控制工程基础课件

合集下载

控制工程基础课件第一章绪论

控制工程基础课件第一章绪论

19世纪40年代,频率响应法为闭环控制系统提供了一种可行方法,Evans提出并完善了根轨迹法。19世纪50年代末,控制系统设计问题的重点从设计许多可行系统中的一种系统,转到设计在某种意义上的最佳系统。19世纪60年代,数字计算机的出现为复杂系统的基于时域分析的现代控制理论提供了可能。从1960年到1980,确定线性系统、随机系统的最佳控制及复杂系统的自适应和智能控制,都得到充分的研究。从1980年到现在,现代控制理论进展集中于鲁棒控制、H∞控制及其相关课题。
按给定量的特点来分:
(1)连续控制系统:系统的各环节输入量与输出量是信号连续的系统称为~
按系统反应特性来分
(2)离散控制系统:系统的各环节输入量、输出量信号是离散的系统称为~(如采样信号)
三 反馈控制系统的基本组成
1. 组成:给定元件、比较元件、反馈元件、放大元件、执行元件、控制对象及校正元件。
②闭环控制系统:反馈控制系统也称为闭环控制系统,是指系统的输入端与输出端之间存在反馈回路,输出量对控制作用有直接影响,其作用应用反馈来减少偏差,但不能消除偏差。
(1)开环控制系统特点 抗干扰能力差,控制精度低,但结构简单,调整方便,成本低,无自动纠偏能力。
(2)闭环控制系统特点 抗干扰能力强,控制精度高,结构复杂,能自动纠偏。 缺点:由于引入反馈,存在稳定、振荡和超调等问题,设计分析比较复杂。
人工控制恒温箱系统功能框图
总结: 人工控制过程的实质:检测偏差再纠正偏差
(2)自动控制系统
恒温箱的自动控制系统原理图
恒温箱自动控制系统工作原理:(1)恒温箱实际温度由热电偶转换为对应的电压 U2(2)恒温箱期望温度由U1给定,并与实际温度U2 比较得到温度偏差信号△U=U1 - U2(3)温度偏差信号经电压、功率放大后,用以驱动执行电动机,并通过传动机构拖动调压器动触头。当温度偏高时,动触头向减小电流的方向运动,反之,加大电流,直到温度达到给定值为止,此时,偏差△U=0,电机停止转动。

控制工程基础ppt课件第一章 控制工程基础概论

控制工程基础ppt课件第一章 控制工程基础概论
性理论。 1895年:A. Hurwitz提出赫尔维茨稳定性判据。
1932年:H. Nyquist提出乃奎斯特稳定性判据。 1945年:H. W. Bode提出反馈放大器的 一般设计方法
第一章 概论
1948年:N. Wiener发表《控制论》,标志经典 控制理论基本形成;经典控制理论以传递函数 为基础,主要研究单输入—单输出(SISO)系 统的分析和控制问题;
第一章 概论
根据自动控制理论的内容和发展的不同阶 段,控制理论可分为“经典控制理论”和“现 代控制理论”两大部分。
“经典控制理论”的内容是以传递 函数为基础,以频率法和根轨迹法作 为分析和综合系统基本方法,主要研 究单输入,单输出这类控制系统的分 析和设计问题。
第一章 概论 第一颗人造卫星(苏联,1957年)
机电工业是我国最重要的支柱产业之一 ,而传 统的机电产品正在向机电一体化(Mechatronics) 方向发展。机电一体化产品或系统的显著特点是控 制自动化。
机电控制型产品技术含量高,附加值 大,在国内外市场上具有很强的竞争优势, 形成机电一体化产品发展的主流。当前国 内外机电结合型产品,诸如典型的工业机 器人,数控机床,自动导引车等都广泛地 应用了控制理论。
第一章 概论 勇气号、机遇号火星探测器(美国,2004年)
第一章 概论 土卫六探测器(欧盟,2005年)
第一章 概论 坦普尔1号彗星深度撞击(美国,2005年)
第一章 概论
常娥一号(2007年,中国)
第一章 概论
导弹击中卫星(中国,2007年; 美国,2008年)
第一章 概论
“作为技术科学的控制论,对工程技术、
u2 放大器
ua 控制 电机
n
减 速 器

