动量守恒常见模型归类练习
动量守恒定律题型总结
2
2
R L1 L2
位移关系:
0 m L1 M L2
t
t
L1 L2 R
速度关系:水平方向动量守恒
0 mv MV
mgR 1 mv2 1 MV 2
2
2
ML2 L1 600 m
位移关系:
0 m L1 M L2
t
t
L1 L2 Lcos60o L
速度关系
0 mvsin600 MV
题型五、相对运动问题 定参考系、定速度
(1)每次射击(一发):设艇的速度为V,
则子弹速度为-(800-v)
P25——3T
0 (M m)V m(800V )
V m 800 0.01800 0.067m / s
M
120
(2)连续射击(10发):设艇的速度为V,
则子弹速度为-(800-v)
0 (M 10m)V 10m(800 V )
v0
AB
AB
v
AB
vA
AB
vA vB=2vA
mv0 = 2MvA+mv= MvA+(M+m)vB
题型四、系统含有两个以上的物体——如6T 19 3
3明确系统的选取
v
甲
乙
M
M
0= (M+m)v1 - (M-m)v2
讨论:球在两车之间抛了若干次,最终落在甲 车上,求两车速度之比。 最终落在乙车上,之比是多少?
研究对象(系统),则此系统在从子弹开始射入木块
到弹簧压缩至最短的整个过程中:( A、动量守恒、机械能守恒
B)
B、动量不守恒、机械能不守恒
C、动量守恒、机械能不守恒
D、动量不守恒、机械能守恒
(完整版)分方向(水平方向)动量守恒的应用常见例题全带
【例1】如图所示,在光滑的水平面上有一物体M,物体上有一光滑的半圆弧轨道,最低点为C,两端A、B一样高.现让小滑块m从A点静止下滑,则()A.m不能到达小车上的B点B.M与m组成的系统机械能守恒,动量守恒C.m从A到B的过程中小车一直向左运动,m到达B的瞬间,M速度为零D.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动变式1:如图所示,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点静止下滑,在此后的过程中,则A.M和m组成的系统机械能守恒,动量守恒B.M和m组成的系统机械能守恒,动量不守恒C.m从A到B的过程中,M运动的位移为mRM+mD.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动例2、(多选)如下图(左)所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度) ( )A.若地面粗糙且小车能够静止不动,当小球滑到圆弧最低点时速度为√2gRB.若地面粗糙且小车能够静止不动,则小球对小车的压力最大3mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为m2gRM(M+m)D.若地面光滑,当小球滑到圆弧最低点时,小车速度为M2gRm(M+m)变式1(多选)如上图(右)所示,将一个内、外侧均光滑的半圆形槽,置于光滑的水平面上,槽的左侧有一个竖直墙壁.现让一个小球自左端槽口A的正上方从静止开始下落,与半圆形槽相切从A点进入槽内,则以下说法正确的是()A.小球在半圆形槽内运动的全过程中,小球与槽组成的系统机械能守恒B.小球在半圆形槽内运动的全过程中,小球与槽组成的系统机械能不守恒C.小球从最低点向右侧最高点运动过程中,小球与槽组成的系统在水平方向动量守恒D.小球离开槽右侧最高点以后,将做竖直上抛运动例3 如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?变式1 如图所示,光滑水平面上有一小车,小车上固定一杆,总质量为M ;杆顶系一长为L 的轻绳,轻绳另一端系一质量为m 的小球.绳被水平拉直处于静止状态(小球处于最左端).将小球由静止释放,小球从最左端摆下并继续摆至最右端的过程中,小车运动的距离是多少?变式2 质量为M 的气球上有一质量为m 的人,共同静止在距地面高为h 的空中,现在从气球中放下一根不计质量的软绳,人沿着软绳下滑到地面,软绳至少为多长,人才能安全到达地面?(忽略空气阻力)例4 如图所示,光滑水平面上有一质量为2M 、半径为R (R 足够大)的圆弧曲面C ,质量为M 的小球B 置于其底端,另一个小球A 质量为M 2,以v 0=6 m/s 的速度向B 运动,并与B 发生弹性碰撞,不计一切摩擦,小球均视为质点,求:(1)小球B 的最大速率;(2)小球B 运动到圆弧曲面最高点时的速率;(3)通过计算判断小球B 能否与小球A 再次发生碰撞。
动量守恒-板块模型习题课
动量守恒定律———板块模型专题训练一1、如图所示,一质量M =3.0kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0kg 的小木块A 。
现以地面为参照系,给A 和B 以大小均为4.0m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,但最后A 并没有滑离B 板。
站在地面的观察者看到在一段时间内小木块A 正在做加速运动,则在这段时间内的某时刻木板对地面的速度大小可能是( ) A.1.8m/s B.2.4m/ C.2.6m/s D.3.0m/s2、质量为2kg 、长度为2.5m 的长木板B 在光滑的水平地面上以4m/s 的速度向右运动,将一可视为质点的物体A 轻放在B 的右端,若A 与B 之间的动摩擦因数为0.2,A 的质量为m=1kg 。
2/10s m g 求:(1)说明此后A 、B 的运动性质 (2)分别求出A 、B 的加速度 (3)经过多少时间A 从B 上滑下(4)A 滑离B 时,A 、B 的速度分别为多大?A 、B 的位移分别为多大? (5)若木板B 足够长,最后A 、B 的共同速度(6)当木板B 为多长时,A 恰好没从B 上滑下(木板B 至少为多长,A 才不会从B 上滑下?)v 3、质量为mB=m 的长木板B 静止在光滑水平面上,现有质量为mA=2m 的可视为质点的物块,以水平向右的速度大小v0从左端滑上长木板,物块和长木板间的动摩擦因数为μ。
求:(1)要使物块不从长木板右端滑出,长木板的长度L 至少为多少?(至少用两种方法求解)(2)若开始时长木板向左运动,速度大小也为v0,其它条件不变,再求第(1)问中的L 。
4、如图所示,在光滑水平面上放有质量为2m 的木板,木板左端放一质量为m 的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离Lv 0 动量守恒定律———板块模型专题训练二1、如图所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练
