制备型高效液相

合集下载

生物碱的高效液相色谱分离分析和制备方法-有机化学论文-化学论文

生物碱的高效液相色谱分离分析和制备方法-有机化学论文-化学论文

生物碱的高效液相色谱分离分析和制备方法-有机化学论文-化学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:生物碱是天然产物中药用活性较好的一类化合物, 在分离科学与技术领域, 生物碱的分离一直是一个研究热点和难点问题。

近年来, 随着高效液相色谱填料和分离方法的发展, 生物碱的分离分析和纯化制备有了长足的进步。

该文主要针对碱性化合物的峰形拖尾问题, 综述了高效液相色谱理论的发展和色谱分离技术的进步, 以及近年来新型色谱填料和分离方法在生物碱分离分析和纯化制备中的应用, 并对其前景进行了展望。

关键词:生物碱; 拖尾; 制备色谱; 正交分离;Abstract:Alkaloids are a class of natural compounds with good pharmacological properties.In the field of separation science and technology, alkaloid separation has always been a hot and difficultproblem.In recent years, with the development of high performance liquid chromatography (HPLC) materials and separation methods, great progresses in alkaloid analysis and preparation have been achieved.In this article, the theoretical development and technological advances with respect to peak tailing problems of basic compounds are summarized, and the applications of HPLC in natural alkaloid analysis and preparation are discussed.The further development of HPLC separation on alkaloids is also looked forward.Keyword:alkaloids; peak tailing; preparative HPLC; orthogonal separation;生物碱是天然产物中药用活性和成药性较好的一类化合物, 据统计, 美国FDA批准的1 000多种小分子药物中, 碱性药物的比例超过60%[1]。

制备型高效液相色谱仪操作流程

制备型高效液相色谱仪操作流程

制备型高效液相色谱仪操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、开机准备1. 确保实验室电源稳定,打开制备型高效液相色谱仪电源开关。

高效液相色谱原理和操作详解

高效液相色谱原理和操作详解

高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论 (2)一、液相色谱理论发展简况 (2)二、HPLC的特点和优点 (2)三、色谱法分类 (3)四、色谱分离原理 (3)II.基本概念和理论 (5)一、基本概念和术语 (5)二、塔板理论 (8)三、速率理论(又称随机模型理论) (9)III.HPLC系统 (10)一、输液泵 (11)二、进样器 (13)三、色谱柱 (14)四、检测器 (17)五、数据处理和计算机控制系统 (20)六、恒温装置 (20)IV.固定相和流动相 (20)一、基质(担体) (20)二、化学键合固定相 (22)三、流动相 (23)1.流动相的性质要求 (23)2.流动相的选择 (24)3.流动相的pH值 (24)4.流动相的脱气 (25)5.流动相的滤过 (25)6.流动相的贮存 (26)7.卤代有机溶剂应特别注意的问题 (26)8.HPLC用水 (26)V.HPLC应用 (27)一、样品测定 (27)二、方法研究 (27)附件:高效液相色谱法(HPLC)复核细则 (28)一、对起草单位的要求: (28)二、对复核单位的要求: (28)I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱分析法概述

高效液相色谱分析法概述

高效液相色谱分析技术及其新的发展与应用余建军(陕西科技大学生命科学与工程学院,西安710021)1 高效液相色谱法概述高效液相色谱法(high performanc,liquid chromatography,HPLC)是在经典液相色谱法基础上发展起来的一种新型分离、分析技术。

经典液相色谱法由于使用粗颗粒的固定相,填充不均匀,依靠重力使流动相流动,因此分析速度慢,分离效率低。

新型高效的固定相、高压输液泵、梯度洗脱技术以及各种高灵敏度的检测器相继发明,高效液相色谱法迅速发展起来[1]。

高效液相色谱法与经典液相色谱法比较,具有下列主要特点:(1)高效由于使用了细颗粒、高效率的固定相和均匀填充技术,高效液相色谱法分离效率极高,柱效一般可达每米104理论塔板。