控制工程基础 课件

控制工程基础 课件

2.积分环节
图2-9
积分环节框图
3.理想微分环节
理想微分环节的微分方程为
式中 τ——微分时间常数。 其传递函数为
其框图如图210所示。
3.理想微分环节
图2-10 理想微分环节框图
3.理想微分环节
解 输入ω或dθ/dt,输出是u,在零初始条件下对上式进行拉氏变 换,得
图2-11
测速发电机传递函数框图
由图226a的信号传递关系可写出
3.反馈联结等效变换 图2-26a所示为反馈联结的一般形式,其等 效变换的结构如图2-26b所示。
消去E(s) , B(s)得

3.反馈联结等效变换 图2-26a所示为反馈联结的一般形式,其等 效变换的结构如图2-26b所示。
式(243)为反馈联结的等效传递函数,一般称它为闭环传递函 数。式中分母中的“+”号对应于负反馈,“-”号对应于正反馈。
图说
解 输入ω或dθ/dt,输出是u,在零初始条件下对上式进行拉氏变 换,得
图2-12
积分环节
解 由电压关系知
4.惯性环节 惯性环节的微分方程为
式中 T——惯性时间常数。 惯性环节的传递函数为
惯性环节框图如图213所示。
图2-13
惯性环节框图
图2-14 比例微分环节框图
5.比例微分环节
3.引出点
如图220b所示,它表示信号由该点取出,从同一信号线上取得的信 号,其大小和性质完全相同。
4.比较点(又称综合点)
如图220c所示,其输出量为各输入量的代数和。因此,在信号输 入处要注明它们的极性。 图221为一典型自动控制系统的结构图。
图2-21
典型自动控制系统结构图
2.3.2 系统结构图的画法

清华控制工程基础课件

清华控制工程基础课件

应用场景
广泛应用于控制系统的分析和设 计,如温度控制系统、液位控制 系统等。
描述函数分析法
定义
描述函数分析法是一种通过分析系统非线性特性的频 率响应来分析系统性能的方法。
优点
适用于分析非线性系统的频率响应特性,尤其适用于 分析非线性系统的稳定性。
应用场景
常用于分析非线性控制系统,如音频处理系统、图像 处理系统等。
控制系统的性能和稳定性决定了其能否在各种环境和条件下稳
03
定运行。
控制系统的分类
开环控制系统
输出信号只受输入信号的控制,不受受控对 象输出的影响。
线性控制系统
系统的输出与输入成正比关系,具有线性特 性。
闭环控制系统
输出信号通过反馈回路影响输入信号,形成 一个闭环。
非线性控制系统
系统的输出与输入不成正比关系,具有非线 性特性。
控制系统的性能指标
稳定性
系统在受到扰动后能否恢复到 原始状态的性能指标。
快速性
系统达到设定值的速度快慢的 性能指标。
准确性
系统达到设定值的精确度性能 指标。
抗干扰性
系统在受到外部干扰时能否保 持稳定运行的能力。
02 线性时不变系统
线性时不变系统的定义与性质
线性
系统的输出与输入成正比,比例系数为常数。
极大值原理
极大值原理是求解最优控制问题的另 一种方法,它基于微分方程和变分法 的理论。
05 控制工程应用案例
控制系统在机器人中的应用
机器人定位与导航
利用控制系统实现机器人的精确移动和避障功能, 使其能够在复杂环境中自主导航。
机械臂控制
通过控制系统对机器人机械臂进行精确控制,实 现抓取、搬运、装配等复杂操作。