动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。
A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。
同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。
A 、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。
的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。
A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。
现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。
2动量守恒定律的应用-四种模型
例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C 发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。
例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C Ba b AB v A v B C例题参考答案例3:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量定恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立①②③式,代入数据得v A=2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得m v 0=2m v 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2m v 1+2m v 0=4m v 2 解得v 2=34v 0,方向向右. (2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2m v 21+12×2m v 20=12×4m v 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2m v 21+12×2m v 20=12×4m v 22+2Q 联立以上两式解得E p =116m v 20,Q =116m v 20根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 m v 0=2m v 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 m v 1=2m v 2 12m v 21=ΔE +12(2m )v 22 联立解得ΔE =116m v 20. (ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3 12m v 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348m v 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为 =0.2.求:(1)小车的最终的速度; AB v A v B(2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/s故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤O C a b系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR ) 联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s .。
动量守恒常见模型习题
动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。
(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.<③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞\如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.练习题:1、甲乙两球在水平光滑轨道上同方向运动,已知它们的动量分别是P1=5kg .m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种()!A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2.2、如图所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况()A.甲球速度为零,乙球速度不为零B.两球速度都不为零C.乙球速度为零,甲球速度不为零D.两球都以各自原来的速率反向运动—A HO/OBLP}2L3、有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失.碰后B运动的轨迹为OD曲线,如图所示.(1)已知滑块质量为m,碰撞时间为t ,求碰撞过程中A对B平均冲力的大小.(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道).a.分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;b.在OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45°.求A通过M点时的水平分速度和竖直分速度.@4、如图所示,在同一竖直面上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。
2动量守恒定律的应用-四种模型
例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。