近几年来出现的微型填充柱(内径lmm)和毛细管液相色谱柱(内径0.05umm),理论塔板数超过每米105,能实现高效的分离。

(2)高速由于使用高压泵输送流动相,采用梯度洗脱装置,用检测器在柱后直接检测洗脱组分等,HPLC完成一次分离分析一般只需几分钟到几十分钟,比经典液相色谱快得多。

(3)高灵敏度紫外、荧光、电化学、质谱等高灵敏度检测器的使用,使HPLC 的最小检测量可达10-9~10-11g(4)高度自动化计算机的应用,使HPLC 不仅能自动处理数据、绘图和打印分析结果,而且还可以自动控制色谱条件,使色谱系统自始至终都在最佳状态下工作,成为全自动化的仪器。

(5)应用范围广(与气相色谱法相比)HPLC 可用于高沸点、相对分子质量大、热稳定性差的有机化合物及各种离子的分离分析。

如氨基酸、蛋白质、生物碱、核酸、甾体、维生素、抗生素等。

(6)流动相可选择范围广它可用多种溶剂作流动相,通过改变流动相组成来改善分离效果,因此对于性质和结构类似的物质分离的可能性比气相色谱法更大。

(7)馏分容易收集更有利于制备2 色谱法分类高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等[2]。

制备型高效液相色谱的实验方法

制备型高效液相色谱的实验方法
第 l 0卷
第 4期
实 验 科 学 与 技 术
Exp rme in e a d Te h o o y e i ntSce c n c n lg
VoI 0 No 4 .1 . Au . g 201 2
21 0 2年 8月
制 备 型 高效 液 相 色 谱 的 实 验 方 法
Ab t a t r p r t e hg ef r n e l u d c r mao r p y h s b e i ey a p id i d cn , f e c e c la d fo s r c :P e aa i ih p r ma c q i h o tga h a e n w d l p l n me ii e i h mia n d,p riu v o i e n o at - e l l p l a l e a ae h g d e au d hg u t rd c s T i p p r nr d c d te e p r n a h n f r p r t e h g r a y a p i b et s p r t i h a d d v l ea Jh p r yp o u t. h s a e t u e x e me t e c i g o e a ai i h c o n i i o h i t p v p r r a c iu d c r mao r p y i e a ain o o o h r l x l r d h w t e p ta hn o t n , a d t e wa s o mp o ig eo f m n e l i h o tg a h n s p r t ftc p e o ,e p o e o o s tu e c i g c n e t n h y f i rv n q o s d n s b l is t ay e a d s l e p o l ms Th t d n s a p iai n a i t s w r te gh n d t e t a i t o a l z o v r be . e st e t p l t l i e e sr n te e . u ie n n , c o b ie Ke r s p e a ai e hg e o a c i u d c r ma o a h ; e p r n ;t c p e o ;meh d y wo d : r p r t ih p r r n e l i h o t g p y v fm q r x e me t o o h r l i to

高效液相色谱的发展及现状【文献综述】

高效液相色谱的发展及现状【文献综述】

毕业论文文献综述应用化学高效液相色谱的发展及现状1. 色谱技术的发展历程色谱技术的研究起步于20世纪初,俄国植物学家M.S.Tswett发表了题为“一种新型吸附现象在生化分析上的应用”的研究论文中提到了一种用吸附原理分离植物的方法,并将其命名为色谱法。

但由于这种色谱分离技术速度慢且效率低,没有受到科学界重视。

1938年获得诺贝尔化学奖的德国化学家Kuhn采用Tswett色谱分离技术,在维生素和胡萝卜素的分离和结构的分析中取得了重大成果,色谱法因此得到各国科学家的关注[1]。