控制工程基础PPT课件

控制工程基础PPT课件
控制工程基础
教师:都东(清华大学机械系) 教材: 董景新《控制工程基础》 参考:胡寿松《自动控制原理》
绪芳胜彦《现代控制工程》
任课教师介绍
1962年出生。1980年进入清华大学本科学习,1985年以 本专业第一名的成绩取得学士学位,1991年取得博士学 位,并获清华大学优秀博士论文奖。
现受聘担任清华大学机械工程系教授和博士生导师,材 料加工工程与自动化研究所副所长,材料加工过程控制 学科方向责任教授,清华汽车工程开发研究院技术委员 会成员。还是中国机械工程学会高级会员,中国焊接学 会机器人及自动化专业委员会学术主任,美国IEEE会员 和SPIE会员等。
自动控制理论概述
自适应控制 • 当系统特性或元件参数变化或扰动作用很剧烈 时,能自动测量这些变化并自动改变系统结构 和参数,使系统适应环境的变化并始终保持最 优的性能指标。 • 自适应功能:自动辨识、自动判断、自动修正。 • 系统:输入信号的自适应、参数与特性的自适 应、最优自适应、自整定、自学习、自组织、 自修理……
快速性:在系统稳定的前提下,输出量与给定输入量之间 产生偏差时,消除这种偏差过程的快速程度。
准确性:亦称静态精度,是指在调整过程结束后输出量与 给定的输入量之间的偏差,即稳态误差。
自动控制理论概述
最优控制 • 要求控制系统实现对某种性能标准为最好的控制, 这种性能标准称为性能指标(目标函数)。如时 间最优控制(快速最优控制)。 • 最优控制的一般理论包括极大(小)值原理和动态 规划法。
课程学习要求
按时上课,认真听讲 亲笔手书,完成作业 参与实验,撰写报告 闭卷考试,成绩叠加
自动控制理论概述
自动控制:在没有人直接参与的情况下,利用控制装置使被控 对象的某一物理量自动地按照预定的规律运行。

控制工程基础(主编_彭珍瑞_董海棠)课件(精)

控制工程基础(主编_彭珍瑞_董海棠)课件(精)

第一章 绪论内容提要一、基本概念1.控制:由人或用控制装置使受控对象按照一定目的来动作所进行的操作。

2.输入信号:人为给定的,又称给定量。

3.输出信号:就是被控制量。

它表征对象或过程的状态和性能。

4.反馈信号:从输出端或中间环节引出来并直接或经过变换以后传输到输入端比较元件中去的信号,或者是从输出端引出来并直接或经过变换以后传输到中间环节比较元件中去的信号。

5.偏差信号:比较元件的输出,等于输入信号与主反馈信号之差。

6.误差信号:输出信号的期望值与实际值之差。

7.扰动信号:来自系统内部或外部的、干扰和破坏系统具有预定性能和预定输出的信号。

二、控制的基本方式1.开环控制:系统的输出量对系统无控制作用,或者说系统中无反馈回路的系统,称为开环控制系统。

2.闭环控制:系统的输出量对系统有控制作用,或者说系统中存在反馈回路的系统,称为闭环控制系统。

三、反馈控制系统的基本组成1.给定元件:用于给出输入信号的环节,以确定被控对象的目标值(或称给定值)。

2.测量元件:用于检测被控量,通常出现在反馈回路中。

3.比较元件:用于把测量元件检测到的实际输出值经过变换与给定元件给出的输入值进行比较,求出它们之间的偏差。

4.放大元件:用于将比较元件给出的偏差信号进行放大,以足够的功率来推动执行元件去控制被控对象。

5.执行元件:用于直接驱动被控对象,使被控量发生变化。

6.校正元件:亦称补偿元件,它是在系统基本结构基础上附加的元部件,其参数可灵活调整,以改善系统的性能。

四、控制系统的分类(一)按给定信号的特征分类1. 恒值控制系统2. 随动控制系统3. 程序控制系统(二)按系统的数学描述分类1. 线性系统2. 非线性系统(三)按系统传递信号的性质分类1. 连续系统2. 离散系统(四)按系统的输入与输出信号的数量分类1. 单输入单输出系统2. 多输入多输出系统(五)按微分方程的性质分类1. 集中参数系统2. 分布参数系统五、对控制系统的性能要求1. 稳定性:指系统重新恢复稳态的能力。