例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C Ba b AB v A v B C例题参考答案例3:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量定恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立①②③式,代入数据得 v A =2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得mv 0=2mv 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2mv 1+2mv 0=4mv 2 解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2mv 21+12×2mv 20=12×4mv 22+Q +E p从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12×4mv 22+2Q联立以上两式解得E p =116mv 20,Q =116mv 2根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 mv 0=2mv 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 mv 1=2mv 2 12mv 21=ΔE +12(2m )v 22 联立解得ΔE =116mv 20.(ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得mv 0=3mv 3 12mv 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348mv 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求: (1)小车的最终的速度;(2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/s故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度O C B a b为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤ 系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR ) 联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s .如有侵权请联系告知删除,感谢你们的配合!。
动量守恒定律10个模型最新模拟题精选训练
动量守恒的十种模型精选训练动量守恒定律是自然界中最普遍、最根本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。
通过对最新高考题和模拟题研究,可归纳出命题的十种模型。
一.碰撞模型【模型解读】碰撞的特点是:在碰撞的瞬间,相互作用力很大,作用时间很短,作用瞬间位移为零,碰撞前后系统的动量守恒。
无机械能损失的弹性碰撞,碰撞后系统的动能之和等于碰撞前系统动能之和,碰撞后合为一体的完全非弹性碰撞,机械能损失最大。
例1. 如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间。
A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态。
现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞。
设物体间的碰撞都是弹性的。
针对训练题1.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m 。
两物块与地面间的动摩擦因数均相同。
现使a 以初速度v 0向右滑动。
此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞。
重力加速度大小为g 。
求物块与地面间的动摩擦因数满足的条件。
2. 如下列图,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。
现让A 球以v 0=2 m/s 的速度向B 球运动,A 、B 两球碰撞后粘在一起继续向右运动并与C 球碰撞,C 球的最终速度v C =1 m/s 。
问:3.如图,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:4.水平光滑轨道AB 与半径为R=2m 竖直面内的光滑圆弧轨道平滑相接,质量为m=0.2kg 的小球从图示位置C(C 点与圆弧圆心的连线与竖直方向的夹角为60°)自静止开始滑下,与放在圆弧末端B 点的质量为M =13kg 的物体M 相碰时,每次碰撞后反弹速率都是碰撞前速率的11/12,设AB 足够长,那么m 与M 能够发生多少次碰撞?5.如下列图,质量均为M =lkg 的A 、B 小车放在光滑水平地面上,A 车上用轻质细线悬挂质量m =0.5kg 的小球。
高中物理在四种常见模型中应用动量守恒定律及参考答案
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL二、反冲和爆炸模型1.对反冲现象的三点说明(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理。
(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总机械能增加。
专题一:动量守恒定律与模型示例配套练习
专题一练习题1、如图所示,质量是M 的木板静止在光滑水平面上,木板长为0l,一个质量为m 的小滑块以初速度v0从左端滑上木板,由于滑块与木板间摩擦作用,木板也开始向右滑动,滑块滑到木板右端时二者恰好相对静止,求:(1)二者相对静止时共同速度为多少?(2)此过程中有多少热量生成?(3)滑块与木板间的滑动摩擦因数有多大?2、如图甲所示,质量mB=1 kg 的平板小车B 在光滑水平面上以v1=1 m /s 的速度向左匀速运动.当t=0时,质量mA=2kg 的小铁块A 以v2=2 m /s 的速度水平向右滑上小车,A 与小车间的动摩擦因数为μ=0.2。
若A 最终没有滑出小车,取水平向右为正方向,g =10m /s2,求:(1)、A 在小车上停止运动时,小车的速度为多大? (2)、小车的长度至少为多少?3、 质量为M 的足够长的木板放在光滑水平地面上,在木板的上表面的右端放一质量为m 的小金属块(可看成质点),如图所示。
木板上表面上的a 点右侧是光滑的,a 点到木板右端的距离为L ,a 点左侧表面与金属块间的动摩擦因数为μ。
现用一个大小为F 的水平拉力向右拉木板,当小金属块到达a 点时立即撤去此拉力。