可以预想到,在接下来的几十年中,色谱技术更是飞速发展。

随着1940年Martin 和Synge提出液液分配色谱法后,1952年James和Martin发明了气相色谱因此获得1952年诺贝尔化学奖[2]。

紧接着,通过各国科学家的努力,还分别开创了毛细管气相色谱法、毛细管超临界色谱、毛细管电泳和电色谱等分析分离技术,使色谱技术的应用日益广泛。

高效液相色谱出现于20世纪60年代末,由高压泵和键合固定相应用于液相色谱,导致了高效液相色谱的出现。

直至今日,高效液相色谱技术不断发展,并广泛应用在各个领域,成为分析、分离技术中不可或缺的一种尖端科技。

2.高效液相色谱的构成高效液相色谱是近几十年来分析化学中最活跃的领域之一。

这种将分离手段及检测系统相连接的分析分离技术,逐步成为在生化药物、精细化工产品、环境保护等各个领域中主要的物质分析分离方法[3]。

2.1输液系统——泵由于色谱柱很细,填充剂粒度小,因此阻力很大,为达到快速、高效的分离效果,必须要提高柱前压力,以获得高速的液流,使分析、分离更加有效率的进行。

泵为液相提供了流动相流动所必须的压力。

2.2进样系统一般高效液相色谱对于进样系统多采用六通阀进样[4]。

先由注射器将样品常压下注入样品环[5]。

然后切换阀门到进样位置,由高压泵输送的流动相将样品送人色谱柱。

样品环的容积是固定的,因此进样重复性好。

高效液相色谱技术简介(HPLC)

高效液相色谱技术简介(HPLC)

140高效液相色谱技术(HPLC )高效液相色谱(HPLC :High Performance Liquid Chromatography )是化学、生物化学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题必不可缺少的工具。

国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大的份额,增长速度最快。

高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精度高,应用范围广。

适用于分析高沸点、大分子、强极性、热稳定性差的化合物。

其缺点是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗大且有毒性的居多。

目前的发展趋势是向生物化学和药物分析及制备型倾斜。

7.1 基本原理固定相 流动相AB CCBA固定相 —— 柱内填料,流动相 —— 洗脱剂。

HPLC 是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。

通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类:分配色谱:—— 分配系数亲和色谱:—— 亲和力吸附色谱:—— 吸附力离子交换色谱:—— 离子交换能力凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻分配色谱又可分为:正相色谱:固定相为极性,流动相为非极性。

反相色谱:固定相为非极性,流动相为极性。

用的最多,约占60~70%。

固定相(柱填料):固定相又分为两类,一类是使用最多的微粒硅胶,另一类是使用较少的高分子微球。

后者的优点是强度大、化学惰性,使用pH范围大,pH=1~14,缺点是柱效较小,常用于离子交换色谱和凝胶色谱。

最常使用的全孔微粒硅胶(3~10μm)是化学键合相硅胶,这种固定相要占所有柱填料的80%。

它是通过化学反应把某种适当的化学官能团(例如各种有机硅烷),键合到硅胶表面上,取代了羟基(-OH)而成。

高效液相色谱的原理

高效液相色谱的原理

所以LC只能用高压输液泵作为流动相的动力。
5.LC的样品回收比较容易,且可规模制备;GC的样品大部分会被破坏。 6.决定GC分离好坏的主要操作条件是固定相、流动相流速和柱温; 决定LC分离好坏的主要 操作条件是固定相、流动相流速和流动 相的组成。 7.在对付复杂样品方面,GC可采用柱温程序升温办法进行组份的分离;LC则采用梯度洗脱 的办法。
液相色谱仪的结构
高效液相色谱法与气相色谱法的比较
仪器的组成方面
液相色谱:
溶质在液相中的扩散系数(10-5cm2/s)很小,因此在色谱柱以外的死空间应尽量小,以 减少柱外效应对分离效果的影响。
气相色谱:
溶质在气相中的扩散系数(10-1cm2/s)大,在使用填充色谱柱时,柱外效应的影响较小, 但是对于毛细管色谱柱也要尽量减少柱外效应对分离效果的影响。
气相色谱
(1)气体流动相为惰性气体,不与被分析的样品发生相互作用,它仅起运载样品的作用, 一般对分离结果好坏没有影响。 (2)气体流动相动力粘度为10-5Pa· s,输送流动相压力仅为0.1~0.5MPa
液相色谱仪的结构
高效液相色谱法与气相色谱法的比较
固定相方面:
液相色谱
(1)分离机理:可依据吸附、分配、筛析、离子交换、亲和等多种原理进行样品的分离, 可供选用的固定相种类繁多。 (2)色谱柱:固定相粒度小为5~10um;填充柱内径3~6mm;柱效为103 ~ 104 ,柱温为 常温。
内径20~50mm,柱长50cm ~ 100cm。
检测部:通常使用紫外检测器
紫外检测器的结构与分析型一样,但流过池采用短光程的
馏分部:馏分收集器
有手动和自动之分
制备HPLC概述—制备泵的耐压
制备HPLC系统因制备柱的填料很细,

