【九年级数学竞赛讲座】第17讲 解直角三角形

合集下载

九年级数学解直角三角形 如此简单 5种类型全包括 专题讲解

九年级数学解直角三角形 如此简单 5种类型全包括 专题讲解
解:在RT 中∵ AB=2,BC=
∴ = 即
∴∠A=600
∴∠B=300
根据勾股定理得:AC=
解直角三角形经典题型三:
已知直角三角形中两条边的比,和一条边的长度。求三角形的边。
已知在 中∠C=900,AB=2, ,求AC。
解:因为 所以可设BC=K,则AC=2K,有
即 5K2=4
解得:K1= K2=- (舍去)
已知直角三角形中一个角和一条边,解直角三角形
已知在 中∠C=900,∠A=450,BC=12,解直角三角形。
解:在RT 中∵∠A=450
∴∠B=900-450=450
∵BC=12
∴AC=BC=12
∴ = 即AB=
∴AB= =12
解直角三角形经典题型二:
已知直角三角形中两条边,解直角三角形
已知在 中∠C=900,AB=2,BC= ,解直角三角形。
所以:AC=2K=
解直角三角形变式训练一:(高频考题)
已知:如图RT ,∠B=300,∠ADC=600BD=24求AC
解:∵∠B=300,∠ADC=600
∴∠DAB=300即 是等腰三角形
∴AD=BD=24
在RT 中
∵∠ADC=600
∴ 即 =
∴AC= 24=12
解直角三角形变式训练二:(高频考题)
已知:如图RT ,∠B=300,∠ADC=450BD=24求AC
解:∵∠ADC=450
∴RT 是等腰直角三角形
设AC=x ,则CD=x
在RT 中∵∠B=300BD=24
∴ 即

解得:x=
解直角三解形5种经典题型全概括
解直角三角形必备知识点一:
直角三角形的5个要素:三条边,两个角。

解直角三角形(第1课时)(课件)-九年级数学下册同步精品课件(苏科版)

解直角三角形(第1课时)(课件)-九年级数学下册同步精品课件(苏科版)


∴Leabharlann c==≈34.9 .
°
B
A
c
35°
a
b=20
C
例题讲授
例2 在Rt△ABC中,∠C=90°,a=5,b=20.49 .
(1)求c的值(精确到0.01);(2)求∠A、∠B的大小(精确到0.01°).
解:(1)在Rt△ABC中,根据勾股定理,得
c= + = + . ,
36.87
思考与探索
在Rt△ABC中,
(1)已知∠B和直角边AC,你能求出这个三角形的其他元素吗?
(2)已知AC和斜边AB,你能求出这个三角形的其他元素吗?
(3)已知∠A和∠B,你能求出这个三角形的其他元素吗?
B
知道其中哪些元素,可以求出其余的元素?
C
A
归纳总结
在Rt△ABC中,除直角外,还有a、b、c、∠A、∠B这5个元素.
解:在Rt△ABC中,∠C=90°,∠A=30°,
∴ ∠B=90°-∠A=90°-30°=60°.

∵ sinA= ,



∴ c= =
��°

=10.
∵ tanB= ,

∴ b=a ∙ tanB=5 ∙ tan60°=5 .
还可以利用勾股定理计算,
b= − = − = .
新知巩固
2.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,
c,由下列条件解直角三角形:
(1)∠B=30°,a-b=3 -3;
解:(1)在Rt△ABC中,
∵∠C=90°,∠B=30°,∴∠A
∠C的对边)
新知归纳
已 知 类 型

初中数学竞赛:解直角三角形(附练习题及答案)

初中数学竞赛:解直角三角形(附练习题及答案)

初中数学竞赛:解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC 上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB的长62为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60° B.67.5° C.75° D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】 如图,在△ABC 中,∠=90°,∠BAC=30°,BC=l ,D 为BC 边上一点,tan ∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.专题训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 . 2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 . 4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( ) A .∠1>∠2 B .∠1<∠2 C .∠1=∠2 D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。