求:(1)拉力F 的作用时间是多少?(2)最终木板的速度多大?(3)小金属块到木板右端的最大距离为多少? 解:(1)开始时,小金属块静止,对木板进行研究,根据牛顿第二定律:a = Fm 0…①设经时间t 小金属块到达木板上表面的A 点,则:L =12甲at 2…②联立①②解得:t =2m 0LF …③(2)当小金属块到达木板上表面的A 点时,木板的速度为 v 1=at =2FLm 0 …④,此后小金属块和木板相互摩擦直至速度相等的过程中,动量守恒:m 0v l =(m 0+m )v 2 …⑤ 联立④⑤解得,最终木板的速度为:v 2=2Fm 0L m 0+m…⑥(3)小金属块和木板相互摩擦直至速度相等的过程能量守恒:μmgs =12m 0v 21−12(m 0+m )v 22 …⑦联立④⑥⑦解得,小金属块和木板相互摩擦的距离s =FLμg (m 0+m )…⑧小金属块到木板右端的最大距离 s 总=s +L =FLμg (m 0+m )+L …⑨4、质量为2m 的物块B静止在光滑水平面上,有一个轻质弹簧固定其上,另一质量为1m 的物块A,以速度V 撞击轻弹簧,如图1所示,求:(1)、当弹簧压缩量最大时,弹簧具有的最大弹性势能;(2)、把整个碰撞过程视为完全弹性碰撞,则A 、B 碰后各自的速度是多少?5.如图所示,一轻质弹簧的两端分别固定滑块B 、C ,该整体静止放在光滑的水平面上。
动量守恒定律中的典型模型
动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。
设木块对子弹的阻力F恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。
则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。
动量守恒定律的几个典型模型
h 【分类典型例题】(一)动量和冲量的理解1. 如图1所示,一个物体在与水平方向成θ角的拉力F 的作用下匀速前进了时间t ,则( )A .拉力对物体的冲量大小为FtB .拉力对物体的冲量大小为Ft cos θC .摩擦力对物体的冲量大小为FtD .合外力对物体的冲量大小为Ft2.一物体沿光滑固定斜面下滑,在此过程中( )A .斜面对物体的弹力做功为零B .斜面对物体的弹力冲量为零C .物体动能的增量等于重力所做的功D .物体动量的增量等于重力的冲量3.质量为m 的钢球自高处落下,以速率v 1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( ).A .向下,m(v 1-v 2)B .向下,m(v 1+v 2)C .向上,m(v 1-v 2)D .向上,m(v 1+v 2) (二)动量定理的应用4.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于玻璃杯与水泥地的撞击过程中( )A .玻璃杯的动量较大B .玻璃杯受的冲量较大C .玻璃杯的动量变化较大D .玻璃杯的动量变化较快5.从地面上方高h 处分别以相同的速率v 竖直上抛A 球,竖直下抛B 球,A 、B 质量相等。
从抛出到落地两小球动量变化大小的关系是( )A .△P A =△PB B .△P A >△P BC .△P A <△P BD .无法判断6.杂技演员从5 m 高处落下,落到安全网上,经过 s 速度为零。
已知演员的质量为60kg ,g=10m/s 2,求演员从接触网开始到速度为零的过程中受到网的平均作用力为多少?7.设水的密度为 ,水枪口的截面积是S ,水的射速为v ,水平射到煤层速度变为零,求水对煤层的冲力?(三)关于动量守恒定律的适用条件8.如右图所示,A 、B 两物体的质量mA>mB ,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C 上后,A 、B 、C 均处于静止状态.若地面光滑,则在细绳被剪断后,A 、B 从c 上未滑离之前,A 、B 在C 上向相反方向滑动过程中( )A .若A 、B 与c 之间的摩擦力大小相同,则A 、B 组成的系统动量守恒,A 、B 、C 组成的系统动量也守恒。
动量守恒模型练习题
动量守恒模型练习题动量守恒是一个在物理学中非常重要的原理。
它指出,在一个孤立系统中,总动量始终保持不变。
根据动量守恒原理,我们可以解决一系列与动量相关的问题。
为了更好地理解和运用动量守恒模型,我们将通过以下练习题来进行实践。
题一:碰撞问题假设有一个质量为m1的小球以速度v1沿着直线运动,与一个质量为m2的小球以速度v2相向而行,在碰撞后,它们的速度发生了改变。
请问碰撞后两个小球的速度分别是多少?解答:根据动量守恒原理,碰撞前后的总动量保持不变。
我们可以根据以下公式求解:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'其中,v1'和v2'分别表示碰撞后两个小球的速度。
由于碰撞前后两个小球的质量不发生改变,可以得到以下表达式:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2' (1)另外,由于两个小球是相向而行碰撞,可以推导出以下关系:v1' = (m1 - m2)/(m1 + m2) * v1 + 2 * m2 / (m1 + m2) * v2 (2)v2' = 2 * m1 / (m1 + m2) * v1 + (m2 - m1)/(m1 + m2) * v2 (3)将公式(2)和(3)代入公式(1),即可求解碰撞后两个小球的速度。
题二:弹性碰撞问题现在考虑一个弹性碰撞的情况,即碰撞后两个小球的动能也保持不变。
假设有两个质量分别为m1和m2的小球,在碰撞之前它们的速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。
请问碰撞后两个小球的速度分别是多少?解答:在弹性碰撞中,碰撞前后的动能保持不变。
根据动能守恒原理,我们可以得到以下等式:1/2 * m1 * v1^2 + 1/2 * m2 * v2^2 = 1/2 * m1 * v1'^2 + 1/2 * m2 *v2'^2 (4)同样地,由于动量守恒,我们可以得到以下等式:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2' (5)利用公式(5)求解出v1'和v2',然后将其带入公式(4)即可解得碰撞后两个小球的速度。
几种常见的动量守恒模型
习题1:如图所示,质量为m的小物体B连着轻弹簧静 止于光滑水平面上,质量为2m的小物体A以速度v0向右运 动,则 (1)当弹簧被压缩到最短时,弹性势能Ep为多大? (2)若小物体B右侧固定一挡板,在小物体A与弹簧 分离前使小物体B与挡板发生无机械能损失的碰撞,并在 碰撞后立即将挡板撤去,则碰撞前小物体B的速度为多大, 方可使弹性势能最大值为2.5Ep? A
m M L
习题2:如图所示,总质量为M的气球下端悬 着质量为m的人而静止于高度为h的空中,欲使人 能沿着绳安全着地,人下方的绳至少应为多长?