《控制工程基础》课件-第五章

《控制工程基础》课件-第五章

件:伺服电动机、液压/气动伺服马达等;
测量元件依赖于被控制量的形式,常见测量元
件:电位器、热电偶、测速发电机以及各类传
感器等;
给定元件及比较元件取决于输入信号和反馈信
号的形式,可采用电位计、旋转变压器、机械
式差动装置等等;
4/21/2023
3
第五章 控制系统的设计和校正
放大元件由所要求的控制精度和驱动执行元件 的要求进行配置,有些情形下甚至需要几个放 大器,如电压放大器(或电流放大器)、功率 放大器等等,放大元件的增益通常要求可调。
显然,由于 c arctgTi 90 0 ,导致引
入PI控制器后,系统的相位滞后增加,因此,
若要通过PI控制器改善系统的稳定性,必须有
Kp< 1,以降低系统的幅值穿越频率。
综上所述:PI控制器通过引入积分控制作用以
改善系统的稳态性能,而通过比例控制作用来
调节积分作用所导致相角滞后对系统的稳定性
-20 已校正
-20
-40
'c c -40
()
-90° -180°
(c) ('c)
(rad/s)
若原系统频率特性为L0()、0(),则加入P控
制串联校正后:
L L0 () Lc L0 () 20 lg K p
4/21/2023
0 c 0
19
第五章 控制系统的设计和校正
H(s)
27
第五章 控制系统的设计和校正
()
L()/dB
0
90° 0° -90° -180° -270°
4/21/2023
PD校正装置
-20 0
1/Td c
+20
'c

控制工程基础课件,王益群,孔祥东,第三版第四章

控制工程基础课件,王益群,孔祥东,第三版第四章

K1 + (n m)(σ a ) s n m1 +
不难看出,此系统的根轨迹有 n-m 条分支,它们都是由(σa,j0)出 发的射线,其相角为
180 ( 2q + 1) a = ± nm
第四章 根轨迹法
§4-2 常规根轨迹
如果选择
n m (n m)(σ a ) = ∑ pi ∑ z j i =1 j =1
a 2 K1 却随参量a和K1的值而变化,
从而影响到系统的瞬态性能。
下面讨论a保持常数,开环增益K1改变时的情况。
当 0 ≤ K1 < a 2 时,s1和s2为互不相等的实根。而当 K1 = 0 时, 1 = 0 s 和 s 2 = 2a ,即等于系统的两个开环极点。
2 当 K1 = a 时,则两根为实数且相等,即
第四章 根轨迹法
p =0 G1( s ) =
K1 s ( s + 2a )
§4-1 根轨迹的基本概念
一、根轨迹的基本概念
根轨迹 是指系统特征根(闭环极点)随系统参量变化在s平面上运动而形
成的轨迹。通过根轨迹图可以看出系统参量变化对系统闭环极点分布的 影响,以及它们与系统性能的关系。
下面结合图4-1所示的二阶系统 ,介绍根轨迹的基本概念。 图4-1 二阶系统 系统开环传递函数为 G ( s ) =
第四章 根轨迹法
§4-2 常规根轨迹
对于无穷远处的根轨迹渐近线上的点而言,有限的开环零、极点的区别 是可以忽略的。因此上述系统等效于一个具有m个开环零点和n个开环 极点,并且所有零极点都聚集在σa点的系统。此系统的开环传递函数 P(s)可用下式表示
P( s ) =
(s σ a )
K1
nm