2015年初中数学中考总复习全优设计第17课时 直角三角形与锐角三角函数

2015年初中数学中考总复习全优设计第17课时 直角三角形与锐角三角函数

8
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
解直角三角形
1.解直角三角形 (1)解直角三角形的定义 在直角三角形中,由已知元素求出所有未知元素的过程叫做解 直角三角形. (2)解直角三角形的常用关系 ①锐角之间的关系:∠A+∠B=90°; ②三边之间的关系:a2+b2=c2; ③边角之间的关系: sin A=∠A 的对边∶斜边, cos A=∠A 的邻边∶斜边, tan A=∠A 的对边∶∠A 的邻边.
=
a .我们把∠A 的正 b
弦、余弦、正切统称为∠A 的三角函数.
7
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
2.增减性:在 0° 到 90° 之间,正弦值、 正切值随着角度的增大而增 大,余弦值随着角度的增大而减小. 3.取值范围:当∠A 为锐角时,三角函数的取值范围是 0<sin A<1,0<cos A<1,tan A>0. 4.互余两角的函数关系:如果两角互余,则其中一角的正弦等于 另一角的余弦,即:若 α 是一个锐角,则 sin α=cos(90°-α),cos α= sin(90°-α).

与特殊角的三角函数值 有关的计算问题. 以实际生活为背景,以解 答题为题型,利用锐角三 角函数解决简单的实际 问题.
★★★
3
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
直角三角形的概念
定义:有一个角是直角的三角形叫做直角三角形.