高效液相色谱名词解释

高效液相色谱名词解释

附录: 高效液相色谱名词解释氧化铝[Alumina]一种多孔微粒状的铝氧化物[Al203],用作正相吸附色谱的固定相。

氧化铝有高活性碱性表面;10% 的浆态pH 值是10。

用强酸清洗可成功变至中性或酸性范围[浆态pH值分别是7.5 和4 ]。

氧化铝比硅胶吸湿性强。

它的活性根据Brockmann† 级含水量衡量:如活性一级含水1% 。

基线*[Baseline*]仅有流动相从色谱柱通过时色谱图记录的检测器响应信号。

管状柱[Cartridge]一种色谱柱,没有末端装置,只是一个空管,填充材料被两端玻璃简单封口。

固相萃取色谱柱可平行地在真空状态下操作。

高效液相色谱柱放置在支架上,每一端都有流路连接。

色谱柱容易拆换,价廉,比常规的集成末端管体的色谱柱方便。

色谱图*[Chromatogram*]表示分析物流出浓度的图形或检测器响应信号或其他量化信号对时间或洗脱体积的曲线图。

在平面色谱[即:薄层色谱或纸色谱]中,色谱图指含有的分离区域的纸或层。

色谱法*[Chromatography*]一个动态的物理化学分离方法,它利用组分在两相中的分配不同而分离,一种是固定的[固定相],另一种[流动相]相对固定相而移动。

柱体积* [Vc][Column Volume* [Vc]]装填料部分的管路几何体积[管内衡截面积乘以填料床长L]。

色谱柱的颗粒间体积也称为粒间体积,是指流动相在填料床颗粒间占据的体积。

空隙体积[V0]是流动相所占有的总体积,即粒间体积和颗粒内体积[也称为孔隙体积]的总合。

检测器*[Detector*] [见灵敏度]通过测量物理或化学性质[如,紫外/可见光吸收,示差折光率,荧光或传导率],来表示流出物组分变化的器件。

如果检测器的相应信号与样品浓度成线性,通过适当的标准样品校准后,可以定量某个组分。

通常,使用两种不同的检测器对分析有帮助。

这样,可得到样品被分析物的更多确定的或特定的信息。

有些检测器[如,电化学,质谱]是破坏性的;即它们使样品组分发生化学变化。

高效液相色谱分析法

高效液相色谱分析法

现代食品检测技术第一部分——色谱分析——高效液相色谱第七章高效液相色谱分析法High performance liquid chromatograph 第一节高效液相色谱的特点与仪器第二节主要分离类型与原理第三节液相色谱的固定相与流动相第四节影响分离的因素与操作条件的选择第五节新型液相色谱简介2010-1-25第一节高效液相色谱的特点与仪器2010-1-25一、高效液相色谱法的特点在经典的液体柱色谱法基础上,引入了气相色谱法的理论。

在技术上采用了高压泵、高效固定相和高灵敏度检测器,实现了分析速度快、分离效率高和操作自动化。

高效液相色谱法的突出特点:1)高效(柱效约为30000n /米)2)高速(较经典色谱法))3)高压(150 -350*105Pa4)高灵敏度(高灵敏度的检测器:紫外10-9g,荧光:10-11g )2010-1-251. HPLC与经典LC区别主要区别:固定相差别,输液设备和检测手段1)经典LC:仅做为一种分离手段柱内径1~3cm,固定相粒径>100μm 且不均匀;常压输送流动相,柱效低(H↑,n↓);分析周期长、无法在线检测。