《控制工程基础》课件第2章

《控制工程基础》课件第2章

第2章 系统的数学模型
二、建立系统微分方程的一般步骤
(1) 分析系统和组成系统的各元件(环节)的性质、
第2章 系统的数学模型
(2) 从输入端开始,按照信号的传递顺序,列写系统 各组成元件(环节)的微分方程。对于复杂的系统,不能直 接写出输入量和输出量之间的关系式时,可以引入中间变量, 依据支配系统工作的基本规律,如力学中的牛顿定律、电学 中的克希荷夫定律等,逐个列写出各元件(环节)的微分方 程。另外,在列写各元件(环节)微分方程时,应注意元件
第2章 系统的数学模型
但是,由于目前非线性系统的理论和分析方法还不很成 熟,因此对于某些非本质的非线性系统,在一定条件下可进 行线性化处理,以简化分析。线性化是指将非线性微分方程 在一定条件下近似转化为线性微分方程的过程。一般的线性 化方法是在工作点附近用切线来代替,即将非线性函数在工 作点附近展开成台劳级数,并略去高于一次的项,可得近似 的线性差分方程。上述线性化是以变量偏离预定工作点很小 的假定条件为基础的,即偏差为微量,所以有时也把上述线 性化称之为小偏差线性化。小偏差线性化的几何意义是:在 预期工作点附近,用通过该点的切线近似代替原来的曲线。
J
f
(2-18)
式中,J为等效转动惯量,f为摩擦系数。将式(2-17)、(2-18)
代入式(2-16),得
Ua
La Ki
ddt(J
f )
Ra (J
Ki
f )
Kb

La J La f Ra(J f ) KbKi KiUa
(2-19)
测量环节:
第2章 系统的数学模型
U f Kn
(2-20)
第2章 系统的数学模型
线性系统满足叠加原理。叠加原理说明,两个不同的输 入同时作用于系统的响应,等于两个输入单独作用的响应之 和。因此,线性系统对几个输入量同时作用的响应可以一个 一个地处理,然后对响应结果进行叠加。也就是说,当有几 个输入量同时作用于系统时,可以逐个输入,求出对应的输 出,然后把各个输出进行叠加,即为系统的总输出。另外, 线性系统还有一个重要的性质,就是均匀性,即当输入量的 数值成比例增加时,输出量的数值也成比例增加,而且输出 量的变化规律只与系统的结构、参数及输入量的变化规律有 关,与输入量数值的大小是无关的。

控制工程基础课件,王益群,孔祥东,第三版第二章

控制工程基础课件,王益群,孔祥东,第三版第二章

第二章 控制系统的数学模型
x mF F
i
i
0
§2-1 控制系统的微分方程及线性化方程
二、电气系统的微分方程
电气系统的微分方程根据欧姆定律、基尔霍夫定律、电磁感应 定律等基本物理规律列写。
例2-3 无源电路网络
u 如图2-4所示的系统中, u i (t ) 为输入电压, o (t ) 为输出电压。
数学模型是描述物理系统的数学表达式。
建立数学模型的基本方法:
1.机理分析法 :通过分析系统的内部运动规律,求解 系统输入量与输出量之间的数学关系。 2.系统辨识法 :利用实验数据建立系统输入量与输出 量之间的数学关系。
第二章 控制系统的数学模型
第二章 控制系统的数学模型
§2-1 控制系统的微分方程及线性化方程 §2-2 拉氏变换及反变换 §2-3 传递函数及基本环节的传递函数
第二章 控制系统的数学模型
x mF F
i
i
0
§2-1 控制系统的微分方程及线性化方程
一、机械系统的微分方程
牛顿第二定律:一物体的加速度,与其所受的合外力成 正比,与其质量成反比,而且加速度与合外力同方向(作用在 物体上的合外力与该物体的惯性力构成平衡力系)。用公式可 表示为
z
图2-3 齿轮传动链 a)原始轮系 b)等效轮系
第二章 控制系统的数学模型
§2-1 控制系统的微分方程及线性化方程
根据式(2-3)可得如下动力学方程组
Tm J11 f11 T1 T2 J 2 2 f 2 2 T3 T J f T
根据电磁感应定律,有 em (t ) Ke
do (t ) dt
(2-16)