2015届九年级数学中考一轮复习教学案:第17课时三角形

2015届九年级数学中考一轮复习教学案:第17课时三角形

第17课时三角形【课时目标】1.理解三角形及其内角、外角、中线、高线、角平分线等概念及性质,了解三角形的稳定性,会画任意三角形的角平分线、中线、高.2.探索并证明三角形的三边关系、三角形的内角和定理及外角性质,并会对三角形进行分类,会进行有关证明和计算.3.掌握线段的垂直平分线的性质定理及逆定理,角平分线的性质定理及逆定理.4.了解等腰三角形的概念,探索并证明等腰三角形的性质定理与判定定理;探索等边三角形的性质定理与判定定理,并会进行有关证明和计算.5.了解直角三角形的概念,探索并掌握直角三角形的性质定理.6.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题.【知识梳理】1.三角形中三边的关系:三角形任意两边之和________第三边;任意两边之差_______第三边.2.三角形中角的关系:(1)三角形的内角和等于________.(2)三角形的一个外角等于与它_______的两个内角的(3)三角形的一个外角________与它_______的任何一个内角.3.三角形中的三条重要线段:(1)三角形的角平分线、中线、高各有_______条,它们都是________.(2)三角形三条角平分线、三条中线均相交于三角形_______部的一点;三角形的三条高相交于一点,这一点可能在三角形的内部(锐角三角形)、顶点(直角三角形)或外部(钝角三角形).4.线段垂直平分线的性质与判定:线段垂直平分线上的点到_______相等;到_______的点在这条线段的垂直平分线上.5.角平分线的性质与判定:角平分线上的点到_______相等;到_______的点在这个角的平分线上.6.等腰(边)三角形:有______________的三角形叫等腰三角形;有三条边相等的三角形叫________.7.等腰三角形的性质:(1)等腰三角形的两底角_______,简称为________.(2)等腰三角形的________、________、________相互重合,简称等腰三角形的“三线合一”.(3)等腰三角形是_______图形,其对称轴是_______.8.等边三角形具有等腰三角形的一切性质,同时还具有以下性质:(1)等边三角形的三个内角_______,每个角都等于________.(2)等边三角形是_______图形,其对称轴有_______条,分别是________.9.等腰三角形的判定:(1)有两边相等的三角形是________.(2)在一个三角形中,如果有两个角相等,那么这两个角所对的边_______,简称为________.10.等边三角形的判定:(1)有三条边相等的三角形是_______.(2)三个角_______的三角形是等边三角形.(3)有一个角是_______的等腰三角形是等边三角形.11.直角三角形的性质:(1)直角三角形的两个锐角________.(2)直角三角形斜边上的中线等于________.(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于________.(4)勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即________.12.直角三角形的判定:(1)有一个角是_______角或两锐角_______的三角形是直角三角形.(2)勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是_________.【考点例析】考点一三角形中三边的关系例1若下列各组值代表线段的长度,则不能构成三角形的是( )A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8提示根据三角形两边之和大于第三边或两边之差小于第三边进行判断.例2等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16 B.18 C.20 D.16或20提示已知等腰三角形的两边长,但没指出哪个是腰哪个是底,故应该分类讨论.考点二三角形内角和定理例3一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形提示利用三角形内角和定理求出三角形中的角,再判断三角形的形状.考点三三角形内角和定理与外角性质的综合运用例4如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠A EC=_______°.提示要求∠AEC的度数,只需求出∠CAE+∠ACE的度数,由于AE、CE分别平分∠DAC、∠ACF,因此只需求出∠DAC+∠ACF的值,此时利用外角性质可知∠DA C+∠ACF=180°+∠B,从而解决了问题.考点四线段垂直平分线的性质.例5如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC的度数为_______°.提示要求∠EBC的度数可利用∠EBC=∠ABC-∠ABE得到.由AB=AC,∠A=36°,利用三角形内角和可求得∠ABC的度数,由线段垂直平分线得到AE=BE,从而有∠ABE=∠A,问题顺利解决.考点五角平分线的性质例6 如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D.若CD=4,则点D到AB的距离是_______.提示因为D在∠BAC的平分线A D上,∠C=90°,所以点D到AC的距离与到AB 的距离相等.考点六等腰三角形的性质例7如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,若∠BAC=70°,则∠BAD=_______°.提示根据等腰三角形的性质:等腰三角形底边上的高、底边土的中线、顶角的平分线互相重合(三线合一),可求得∠BAD的度数,例8 如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( ) A.6 B.7 C.8 D.9提示由角平分线和平行线可得到等腰三角形,从而将MN的长度转化为BM+CN的长.考点七等腰三角形的判定例9如图,AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD.求证:(1) BC=AD;(2)△OAB是等腰三角形.提示通过观察不难发现△ACB△BDA,从而得出BC=AD,及∠CAB=∠DBA,进而推出△OAB是等腰三角形.考点八勾股定理及直角三角形性质的应用例10如图,在矩形ABCD中,AB=3,AD=1.AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )A .(2,0)B .(5-1,0)C .(10-1,0)D .(5,0) 提示 在Rt △ABC 中,由勾股定理得到AC 的长,根据作图可知AC =AM ,从而得到点M 的坐标.例11勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载,如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是由图①放入矩形内得到的,∠BAC =90°,AB =3.AC =4,点D 、E 、F 、G 、H 、I 都在矩形K l M ⊙的边上,则矩形K l M ⊙的面积为 ( )A .90B .100C .110D .121提示 延长AB 交KF 于点O ,延长AC 交GM 于点P ,可得四边形AO 1P 是正方形,然后求出正方形的边长,再求出矩形K l M ⊙的长与宽,最后根据矩形的面积公式列式计算即可得解.【反馈练习】1.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 ( )A .2B .3C .4D .1 82.如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是 ( )A .365B .1225C .94D .3343.如图,在Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,D C =2,则点D 到AB 边的距离是_______.4.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于D 、E .若AB =5,AC =4,则△ADE 的周长是_______.5.(2012.巴中)已知a 、b 、c 是△ABC 的三边长,且满足关系式2220c a b a b --+-=,则△ABC 的形状为_______.6.如图,AE ∥BC ,AE 平分∠DAC .求证:AB =AC .7.如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE =CD ,A D 与BE 相交于点F .(1)求证:△ABE ≌△CAD ;(2)求∠BFD 的度数.参考答案【考点例析】1.A2.C3.D4.66.5°5.36°6.47.358.D9.略 10.C 11.C【反馈练习】1.C 2.A 3.2 4.9 5.等腰直角三角形 6.(1)略 (2)60° 7.(1)略 (2)60°。