2)HPLC:分离和分析柱内径2~6mm,固定相粒径<10μm(球形,匀浆装柱);高压泵输送流动相,柱效高(H↓,n↑);分析时间大大缩短、可以在线检测。

2010-1-252. HPLC与GC差别9相同:兼有分离和分析功能,均可以在线检测9主要差别:分析对象、流动相及操作条件的差别1)分析对象GC:能气化、热稳定性好、且沸点较低的样品;高沸点、挥发性差、热稳定性差、离子型及高聚物的样品不可检测,仅能分析有机物的20%。

HPLC:溶解后能制成溶液的样品,不受样品挥发性和热稳定性的限制;分子量大、难气化、热稳定性差及高分子和离子型样品均可检测,用途广泛,占有机物的80%。

2010-1-252)流动相差别GC:流动相为惰性气体组分与流动相无亲合作用力,只与固定相作用HPLC:流动相为液体流动相与组分间有亲合作用力,为提高柱的选择性、改善分离度增加了因素,对分离起很大作用流动相种类较多,选择余地广流动相极性和pH值的选择也对分离起到重要作用选用不同比例的两种或两种以上液体作为流动相可以增大分离选择性3)操作条件差别GC:加温操作HPLC:室温;高压(液体粘度大)2010-1-25二、液相色谱仪器2010-1-25三、流程及主要部件Process and main assembly of HPLC 1.流程2010-1-252.主要部件(1) 高压输液泵♥主要部件之一,压力:150~350×105Pa。