M m h
四、弹簧弹力联系的“两体模型”
注意:状态的把握 由于弹簧的弹力随形变量变化,弹簧 弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动 量关系”和“能量关系”分析求解。复杂 的运动过程不容易明确,特殊的状态必须 把握:弹簧最长(短)时两体的速度相同; 弹簧自由时两体的速度最大(小)。
1、 ab、cd作什么样的运动? 2、 ab、cd的最终速度为多少? 3、回路中产生的热量共有多少?
总结:解碰撞类的动量守恒注意: 1、规律的应用: 动量守恒和能量守恒的综合应用。 2、注意三个制约因素: 动量守恒,能量不增加,运动要合理。 3、会情境迁移:
能把题目中的新的情境转化为自己熟悉 的类型。
A. pA ' 6kgm/s
B. p A ' 3kgm/ s C. pA ' 2kgm/ s D. pA ' 4kgm/ s
pB ' 6kgm/s
pB ' 9kgm/ s
pB ' 14kgm/ s
pB ' 17kgm/ s
例3. 如图所示,光滑水平面上质量为m1=2kg的物
人船模型(解析版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习
动量守恒的十种模型解读和针对性训练人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=mM +m L 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m。
“人船模型”的拓展(某一方向动量守恒)【典例分析】【典例】 如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
答案 (2)maM +m 解析 (1)小球从静止到第一次运动到轨道最低点的过程,小球和凹槽组成的系统水平方向上动量守恒,有0=m v 1-M v 2mgb =12m v 21+12M v 22联立解得v 2(2)根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=ma M +m。
【名师点拨】应用“人船模型”解题的两个关键点(1)“人船模型”的应用条件:相互作用的物体原来都静止,且满足动量守恒条件。
(2)人、船位移大小关系:m 人x 人=m 船x 船,x 人+x 船=L (L 为船的长度)。
【针对性训练】1. (2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
微专题8动量守恒定律中的“四类”常考模型
微专题8动量守恒定律中的“四类”常考模型一、选择题1. 如图所示,带有光滑弧形的小车质量M=2m,放在光滑的水平面上,一质量为m的铁块,以速度v0沿水平轨道向上滑去,至某一高度后再向下返回,则当铁块回到小车右端时将()A. 以速度v0做平抛运动B. 以小于-v0的速度做平抛运动C. 自由下落D. 静止于车上2. 如图所示,一个质量为M的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF,圆弧半径R=1 m.E点切线水平.另有一个质量为m的小球以初速度v0从E点冲上滑块,若小球刚好没跃出圆弧的上端,已知M=4m,取g=10 m/s2,不计摩擦,则小球的初速度v0的大小为()A. 4 m/sB. 5 m/sC. 6 m/sD. 7 m/s3. (2022·扬州中学)如图所示,用轻弹簧连接质量为m的物块A和质量为2m 的物块B,放在光滑的水平面上,A与竖直墙面接触,弹簧处于原长.现用向左的推力缓慢推物块B,当B处于图示位置时静止,整个过程推力做功为W.现瞬间撤去推力,撤去推力后()A. 从撤去推力至A即将离开墙面过程中,A、B及弹簧构成的系统动量守恒B. 从撤去推力至A即将离开墙面过程中,墙面对A的冲量为0C. A离开墙面后弹簧具有的最大弹性势能为WD. A离开墙面后弹簧具有的最大弹性势能为W 34. 如图所示,用长为l的轻绳悬挂一质量为M的沙箱,沙箱静止.一质量为m的弹丸以速度v水平射入沙箱并留在其中,随后与沙箱共同摆动一小角度.不计空气阻力.对弹丸射向沙箱到与其共同摆过一小角度的过程()A. 若保持m、v、l不变,M变大,则系统损失的机械能变小B. 若保持M、v、l不变,m变大,则系统损失的机械能变小C. 若保持M、m、l不变,v变大,则系统损失的机械能变大D. 若保持M、m、v不变,l变大,则系统损失的机械能变大5. 如图所示,水平地面上A、B两个木块用轻弹簧连接在一起,质量分别为2m、3m,静止时弹簧恰好处于原长.一质量为m的木块C以速度v0水平向右运动并与木块A相撞.不计一切摩擦,弹簧始终处于弹性限度内,则碰后弹簧的最大弹性势能不可能为()A. 13m v2B.15m v2C. 112m v2D.415m v26. 如图所示,一轻弹簧的两端与质量分别为m1和m2的两物块甲、乙连接,静止在光滑的水平面上.现在使甲瞬时获得水平向右的速度v0=4 m/s,当甲物体的速度减小到1 m/s时,弹簧最短.