《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练

《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练

专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

28.2.1 解直角三角形 课件 2024-2025学年数学九年级下册人教版

28.2.1 解直角三角形  课件  2024-2025学年数学九年级下册人教版
tan A=∠∠AA 的的对邻边边=ab
知1-讲
图示
感悟新知
知1-练
例 1 根据下列所给条件解直角三角形,不能求解的是( )
①已知一直角边及其对角;②已知两锐角;③已知两
直角边;④已知斜边和一锐角;⑤已知一直角边和
斜边.
A. ②③
B. ②④
C. 只有②
D. ②④⑤
感悟新知
知1-练
解题秘方:紧扣解直角三角形中“知二求三”的特征进行 解答. 解:①③④⑤能够求解,②不能求解. 答案:C
知2-练
解:在 Rt△ ABC 中,∠C=90°,AC=2 3,BC=6, ∴AB= AC2+BC2=4 3, tan B=ABCC=263= 33, ∴∠B=30°.∴∠A=90°-30°=60°.
感悟新知
例 3 根据下列条件,解直角三角形:
知2-练
(1)在Rt△ABC中,∠C=90 °,∠A,∠B,∠C所对的边
对乘正切.
“有斜求对乘正弦”的意思是:在一个直角三角形中,
对一个锐角而言,如果已知斜边长,要求该锐角的对边长,
那么就用斜边长乘该锐角的正弦值,其他的意思可类推.
感悟新知
例 2 根据下列条件,解直角三角形:
知2-练
(1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边
分别为a,b,c,a=20,c=20 2;
续表 图形
Rt△ABC
知2-讲
已知条件
解法
一 边 和 一
一直 角边 和一 锐角
一锐角与邻边 (如∠A,b)
一锐角与对边 (如∠A,a)
∠ B = 90° - ∠ A ; a =
b·tan A;c=cosb A
∠ B = 90° - ∠ A ; b =

数学人教版九年级下册解直角三角形及其应用——方位角

数学人教版九年级下册解直角三角形及其应用——方位角

解直角三角形及其应用——方位角和坡度问题在前面我们学习了直角三角形及其应用关于仰角和俯角的问题,我们在解决这类实际问题的时候,首先是要画出平面图形,然后转化为解直角三角形。

那我们今天继续进行解直角三角形及其应用的学习。

现在请看问题1:问题1:一艘轮船在大海上航行,当航行到A处时,观测到小岛B的方向是北偏西35°,那么同时从B处观测到轮船在什么方向?若轮船从A处继续往正西方向航行到C处,此时,C 处位于小岛B 的南偏西40°方向,你能确定C的位置吗?试画图说明.1当航行到A处时,观测到小岛B的方向是北偏西35°。

由这句话知谁是坐标原点?怎样建立直角坐标系?生:A是坐标原点。

上北下南左西又东。

2那么同时从B处观测到轮船在什么方向?由这句话你想到什么呢?谁是坐标原点?B还需满足什么条件?在同一图形中怎样建立直角坐标系?生:需另建立直角坐标系。

以B是坐标原点。

在A的北偏西35°3若轮船从A处继续往正西方向航行到C处,此时,C 处位于小岛 B 的南偏西40°方向,师:由这句话知轮船现在的航行路线?你能确定C的方向吗?你能确定C的具体位置吗?你是怎样想到的?生:往正西方向航行。

B是坐标原点。

正西方向与小岛B的南偏西40方向的交点,就是C点的位置。

我们经过这几个步骤,就把图形画出来了,也把这个问题解决了。

我们回过头来看看,从这个问题中我们学到了什么?生:将实际问题抽象为数学问题:画出平面图形,转化为解直角三角形的问题。

师:解决这个问题的关键就是能画出平面图形。

平面图形一经画出,所有问题就迎刃而解了。

如何画出这样的平面图形呢?生:1 找准坐标原点。

2 能准确地确定问题中提出的各个方位。

刚才同学们总结得很好,这就是今天我们要研究的第一个问题:解直角三角形的应用——方位角的问题。

出示课题。

刚才同学们都表现得非常不错,那我们再来继续下一个问题,看能不能解决呢?问题2 一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的 A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的 B 处,这时, B 处距离灯塔P 有多远(结果取整数)?(1)根据题意,你能画出示意图吗?画出图形后,你想到什么呢?(用哪个知识点解决这个问题呢?)生:可以用解直角三角形的知识解决问题(2)结合题目的条件,你能确定图中哪些线段和角?求什么?怎样求?师:在图上标出已知条件,需要求的量.怎样求?抽学生回答解题思路生:AP=80n mile; ∠APC=90-65=25; ∠A=65 ; ∠B=34;AB⊥PC。

专题. 解直角三角形【十大题型】-九年级数学上册举一反三系列(华东师大版)

专题. 解直角三角形【十大题型】-九年级数学上册举一反三系列(华东师大版)