制备型高效液相色谱的实验方法

制备型高效液相色谱的实验方法

制备型高效液相色谱的实验方法
高效液相色谱法是一种以高效液相色谱仪(HPLC)作为检测仪器的分析技术。

它是一种常规分离技术,在化学、生物和其他领域中被广泛应用,有助于提高分离精度,增强检测灵敏度。

本文主要介绍高效液相色谱法的制备实验步骤。

1.准备仪器。

用于进行高效液相色谱分析所需的仪器包括:高效液相色谱仪(HPLC)、上样系统和样品管等。

在进行实验前,需要先检查仪器并完成校准。

2.准备样品。

根据实验要求从样品容器中取出适量的样品,然后按照标准浓度进行配置,实验者有必要采用准确的体积来取样。

3.设置实验条件。

对实验中所需的参数进行设置,包括柱型、柱温、检出器模式、流动相构成、流速等,并按需要定义实验的时间。

提前进行后台校准。

4.进行实验。

将样品配好的溶液输入HPLC,维持实验的参数,然后开始实验。

实验结束后,自动保存实验结果。

5.结果分析。

根据实验结果,对分析结果进行分析,计算实验所需的一些指标,分析实验结果。

以上就是高效液相色谱法的制备实验步骤,实验者在执行实验时应重视仪器仪表的使用与维护,以确保实验数据的准确性。

《仪器分析》4-高效液相色谱法

《仪器分析》4-高效液相色谱法
精选课件
(4) 示差折光检测器: 是一种中等灵敏度(10–6 g/mL)的通用型检测器。
是利用纯流动相和含有待测组分的流动相之间折射率的 差别进行检测的。
可分为三类:反射式;折射式(偏振式)和干涉式。常 用前两种。
优点:灵敏度适宜,操作简便是一种通用型的检测器; 缺点:对温度变化敏感,不能用于梯度洗脱。 应用范围:聚合物、糖。还用于分析以紫外检测和荧光
精选课件
药典中的液相色谱检测器
精选课件
常用的检测器:
(1) 紫外光度检测器:是一种选择性浓度检测器,仅 对那些在紫外波长有吸收的物质有响应。
作用原理:基于待测试样对特定波长的紫外光有选择 性的吸收,试样浓度与吸光度的关系服从比尔定律。
结构:
1-低压汞灯 2-透镜 3-遮光板 4-测量池 5-参比池 6-紫外滤光片 7-双紫外光敏电阻
精选课件
⑶ 色谱柱 GC柱很长,特别是毛细管柱可长至几十米至上百米,柱效
很高(理论塔板数N = 104~106)。HPLC柱较短,一般为15~25 cm,柱效(理论塔板数N = 103~104),低于GC柱。 ⑷ 检测器
与GC相比,HPLC检测器种类较多。 ⑸ 制备色谱
GC难以制备样品,因为进样量小,难以收集或被破坏。 HPLC可进行制备,即制备色谱。
精选课件
2. 进样系统
在高效液相色谱中,常用的进样方式: 高压阀进样:优点是能用于高压,适于大体积进样,重现性
好;缺点是进样阀进样时需排掉一部分试样,不同的进样 量需用不同的定量管,同时峰的扩展也比注射进样大。 微量注射器进样:也可由微量注射器注入取样环少量样品, 即采用较大体积取样环而进少量试样,进样量由注射器控 制,试样不充满取样环,只填充一部分体积。

高效液相色谱

高效液相色谱

2 高效液相色谱仪
储液器 真空脱液器
高压泵
自动进样器 柱温箱
检测器 馏分收集器
图1 高效液相色谱仪示意图
由输液系统、进样系统、分离系统、检测系统和数据处理系统 组成。
进样系统
分离系统
高压输液系统
图2 高效液相色谱仪示意图
数据处理系统
检测系统
HPLC组成 主要部分:高压输液系统、进样系统、分离 系统和检测系统。
100mg
1g
高效液相色谱与经典液相色谱比较
➢ 与经典液相色谱的工作原 理相同,但使用效能却远 大于经典的液相色谱;
➢ 高效液相色谱又被称为 现代液相色谱。
(1)高柱效:由于新型高效微粒固定相填料的使用,柱效 可达30000块/m理论塔板数;
(2)高灵敏度:在高效液相色谱中常使用的紫外吸收检测 器的最小检测量可达10-9g,而荧光检测器的灵敏度可达10-11 g,非破坏性;
2.2 进样系统
进样系统包括进样口、注射器和进样阀等,把分 析试样有效地送入色谱柱上进行分离。
微量注射器
定量管
采样
进样
六通阀进样器工作原理示意图
手动进样阀
定量管 接头
柱外效应
柱外展宽(柱外效应) :色谱柱外的因素所引 起的峰展宽。主要包括进样系统、连接管道及检测 器中存在死体积。可分柱前和柱后展宽。
高效液相色谱
1 概述
高效液相色谱法(HPLC, high performance liquid chromatography)发展于20世纪60年代末;
它不受样品挥发性的限制,可完成气相色谱法不 易完成的分析任务;
适于分析沸点高、难气化、分子量大、受热不稳 定的有机化合物、生物活性样品,这些化合物约 占有机化合物ห้องสมุดไป่ตู้80%。

