在曲线C 上,但 M 2 在。
C . M 1 , M 2都在曲线 C 上。
D. M 1, M 2 都不在曲线 C 上。
4.曲线 5 表示什么曲线( B)A .直线B.圆C.射线D .线段5.参数方程x t 1(t 为参数 ) 表示什么曲线(C )y1 2 tA .一条直线B.一个半圆C .一条射线D .一个圆x 3 cos)6.椭圆1( 为参数 ) 的两个焦点坐标是 (By5sinA . (-3 , 5) , (-3 , -3)B .(3 ,3) ,(3,-5)C .(1 ,1), (-7 , 1)D .(7 ,-1) , (-1 ,-1)7.曲线的极坐标方程 ρ=4sin θ 化 成直角坐标方程为 ( A)A . x 2+(y+2) 2=4B . x 2+(y-2) 2=4C . (x-2) 2+y 2=4D . (x+2) 2+y 2=48.极坐标方程 4sin2θ=3 表示曲线是 (D)A.两条射线 B .抛物线C.圆D.两条订交直线x 2 cosD ) 9.直线: 3x-4y-9=0 与圆:,( θ为参数 ) 的地点关系是 (y2sinA.相切 B .相离C.直线过圆心 D .订交但直线可是圆心10.双曲线x2tanC ) y 1( θ为参数 ) 的渐近线方程为 (2 secA.y 11( x2) B .y 1 x 22C.y 12( x 2) D .y 12(x 2)二、填空题(每题 5 分,共 20 分)x t 12 t11.双曲线y t11tx cos12.参数方程1cosy sin1cos 的中心坐标是。
极坐标与参数方程测试题(有详解答案)
极坐标与参数方程测试题(有详解答案) 极坐标与参数方程测试题1.直线y=2x+1的参数方程是()A、x=2t-1,y=4t+1(t为参数)B、x=t^2,y=2t+1(t为参数)C、x=sinθ,y=2t-1D、x=t-1,y=2sinθ+1(θ为参数)2.已知实数x,y满足x^3+cosx-2=π,8y^3-cos2y+2=π,则x+2y=()A。
π/2B。
πC。
-π/2D。
-π3.已知M(-5,3),下列所给出的不能表示点的坐标的是()A、(5,-3)B、(5,4π/3)C、(5,-2π/3)D、(-5,-5π/4)4.极坐标系中,下列各点与点P(ρ,θ)(θ≠kπ,k∈Z)关于极轴所在直线对称的是()A。
(-ρ,θ)B。
(-ρ,-θ)C。
(ρ,2π-θ)D。
(ρ,2π+θ)5.点P1,-3,则它的极坐标是A、(2,π/3)B、(2,4π/3)C、(2,-π/3)D、(2,-4π/3)6.直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(x=3+cosθ。
y=sinθ)(θ为参数)和曲线C2:ρ=1上,则AB的最小值为( ) A。
1B。
2C。
3D。
47.参数方程为x=t+1.y=2(t为参数)表示的曲线是()A.一条直线B.两条直线C.一条射线D.两条射线8.若直线{t为参数}与直线4x+ky=1垂直,则常数k=()A。
-6B。
-1/11C。
6D。
119.极坐标方程ρ=4cosθ化为直角坐标方程是()A。
(x-2)+y=4B。
x+y=4C。
x+(y-2)=4D。
(x-1)+(y-1)=410.柱坐标(2,2π/3,1)对应的点的直角坐标是()A。
(-1,3,1)B。
(1,-3,1)C。
(3,-1,1)D。
(-3,1,1)11.已知二面角$\alpha-\ell-\beta$的平面角为$\theta$,点$P$为空间一点,作$PA\perp\alpha$,$PB\perp\beta$,$A$,$B$为垂足,且$PA=4$,$PB=5$,设点$A$、$B$到二面角$\alpha-\ell-\beta$的棱$\ell$的距离分别为$x$、$y$。
极坐标与参数方程综合练习(三套带答案)
极坐标与参数方程综合练习(一)1、圆5cos ρθθ=-的圆心是( )A.45,3π⎛⎫--⎪⎝⎭ B.5,3π⎛⎫- ⎪⎝⎭ C.5,3π⎛⎫⎪⎝⎭D.55,3π⎛⎫-⎪⎝⎭答案:A解析:5 cos ρθθ=-两边同乘以,ρ得25 5 ,cos sin ρρθρθ=-即2250x y x +-+=,故圆心的直角坐标为5(,2,半径为5,结合该点的位置知该点的一个极坐标是4(5,)3π-. 2、已知曲线C 的极坐标方程为6sin ρθ=,以极点为平面直角坐标系的原点,极轴为轴正半轴,直线l的参数方程为1{2x y t=-= (t 为参数),则直线l 与曲线C x 相交所得弦长为( )A.1 B.2 C.3 D.4 答案:D解析:曲线C 的直角坐标方程为2260x y y +-=,即()2239,x y +-=直线1{2x y t=-=的直角坐标方程为210,x y -+=∵圆心C 到直线l的距离d ==∴直线l 与圆C相交所得弦长为 4.== 3、极坐标方程) 2cos R θρ=∈表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线答案:A解析:由 2cos θ=6πθ=或116θπ=,又R ρ∈,故为两条过极点的直线.4过点且斜率为的直线的参数方程为( )A.(为参数)B.(为参数)C.(为参数)D.