控制工程基础课件,王益群,孔祥东,第三版第八章

控制工程基础课件,王益群,孔祥东,第三版第八章
幅频特性为
Gh ( j )
相频特性为
sin 2 T (1 - cos T )2

T
sin(T / 2) T / 2
Gh ( j ) arctan
- (1 - cos T ) T T arctan - tan sinT 2 2
第八章 计算机采样控制系统
1 E ( j ) T

根据采样频率 s 的大小, ( j ) 可能有两种情况:一种是 s 2max ,采样信号的 E 频谱不会发生重迭,如图8-6a所示。另一种是s 2max 谱发生重迭,如图8-6b所示。
E * ( j ) E * ( j )
k -
E ( j( k s ))
香农(Shannon)采样定理 只有当 s 2max 时,采样后的离散信号才能保持原连续信 号的信息,可无失真地恢复为原来的连续信号。
第八章 计算机采样控制系统
§8-2 信号的采样与保持 三、保持器
采用时域外推原理的装置。 保持器(Holder): 1.零阶保持器概念 零阶保持器是采用恒值外推规律的保持器。 它的作用是把采样时刻 kT 的采样值e(kT ) 恒定不变地保持(外推)到下一采样时刻 ( k 1)T 。
(n) y(k ) c1(n-1) y(k ) cn -1y(k ) cn y(k )
d 0 (m) r (k ) d1(m-1) r (k ) d n -1r (k ) d n r (k )
第八章 计算机采样控制系统
§8.4 采样控制系统的数学模型
第八章 计算机采样控制系统
§8-3 Z变换和Z反变换
解 因为 F ( s )
a 1 1 - at ,由拉氏反变换知,f (t ) 1 - e ,故由例8-1和 s(s a) s s a

控制工程基础课件第一章

控制工程基础课件第一章
§1.2 自动控制系统的基本概念
反馈(Feedback)就是指输出量通过适当的检测装置将信号全部或一部分返回输入端,使之与输入量进行比较。
反馈控制原理:基于反馈基础上的“检测偏差用以纠正偏差”的原理
负反馈(Negative Feedback)是指反馈信号与系统的输入信号的方向相反的反馈形式。
在开车过程中,司机用眼睛观察转速表上的实际车速并由大脑将实际车速与希望车速进行比较,大脑根据比较后的偏差对脚发出指令,控制油门踏板,从而使实际车速与希望车速一致。在这里人与车构成了一个系统。在该系统中,眼睛将实际车速这一信息送入大脑并与大脑中储存的车速信息进行比较,这一过程就是信息反馈过程。
输入量
输出量
在上述系统中,人直接参与了反馈控制过程,因此这是一个人工反馈控制系统。在自动控制系统中,反馈是用自动控制元件完成的。现以恒温箱温度自动控制为例,说明自动控制系统的控制过程。
输入量
输出量
例:恒温箱控制系统
T
t
二、开环控制与闭环控制
§1.2 自动控制系统的基本控制,如图 输入信号:电流 (时间的函数) 控制装置:开关 ,电阻丝 被控对象:炉子 输出信号:炉温 特点:控制装置只按照给定的输入信号对被控对象进行单向的控制,被控对象的输出不影响控制。
本课程主讲内容:
第一章:控制理论的基本概念 开、闭环,分类,基本要求 第二章:数学模型
微分方程 传递函数 结构图 信号流程图
根据自动控制理论的内容和发展的不同阶段,控制理论可分为“经典控制理论”和“现代控制理论”两大部分。 “经典控制理论”的内容是以传递函数为基础,以频率法和根轨迹法作为分析和综合系统基本方法,主要研究单输入,单输出这类控制系统的分析和设计问题。
“现代控制理论”是在“经典控制理论”的基础上,于60年代以后发展起来的。它的主要内容是以状态空间法为基础,研究多输入,多输出、时变参数、分布参数、随机参数、非线性等控制系统的分析和设计问题。最优控制、最优滤波、系统辨识、自适应控制等理论都是这一领域重要的研究课题,近代计算机技术和现代应用数学的结合,又使现代控制理论在大系统理论和模仿人类智能活动的人工智能控制等诸多领域有了重大发展。