18章高效液相色谱法

18章高效液相色谱法

六、反相离子对色谱法
把离子对试剂加入到含水流动相中,被分析组分离 子在流动相中与离子对试剂的反离子(或是称对离子) 生成不带电荷的中性离子对,从而增加溶质与非极性固 定相的作用,使分配系数增加,改善分离效果, 适用于分离可离子化或离子型的化合物。 1、离子对模型
试样离子在流动相中与离子对试剂离解出的反离子 生成不荷电的中性离子对,然后在非极性固定相上产生 保留。
第四节 高效液相色谱分析方法
一、定性和定量分析方法
1、定性方法分为色谱鉴定法和非色谱鉴定法。 2、定量方法常用外标法和内标法进行。 3、主成分自身对照法:
不加校正因子主成分自身对照法: 加校正因子主成分自身对照法: 二、高效液相色谱分离方法的选择 分离模式选择主要依据试样的性质和各种模式的分离 机制。试样的性质包括相对分子量、化学结构、极性和溶 解度等。
(1)化学稳定性好,使用过程中不流失,柱寿命长;
(2)均一性和重现性好;
(3)柱效高,分离选择性好;
(4)适于梯度洗脱;
(5)载样量大. 3、使用注意事项: (1)使用硅胶基质的键合相pH应维持在2-8;硅-碳杂化 硅胶等为基质的键合相pH范围宽(2-12);
(2)不同厂家,不同批号的同类键合相也可表现不同 的色谱特性。
(3)极性键合相:常用氨基、氰基键合相。是分别 将氨丙硅烷基和氰乙硅烷基键合在硅胶是制成。一般用 作正相色谱固定相。 氰基键合相。对双键或含双键的环状化合物有较好 的分离能力。 氨基键合相对糖类化合物的分离选择性好。在酸性 介质中它是一种弱阴离子交换剂,能分离核酸。不宜分 离带羰基的物质
2、键合相的特点
高效液相色谱法的检测器要求:灵敏度高、噪声 低、线性范围宽、重复性好和适用范围广。
1、紫外检测器简介: 灵敏度较高、噪声低、线性范围宽,对流速 和温度的波动不灵敏,还适用于制备色谱。 工作原理:是朗伯比尔定律,即组分的浓度与吸 光度成正比。 2、紫外检测器分类:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制备型高效液相
制备型高效液相色谱是一种快速, 有效的分析 分离工具。本文介绍了制备型高效液相 色谱基础理论及基本装置, 介绍了样品的 预处理和应用实例, 分析了目前制备型高 效液相色谱技术存在的问题并对该技 术未来的发展进行了展望。
2018/8/20
高效液相色谱分析法
High performance liquid chromatography
2. 3色谱柱 相对于分析型色谱, 制备色谱的核心就是色谱柱。为提 供既稳定又高效的色谱柱, 并用小尺寸颗粒进行填充, 最常 用也是最易实现的效果较为理想的是动态轴向压缩柱 ( DACTM )技术[ 9] 。DAC技术为使用者提供了用任一种填料 自己装填色谱柱、方便快速地调整柱长度的可能性。在制备 型HPLC中, 色谱柱的内径可在100 ~ 500mm 之间。一般增 大色谱柱的直径意味着可以承载更多的样品, 从而增加产 量。增加色谱柱的长度则意味着可加入的样品量和分辨率 的增大, 但同时也增加了柱压。研究表明对于难分离物系, 可以采用直径较小的色谱填料, 以提高分离效率, 但在分离 度可以满足分离要求的前提下, 使用较大直径的色谱填料将 更为有利[ 10• • • • • • • • •
1基础理论 人们对色谱基础理论进行不懈的研究, 提出了众多的理 论。其中比较著名的有: 1. 平衡色谱理论。在1940 年由 W ilson[ 3] 提出, 该理论认为在整个色谱过程中, 组分在流动 相和固定相之间的分配平衡能瞬间达成; 2. 塔板理论。在 1941年由M a rtin和Syng e[ 4]提出, 该理论将色谱过程比拟为 蒸馏过程, 把色谱柱看成是由一系列平衡单元! 理论塔板所 组成。在每一个塔板高度内, 组分在流动相和固定相之间的 分配平衡能瞬间达成; 3. 纵向扩散理论。由Am undson[ 5] 等人 通过大量实验提出, 该理论认为在色谱过程中, 组分在流动 相的轴向扩散是影响色谱区域谱带扩张的主要因素, 而有限 的传质速率对区域谱带扩张没有影响; 4. 速率理论。该理论 认为组分在流动相和固定相之间有限的传质速率是影响色谱 区域谱带扩张的主要因素, 而轴向扩散的影响可以忽略; 5. 双 膜理论。Funk等人把流动相和固定相看成是两块相互紧密接 触的平面薄膜, 整个传质阻力为流动相膜的传质阻力和固定 相膜的传质阻力所构成, 组分在界面接触处达到分配平衡。