(为参数)答案: A解析: 因为倾斜角满足所以所以所求参数方程为(为参数).5、在极坐标系中,点关于直线1cos ρθ=(2,)2π的对称点的极坐标为________.答案:)4π解析:结合图形不难知道点(2,)2π关于直线1cos ρθ=的对称点的极坐标为)4π.6、直线2{1x t y t =+=-- (t 为参数)与曲线3cos {3sin x y αα== (α为参数)的交点个数为__________. 答案:2解析:直线方程可化为10x y +-=, 曲线方程可化为229x y +=,故圆心(0,0),半径3r =,∵圆心到直线10x y +-=的距离3d ==<, ∴直线与圆有2个交点.7、在直角坐标xOy 中,圆221:4C x y +=,圆()222:24C x y -+=.1.在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示);2.求圆1C 与2C 的公共弦的参数方程.答案:1.由222cos ,{sin ,x y x y ρθρθρ==+=圆1C 的极坐标方程为2ρ=, 圆2C 的极坐标方程为4cos ρθ=.解2,{4cos ρρθ==得2ρ=,3πθ=±,故圆1C 与圆2C 交点的坐标为2,3π⎛⎫ ⎪⎝⎭,2,3π⎛⎫- ⎪⎝⎭.注:极坐标系下点的表示不唯一. 2.方法一:由cos ,{sin x y ρθρθ==得圆1C 与圆2C交点的直角坐标分别为(,(1,.故圆1C 与圆2C的公共弦的参数方程为(1,{x t y t=≤≤= . (或参数方程写成1,{,x y y y =≤≤=方法二:将1x =代入cos ,{sin ,x y ρθρθ==得cos 1ρθ=,从而1cos ρθ=. 于是圆1C 与圆2C 的公共弦的参数方程为1,{tan 33x y ππθθ=⎛⎫-≤≤ ⎪=⎝⎭. 解析:8、在平面直角坐标系xOy 中,求过椭圆5cos {3sin x y ϕϕ== (ϕ为参数)的右焦点,且与直线42{3x ty t=-=- (t 为参数)平行的直线的普通方程.答案:由题设知,椭圆的长半轴长5a =,短半轴长3b =,从而4c ==, 所以右焦点为()4,0?.将已知直线的参数方程化为普通方程220x y -+=. 故所求直线的斜率为12, 因此其方程为()14?2y x =-, 即240x y --=.极坐标与参数方程综合练习(二)1、在极坐标系中,过点()1,0并且与极轴垂直的直线方程是( ) A.cos ρθ= B.sin ρθ= C.cos 1ρθ= D.sin 1ρθ= 答案:C解析:在直角坐标系中,过点()1,0并且与极轴垂直的直线方程是1x =, 其极坐标方程为cos 1ρθ= , 故选 C.点评:本题考查极坐标方程与直角坐标方程的互化,求出直角坐标系中直线的方程是解题的关键.2、参数方程()()cossin,22{0211sin 2x y θθθπθ=+<<=+表示()A.双曲线的一支,这支过点11,2⎛⎫ ⎪⎝⎭B.过点11,2⎛⎫⎪⎝⎭的抛物线C.双曲线的一支,这支过点11,2⎛⎫- ⎪⎝⎭D.过点11,2⎛⎫- ⎪⎝⎭的抛物线答案:B解析:因为cossin 22x θθ=+,所以21sin x θ=+,因为()11sin 2y θ=+,所以212y x =,即22x y =,是抛物线.当1x =时,12y =,故抛物线过点11,2⎛⎫ ⎪⎝⎭.3、已知圆A :221x y +=在伸缩变换'2,{'3x x y y==的作用下变成曲线C ,则曲线C 的方程为( )A.22149x y += B.22194x y += C.22123x y += D.22132x y += 答案:A解析:由题意得1',2{1',3x x y y ==代入圆的方程得22''149x y +=,即双曲线C 的方程为22149x y +=. 4、在平面直线坐标系xOy 中,点P的直角坐标为(1,,若以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,则点P 的极坐标可以是( )A.1,3π⎛⎫- ⎪⎝⎭ B.42,3π⎛⎫ ⎪⎝⎭ C.2,3π⎛⎫- ⎪⎝⎭ D.42,3π⎛⎫-⎪⎝⎭答案:C解析:∵在直角坐标系xOy 中,点P 位于第四项限,2ρ==,tan θ=P 的极坐标可以是2,3π⎛⎫- ⎪⎝⎭.5、圆2cos ,{2sin 2x y θθ==+的圆心坐标是( )A.(0,2)B.(2,0)C.(0,-2)D.(-2,0) 答案:A解析:本题考查参数方程与普通方程的互化.消去参数θ,得圆的方程为()2224x y +-=,所以圆心坐标为()0,2.6、极坐标方程) cos R θρ=∈表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线 答案:A解析:由 cos θ=6πθ=或116θπ=,又R ρ∈,故为两条过极点的直线.7、已知直线l 的参数方程为2{4x a ty t=-=- (t 为参数),圆C 的参数方程为4cos ,{4sin x y θθ== (θ为参数).若直线l 与圆C 有公共点,则实数a 的取值范围是__________.答案:⎡-⎣解析:易知直线l 的普通方程为220x y a --=,圆C 的普通方程为2224x y +=,由题意知圆C 的圆心到直线l 的距离4d =≤,解得a -≤≤.8、在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,?A B 两点,则AB =__________。