下列说法中正确的是()A. 此时乙物体的速度也是1 m/sB. 紧接着甲物体将开始做加速运动C. 甲、乙两物体的质量之比m1∶m2=1∶4D. 当弹簧恢复原长时,乙物体的速度大小也为4 m/s7. 如图甲所示,一块长度为L、质量为m的木块静止在光滑水平面上.一颗质量也为m的子弹以水平速度v0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为()A. 1v0(s+L) B.1v0(s+2L)C.12v0(s+L) D.1v0(L+2s)8. (2022·常州期中)如图所示,质量为m的带有14光滑圆弧轨道的小车静置于光滑水平面上,一质量也为m的小球以速度v0水平冲上小车,到达某一高度后,小球又返回小车的左端,则()A. 此过程小球对小车做的功为18m v2B. 此过程小车受到的总冲量为m v0C. 小球在弧形槽上升的最大高度为v20 2gD. 小球和小车的末速度分别为-v0和2v0二、非选择题9. (2023·中华中学)如图所示,光滑水平地面上放置一个光滑的14圆弧轨道,将一物块从圆弧轨道的最高点无初速度释放.物块质量m=1 kg,圆弧轨道质量M=2 kg,轨道半径为R=0.3 m,圆弧轨道底端距离水平地面的高度h=0.2 m,取g=10 m/s2.求:(1) 物块离开圆弧轨道时的速度大小.(2) 物块落地时,物块和圆弧轨道左端的水平距离.10. 如图所示,质量为M的木块位于光滑水平面上,木块与墙间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,经过一段时间,木块第一次回到A位置,弹簧在弹性限度内.求:(1) 木块第一次回到A位置时速度大小v.(2) 弹簧弹性势能的最大值E p.(3) 此过程中墙对弹簧冲量大小I.11. (2022·南师附中开学考)如图所示,在光滑水平面上通过锁定装置固定一辆质量M=2 kg的小车,小车左边部分为半径R=1.2 m的四分之一光滑圆弧轨道,轨道末端平滑连接一长度L=2.85 m的水平粗糙面,粗糙面右端是一挡板.有一个质量为m=1 kg的小物块(可视为质点)从小车左侧圆弧轨道顶端A点静止释放,小物块和小车在粗糙区域的动摩擦因数μ=0.08,小物块与挡板的碰撞无机械能损失,取g=10 m/s2.(1) 求小物块滑到圆弧轨道末端时轨道对小物块的支持力大小.(2) 若解除小车锁定,让小物块由A点静止释放,求小物块从圆弧末端到与右侧挡板发生第一次碰撞经历的时间.(3) 在(2)问的初始条件下,小物块将与小车右端发生多次碰撞,求整个运动过程中小车发生的位移.。
动量守恒常见模型
mv0 = (m + M )v
在此过程中由能量守恒
1 2 1 fd1 = mv0 − (m + M )v 2 2 2
若木块固定, 若木块固定,由动能定理
1 2 − fd 2 = − mv0 2
由上述各式得
d1 < d 2
点评: 点评:子弹打木块问题的特点及解题一般思路 一般来说都在射击过程应用动量守恒(速度大、 1、一般来说都在射击过程应用动量守恒(速度大、作 用时间短) 用时间短) 都有动能损失(有摩擦阻力) 2、都有动能损失(有摩擦阻力)或转移 3、一般都会应用动量守恒定律和能量守恒定律综合求 解
二、子弹射木块模型
mv1 = (m + M )v
第一颗子弹与木块摆到最高点的过程机械能守恒 1 (m + M )v 2 = (m + M ) gl (1 − cos θ ) 2 第二颗子弹射入木块的过程中动量守恒
mv2 − (m + M )v = (2m + M )v′
第二颗子弹与木块摆到最高点的过程机械能守恒 1 (2m + M )v′2 = (2m + M ) gl (1 − cos θ ) 2
M m= 如图,质量为M的沙袋悬挂静止, 1、如图,质量为M的沙袋悬挂静止,质量为 40 的子弹以速度 射入沙袋并留在其中, 水平 v1 射入沙袋并留在其中,沙袋的最大摆角为 θ 。当沙袋第一 次回到原位置时, 射入沙袋, 次回到原位置时,第二颗相同的子弹以水平速度 v2 射入沙袋,也 v 留在其中, 留在其中,沙袋的最大摆角仍是θ 。求两颗子弹的初速度之比 1 v2 解:在第一颗子弹射入木块的过程中动量守恒
m2 (4)各物体对地位移的表达式 s1 = m1 + m2 l
2019年高考复习:动量守恒专题 题型分类
动量守恒定律专题1.如图所示,三辆相同的平板小车A ,B ,C 成一直线排列,静止在光滑水平地面上,c 车上一个小孩跳到b 车上,接着又立即从b 车跳到a 车上,小孩跳离c 车和b 车时对地的水平速度相同,他跳到a 车上没有走动便相对a 车保持静止,此后( )A. b 车的运动速率为零B. A ,B 两车的运动速率相等C. 三辆车的运动速率相等D. a 、c 两车的运动方向一定相反2、如图所示,甲车质量m1 = m ,在车上有质量为M =2m 的人,甲车(连同车上的人)从足够长的斜坡上高h 处由静止滑下,到水平面上后继续向前滑动,此时质量m2=2m 的乙车正以v 0 的速度迎面滑来,已知h =2v20g ,为了使两车不可能发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度(相对地面)应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看作质点。