2018/8/20
制备分离的色谱模型和分析分离的模型相似, 但在具体 操作中两者的指导思想却有着本质的不同。在制备分离中, 人们总是希望在尽可能短的时间里得到尽可能多的纯组分。 欲得到负载必须以分离效果为代价, 即在保持最低分辨率的 前提下, 使柱子超载以得到最大的物料通过量。而分析分离 中在最短时间里得到最大的分离效率则是人们希望得到 的[ 6] 。制备分离选择的是高柱效、高柱容量的色谱柱, 而且 简单大男 使色谱柱在超载状态下工作。所谓超载 , 通常将理论塔板数 下降10%时柱容量[ 7]。较为理想的制备条件的选择包括上 柱量, 容量因子, 选择性以及柱效[ 8]。
• • • • • • • • • •
2. 1输液泵 在制备型HPLC 不需要具有很高的输送压力, 一般为 19. 6MPa。输液泵采用的是恒流的机械往复泵或恒压的气动 放大泵较理想, 因为它们具有较高的输送速率和连续输出溶 剂的能力。然而当采用装入小颗粒固定相的粗柱进行制备 型HPLC时, 例外地需用能提供较大压力的泵。在某些场 合, 所需压力高达150bar, 此时采用薄膜泵较合适。对于内 径较小的制备柱可使用分析型的输液泵, 内径较大的制备 柱, 输液泵所需的输送能力可从分析型柱子所做的实验条件 参数计算出来。
一、液相色谱仪器
流程图
近年来, 从自然资源中寻找具有生物活性化合物的探索 工作日益受到人们的关注。人们在运用高效的筛选方法, 从 植物、海洋生物及微生物中发现新的先导化合物的同时需要 一个快速、有效的分离方法以分离目标化合物, 而色谱技术 是迄今人类掌握的对复杂混合物分离效率最高的一种方法, 能够分离物化性能差别很小的化合物[1] 。分析型H PLC 技 术一经出现就引起广大研究者, 特别是分析化学工作者的高 度重视, 使这项技术在分析应用方面取得了巨大成功。现在 随着人们大规模分离的需要, 制备型高效液相色谱技术也相 应产生了, 并受到了人们越来越广泛的重视。在我国, 该技 术已被列入������ 863 工程生物技术领域的攻关项目中[ 2]。由 于 技术上的原因, 长期以来制备型液相色谱技术发展缓慢, 但 是随着理论研究的深入, 新颖的填料、新的填充方法以及在 仪器和流程上的进展, 近年来该技术获得了很大的发展。
• 2. 2进样系统 • 在制备型H PLC分离中, 可以采用一个进样阀(如六通 • 进样阀) 将较大量的样品方便的注入柱子而不影响流动相 流 • 动。通过更换样品环可以方便的改变进样量, 最大可达 • 10mL。如果使用注射器, 一般采用停留进样技术, 即样品在 • 常压下注入, 然后再从新起动泵。若样品量非常大, 可以采 • 用停留技术, 借助于一台小体积泵将样品定量地注入柱中 。 • 也可采用隔膜进样法, 用注射器将样品定量地注入柱中。
• 2. 4检测器
在现有的检测器中, 示差折光检测器通常适用于制 备分 离, 不过在某些系统中为了准确地检测样品中所有 峰, 往往 需要将示差与紫外分光光度检测器配合使用。也 可用薄层 色谱对高浓度的流出液各流分进行检测, 所以当其 他检测方 法不适用时, 可求助于薄层色谱检测
2018/8/20
2 基本装置 制备型H PLC是一种基于组分在固定相( 柱填料) 和流 动相(淋洗液)中分配系数的微小差异, 当二相作相对运动 时, 样品中的各组分将形成不同的迁移速度的谱带而实现分 离的新型高效分离技术。对于制备型HPLC而言, 装置不像对分析 型HPLC那样关键, 使用不很高级, 价格较低的装置 往往可以获得令人满意的分离效果。 制备型HPLC装置主要由输液泵、进样系统、色谱柱、检 测器、馏分收集器、数据采集与处理系统等部分组成。
相关文档
最新文档