《控制工程基础》课件

《控制工程基础》课件

控制器
控制器是控制系统的核心,用 于接收输入信号,并根据控制 算法产生输出信号,以控制执
行器的动作。
控制器的种类繁多,常见的 有比例控制器、积分控制器
、微分控制器等。
控制器的设计需根据被控对象 的特性和控制要求进行选择和
调整。Leabharlann 执行器01执行器是控制系统的输出环节,用于将控制器的输出信号转换 为实际的控制动作。
《控制工程基础》ppt 课件
CONTENTS 目录
• 控制工程基础概述 • 控制系统的基本组成 • 控制系统的基本性能 • 控制系统的分析与设计 • 控制系统的实现与应用 • 控制工程的前沿技术与发展趋势
CHAPTER 01
控制工程基础概述
定义与特点
定义
控制工程基础是一门研究控制系统的学科,主要涉及控制系 统的基本原理、设计方法、分析技术以及实际应用。
现代控制理论
20世纪60年代末至70年代,现代控制理论开始兴起,它不仅研究 线性系统,还扩展到非线性系统、最优控制、自适应控制等领域。
智能控制
20世纪80年代以来,随着人工智能技术的发展,智能控制在控制工程 领域的应用越来越广泛,涉及模糊控制、神经网络控制等多个方面。
CHAPTER 02
控制系统的基本组成
时间常数以及优化控制算法来减小动态响应时间。
CHAPTER 04
控制系统的分析与设计
数学模型的建立
总结词
描述数学模型在控制系统分析与设计中的重要性。
详细描述
数学模型是描述系统输入与输出之间关系的数学表达式,是控制系统分析与设计的基石。通过建立数学模型,可 以深入了解系统的动态行为,为后续的分析和设计提供依据。
传感器的种类繁多,常见的有热电阻 、热电偶、压力传感器、流量传感器 等。

控制工程基础课件

控制工程基础课件

2023
PART 03
控制系统数学模型
REPORTING
传递函数与方框图表示法
传递函数定义及性质
典型环节传递函数
描述系统输入输出关系的数学模型, 具有线性时不变性。
包括比例环节、积分环节、微分环节 等,是构成复杂系统的基础。
方框图表示法
通过图形化方式表示系统各环节间的 信号传递关系,直观易懂。
信号流图与梅森公式
频率法优化
通过调整系统开环频率特性满足性能 指标要求,如幅值裕度、相位裕度等 。
状态空间法优化
通过状态反馈或输出反馈实现系统性 能优化,如极点配置、最优控制等。
智能优化算法
应用遗传算法、粒子群算法等智能优 化算法对系统性能进行优化设计。
2023
PART 05
控制器设计与实现
REPORTING
PID控制器原理及设计方法
控制工程是研究控制系统设计、分析 和优化的一门工程学科,旨在通过对 系统行为的建模、分析和控制,实现 对系统性能的优化和提升。
控制工程发展
控制工程起源于19世纪末20世纪初的 自动调节理论,随着计算机技术的发 展,控制工程逐渐与计算机科学、电 子工程等学科交叉融合,形成了现代 控制理论和方法体系。
控制工程应用领域
推动科技进步
控制工程作为现代科技的重 要组成部分,不断推动着相 关领域的技术进步和创新发 展。
2023
PART 02
控制系统基本概念
REPORTING
控制系统组成与分类
控制系统组成
包括控制器、执行器、被控对象、检测装置等组成部分。
控制系统分类
根据控制信号的特点,可分为开环控制系统和闭环控制系统;根据系统结构特点,可分为线性控制系 统和非线性控制系统;根据系统参数是否随时间变化,可分为时不变控制系统和时变控制系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档