水平方向动量守恒1.质量为M 的带有 光滑圆弧轨道的小车静止置于光滑水平面上,如图所示,一质量也为M 的小球以速度v 0水平冲上小车,到达某一高度后,小球又返回小车的左端,则( )A .小球将做自由落体运动B .小球以后将向左做平抛运动C .此过程小球对小车做的功为D .小球在弧形槽上上升的最大高度为 2.如图所示,在光滑的水平面上静止着物体P ,P 上有一个轨道,轨道的右端为一半径为R 的光滑1/4圆弧,左端是长度为R 的直轨道。
一个小滑块Q 以初速度v 0=4 水平向右滑上直轨道,已知P 和Q 质量相等,与直轨道间的动摩擦因数为μ=0.2,P 和Q 的质量均为m ,下列判断正确的是A .Q 不可能冲出P 的圆弧轨道B .Q 第二次经过圆弧最低点时P 的速度最大C .从Q 滑上直轨道到圆弧最高点的过程,系统动量守恒D .从Q 滑上直轨道到圆弧最高点的过程,系统损失的机械能为 mgR3.如图,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒常见模型练习班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞1.如图,一条滑道由一段半径R=0.8 m的14圆弧轨道和一段长为L=3.2 m水平轨道MN组成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2).(1)求A滑块与B滑块碰撞后的速度v A′和v B′;(2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少二、非弹性碰撞2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B=6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求:(1)碰撞结束时小球A的速度v A;(2)小球A与小球B碰撞前的速度v0的大小.三、完全非弹性碰撞3.(2011·高考天津卷)如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t;(2)小球A冲进轨道时速度v的大小.4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。
求:(1) v0的大小(2)爆炸过程炮弹所增加的动能5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动( )A.一定沿v 0的方向飞去B.一定沿v0的反方向飞去C.可能做自由落体运动D.以上说法都不对6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v27.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上8.(双选)光滑水平地面上,A、B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等9.10.一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f.试求从木块开始运动到子弹与木块相对静止的过程中:(1)子弹、木块相对静止时的速度v(2)子弹、木块发生的位移s1、s2以及子弹打进木块的深度l相分别为多少(3)系统损失的机械能、系统增加的内能分别为多少11.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上.现让m1 获得向右的速度v0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ.求长木板的长度至少是多少12.如图所示,长为l、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少13.(2013·龙山中学高三月考)如图所示,有光滑弧形轨道的小车静止于光滑的水平面上,其总质量为M,有一质量也为M的铁块以水平速度v沿轨道的水平部分滑上小车.若轨道足够高,铁块不会滑出,则铁块沿圆弧形轨道上升的最大高度为14.(2011·高考海南卷改编)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h.重力加速度为g.求木块在ab段受到的摩擦力f15.(单选)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒16.(单选)如图所示,A、B两个木块用轻弹簧相连接,它们静止在光滑水平面上,A和B的质量分别是99m和100m,一颗质量为m的子弹以速度v0水平射入木块A内没有穿出,则在以后的过程中弹簧弹性势能的最大值为17.