极坐标与参数方程综合测试题(含答案)
极坐标与参数方程1. 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是{y =t −3x=t+1(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为( ) A. √14 B. 2√14 C. √2 D. 2√22. 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cosθ+sinθ)=-2,曲线C 2的参数方程为{x =t 2y =2√2t (t 为参数),则C 1与C 2交点的直角坐标为______.3. 已知直线l :{x =5+√32ty =√3+12t(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为ρ=2cosθ. (1)将曲线C 的极坐标方程化为直坐标方程;(2)设点M 的直角坐标为(5,√3),直线l 与曲线C 的交点为A ,B ,求|MA |•|MB |的值.4. 已知直线l 的参数方程为{x =2+ty =√3t(t 为参数),曲线C 的极坐标方程为 ρ2cos2θ=1.(1)求曲线C 的直角坐标方程.(2)求直线l 被曲线C 截得的弦长.5. 在平面直角坐标系xOy 中,圆C 的参数方程为{y =−2+3sint x=1+3cost(t 为参数).在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴),直线l 的方程为√2ρsin (θ-π4)=m ,(m ∈R ) (1)求圆C 的普通方程及直线l 的直角坐标方程; (2)设圆心C 到直线l 的距离等于2,求m 的值.6. 在直角坐标系xOy 中,曲线C 1:{x =tcosαy =tsinα(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2√3cosθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高二文科极坐标与参数方程测试题
一、选择题
1.直线12+=x y 的参数方程是( )
A 、⎩⎨⎧+==1
22
2
t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)
C 、 ⎩⎨⎧-=-=121
t y t x (t 为参数) D 、⎩
⎨
⎧+==1sin 2sin θθy x (t 为参数) 2.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )
A .一条射线和一个圆
B .两条直线
C .一条直线和一个圆
D .一个
3.已知⎪⎭⎫ ⎝
⎛
-3,5πM ,下列所给出的不能表示点的坐标的是( )
A 、⎪⎭
⎫
⎝
⎛-
3,5π
B 、⎪⎭
⎫ ⎝
⎛34,
5π
C 、⎪⎭
⎫
⎝
⎛-
32,5π D 、⎪⎭
⎫ ⎝
⎛-
-35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线
对称的是( )
A .(-ρ,θ)
B .(-ρ,-θ)
C .(ρ,2π-θ)
D .(ρ,2π+θ)
5.点()
3,1-P ,则它的极坐标是
( )
A 、⎪⎭
⎫
⎝⎛3,
2π B 、⎪⎭
⎫ ⎝
⎛3
4,
2π
C 、⎪⎭
⎫
⎝
⎛-
3,2π
D 、⎪⎭
⎫ ⎝
⎛-
3
4,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲
线13cos :sin x C y θθ
=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).
A.1
B.2
C.3
D.4
7.参数方程为1()2
x t t t y ⎧
=+
⎪⎨⎪=⎩为参数表示的曲线是( )
A .一条直线
B .两条直线
C .一条射线
D .两条射线
8.(
)124123x t
t x ky k y t
=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )
A.-6
B.16
-
C.6
D.16
9.极坐标方程4cos ρθ=化为直角坐标方程是( )
A .2
2
(2)4x y -+= B.22
4x y +=
C.22(2)4x y +-=
D.22
(1)(1)4x y -+-=
10.柱坐标(2,
3
2π
,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)
11.(坐标系与参数方程选做题)已知直线l 的参数方程为1,
42.x t y t =+⎧⎨=-⎩
(参数t ∈R ),
圆C 的参数方程为2cos 2,
2sin .
x y θθ=+⎧⎨
=⎩(参数[]0,2θπ∈),
则直线l 被圆C 所截得的弦长为( )
A. 5
B.5
C.5
D.5
12.