(2010 年湛江二模)如图所示,固定在地面上的光滑圆弧面与车C的上表面平滑相接,在圆弧面上有一个滑块A,其质量为m A=2kg,在距车的水平面高h=1.25 m 处由静止下滑,车C的质量为m C =6kg,在车C的左端有一个质量m B=2kg的滑块B,滑块A与B 均可看做质点,滑块A与B碰撞后黏合在一起共同运动,最终没有从车C上滑出,已知滑块A、B 与车C的动摩擦因数均为μ=,车C与水平地面的摩擦忽略不计.取g=10 m/s2.求:(1)滑块A滑到圆弧面末端时的速度大小.(2)滑块A与B碰撞后瞬间的共同速度的大小.(3)车C的最短长度.动量守恒常见模型练习(参考答案)1、解:(1)设A 与B 相碰前的速度为v A ,A 从圆弧轨道上滑下时机械能守恒,有12mv 2A =mgR ① A 与B 相碰时,动量、机械能守恒 mv A =mv A ′+mv B ′②12mv 2A =12mv A ′2+12mv B ′2③ 由①②③式得v A ′ =0,v B ′=4 m/s.(2)B 碰撞后到达N 点时速度为0,由动能定理得 -fL =0-12mv B ′2⑤其中f =μmg ⑥ 由⑤⑥得μ=.2.解:(1)碰撞结束后小球A 做平抛运动h =12gt 2s =v A t解得v A =3 m/s.(2)两球碰撞前后动量守恒,有Mv 0=mv B +Mv A解得v 0=6 m/s.3.解析:(1)粘合后的两球飞出轨道后做平抛运动,有2R =12gt 2 解得t =2R g. (2)设球A 的质量为m ,碰撞前速度大小为v 1,由机械能守恒定律知12mv 2=12mv 21+2mgR设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知mv 1=2mv 2飞出轨道后做平抛运动,有 2R =v 2t联立以上各式得v =22gR .4.解:(1)爆炸过程动量守恒210)(v m M mv Mv --=解得:s m v /100=(2)增加的动能J Mv v m M mv E k 270021)(2121203221=--+=∆5.C6.解:设小孩的运动方向为正方向.小孩跳离船的过程,由动量守恒定律得mv 1-Mv 2=0解得:v 2=1.5m/s 7.提示:共mv mv 2= p E mv mv +⨯=2222121共10.解:(1)由动量守恒得mv 0=(M +m )v …(2分)子弹与木块的共同速度v =mM +mv 0.(1分) (2)对子弹利用动能定理得-fs1=12mv2-12mv20①(2分)所以s1=Mm M+2m v202f M+m2.(1分)同理对木块有:fs2=12Mv2②(2分)故木块发生的位移为s2=Mm2v202f M+m2(1分)子弹打进木块的深度为:l相=s1-s2=Mmv202f M+m.③(2分)(3)系统损失的机械能ΔE k=12mv20-12(M+m)v2=Mmv202M+m④(2分)系统增加的内能:Q=ΔE k=Mmv202M+m.(2分)11.解:设共同速度的大小为v,长木板的长度为L,由动量守恒定律有m 1v 0=(m 1+m 2)v ①由能的转化和守恒定律有12m 1v 20-12(m 1+m 2)v 2=μm 1gL ② 由①②式联立解得L =m 2v 202μm 1+m 2g.12.解:系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则 mv 2-Mv 1=0在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t =0,即 ms 2-Ms 1=0, 而s 1+s 2=L解得:L M m m S +=1,L Mm MS +=213.解析:选A.由水平方向动量守恒定律得Mv =(M +M )v ′,v ′=v2①由机械能守恒定律得 12Mv 2=12×(2M )v ′2+Mgh ② 由①②联立解得h =v 24g.14.解析:(1)从开始到木块到达最大高度过程:由动量守恒:mv 0=3mv 1由能的转化及守恒:12mv 20=12(3m )v 21+mgh +fL解得:f =mv 20-3mgh3L.15.B 16.A17.解:(1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律有m A gh =12m A v 21代入数据解得v 1=2gh =5 m/s.(2)设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,有 m A v 1=(m A +m B )v 2代入数据解得v 2=2.5 m/s.(3)设车C 的最短长度为L ,滑块A 与B 最终没有从车C 上滑出,三者最终速度相同令其为v 3,根据动量守恒定律有 (m A +m B )v 2=(m A +m B +m C )v 3 ① 根据能量守恒定律有μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 23 ②联立① ② 式代入数据解得L = m.。