4sin()4x π=+
与曲线1
212
x y ⎧=⎪⎪⎨
⎪=⎪⎩的位置关系是( )。
A 、 相交过圆心
B 、相交
C 、相切
D 、相离
二、填空题
13.在极坐标()θρ, ()πθ20<≤中,曲线θρsin 2=与1cos -=θρ的交点的极坐标为
____________.
14.在极坐标系中,圆2ρ=上的点到直线()
6sin 3cos =+θθρ的距离的最小值
是 .
15.(坐标系与参数方程选讲选做题) 圆C :x =1+cos θ
y =sin θ
⎧⎨⎩(θ为参数)的圆心到直线
l
:x =3t y =13t ⎧-⎪⎨-⎪⎩
(t 为参数)的距离为 .
16. A :(极坐标参数方程选做题)以直角坐标系的原点为极点,x 轴的正半轴为极轴,已
知曲线
1C 、2C 的极坐标方程分别为0,3
π
θθ==
,曲线3C 的参数方程为2cos 2sin x y θ
θ
=⎧⎨
=⎩(θ为参数,
且,22ππθ⎡⎤
∈-
⎢⎥⎣⎦
),则曲线1C 、2C 、3C 所围成的封闭图形的面积是 . 三、解答题
17(2013 全国1 文科)选修4—4:坐标系与参数方程 (10分)
已知曲线1C 的参数方程为45cos ,
55sin x t y t
=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正
半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。
(Ⅰ)把1C 的参数方程化为极坐标方程;
(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<)。
18.(2014 全国1 文科)已知曲线194:2
2=+y x C ,直线⎩
⎨
⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;
(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.
19.(2014 全国2 文科) 23.选修4-4:坐标系与参数方程
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为p=2cos θ,θ∈[0,2
π
]。
(I )求C 的参数方程;
(II )设点D 在C 上,C 在D 处的切线与直线l :y=3x+2垂直,根据(I )中你得到的参
数方程,确定D 的坐标。
20.(2015 全国1 文科)选修4-4;坐标系与参数方程
在直角坐标系xOy 中,直线1C :x=2-,圆2C :2
2
(1)(2)1x y -+-=,以坐标原点为极
点,x 轴的正半轴为极轴建立极坐标系。
(1)求1
C ,C 2
的极坐标方程。
(2)若直线C 3的极坐标为θ=4
π
(ρ∈R ),设C 2与C 3的交点为M ,N,求△C 2MN 的面积.
21.(2015 全国 2 文科) 选修4-4:坐标系与参数方程
在直角坐标系xOy 中,曲线 在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线:
,曲线:
.
(1).求与交点的直角坐标 (2).若与相交于点A ,与
相交于点B ,求
的最大值
⎩⎨
⎧<≤≠==)
0,0t (sin cos :1παα
α为参数,t t y t x C
22.《选修4-4:坐标系与参数方程》
在直接坐标系xOy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为
3cos sin x y α
α
⎧=⎪⎨
=⎪⎩ (α为参数) (I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以
x 轴正半轴为极轴)中,点P 的极坐标为(4,)2
π
,判断点P 与直线l 的位置关系;
(II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值
2017高二文科极坐标与参数方程测试题答案
1.C
2.C
3.A
4.C
5.C
6.A
7.D
8.A
9.A 10.A 11.A 12.D 13.⎪⎭⎫ ⎝
⎛43,
2π 14.1 15.2
16.2
3
π 17.
19.解:
(1)C 的普通方程为2
2(x 1)1(01)y y -+=≤≤ 可得C 的参数方程为
=1+cos ,sin ,
{
x t y t =(t 为参数,0t m ≤≤)
(2)设D(1+cost,sint),由(1)知C 是以G(1,0)为圆心,1为半径的上半圆,
因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同。
3,t=3
π
故D 的直角坐标系为(1+cos 3π,sin 3π),即(323)
21
21.
22.
23.
解:(I )把极坐标系下的点P (4,)2
π
化为直角坐标,得P (0,4)
因为点P 的直角坐标(0,4)满足直线l 的方程40x y -+=,
所以点P 在直线l 上, …………5分
(II )因为点Q 在曲线C 上,故可设点Q
的坐标为,sin )αα,
从而点Q 到直线l 的距离为,
d
=2cos()4
π
α++
=
)6
π
α=+
+
由此得,当cos()16
π
α+=-时,d
……10分。