专题24.2解直角三角形【十大题型】【华东师大版】【题型1直角三角形中直接解直角三角形】【知识点解直角三角形】【变式1-2】(2023·福建泉州·校联考模拟预测)中,3.如图,在ABC(1)若D运动到某个位置时,(2)若点D运动到某个位置时,【变式1-3】(2023秋·广西梧州·九年级统考期末)△中,4.如图,在Rt ABC的值.【变式2-2】(2023·江苏·统考中考真题)7.如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到tan ACB ∠的值是.【变式2-3】(2023秋·上海静安·九年级上海市民办扬波中学校考期中)8.如图,ABC 中,AB AC =CBA ∠相等,如果点C 、D 旋转后分别落在点【题型3网格中解直角三角形】【例3】(2023·湖北武汉·统考三模)9.如图是由小正方形组成的在给定网格中完成画图,画图过程用虚线表示.(1)在图中,点B是格点,先画线段(2)在图中,点B在格线上,过点(3)在图中,点B在格线上,在【变式3-1】(2023秋·江苏苏州·九年级统考期中)10.如图,A,B,C,D均为网格图中的格点,线段【变式3-2】(2023秋·福建泉州·九年级统考期末)11.如图,A、B、C、D是正方形网格的格点,【变式3-3】(2023·湖北武汉·统考模拟预测)12.如图是由小正方形组成的用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点,先将点C 在边AB 上画点G ,使EG BC ∥;(2)在图(2)中,在边AB 上找一点P ,使PA PC =,再在线段AC 上找一点【题型4坐标系中解直角三角形】【例4】(2023·河南洛阳·校联考一模)13.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,∠的图象与菱形对角线AO 交于点D ,连接BD ,当DB x ⊥轴时,k 的值是(A .23-B .33-C .43-D 【变式4-1】(2023·广东湛江·岭师附中校联考一模)14.如图,在ABO 中,AB OB ⊥,3AB =,1OB =,把ABO 绕点点1A 的坐标为.【变式4-2】(1)求直线AB的解析式;(2)若点C在x轴上方的直线AB上,【变式4-3】(2023秋·黑龙江哈尔滨·九年级校考开学考试)16.在平面直角坐标系中,点O为坐标原点,直线(1)如图1,求k的值:(2)如图2,点H在AB上,点F在OB上,连接FH、OH,且【变式5-1】(2023秋·陕西渭南·九年级统考期中)18.如图,在矩形ABCD中,点A.1B.2【变式5-2】【题型6利用解直角三角形求不规则图形的面积】【例6】(2023春·江苏·九年级专题练习)21.在△ABC中,∠B=45°,ACA.42B.42【变式6-1】(2023秋·上海·九年级上海外国语大学附属大境初级中学校考期中)中,22.已知:如图,在ABC(1)试求cos B的值;△的面积.(2)试求BCD【题型7解直角三角形的应用之坡度坡比问题】【例7】(2023·山西阳泉·校联考模拟预测)(1)求斜坡BD 的长;(2)求这台风力发电机AB 的高度(结果取整数)【变式7-1】(2023秋·广西柳州·九年级统考期末)26.如图,某地下车库的入口处有斜坡AB ,它的坡度为()AH AH BC ⊥,为了让行车更安全,现将斜坡的坡角改造为(1)求车库的高度AH ;(2)求点B 与点C 之间的距离(结果精确到1m 【变式7-2】(2023·河北沧州·统考二模)27.某场地的跑道分为上坡、平地、下坡三种类型.一架无人机始终以每分高度匀速向右飞行,在运动员的正上方进行跟踪拍摄.如图为无人机飞行以及运动员运动路径的图像.已知10km 3OA =,1km AB =,OA 的坡度1:3i =(1)求坡面OA 的垂直高度h ;(2)求直线BC 的函数解析式,并求运动员在下坡路段的速度;(3)通过计算说明运动员在O A B C ---上运动的过程中,与无人机距离不超过【题型8解直角三角形的应用之俯角仰角问题】【例8】(2023春·湖南永州·九年级校考开学考试)29.如图,建筑物AB后有一座小山,点处有一凉亭,且凉亭与坡脚距离高(精确到0.1m).(参考数据:︒≈)tan420.9【变式8-1】(2023·河南郑州·校考三模)30.河南省登封市境内的嵩岳寺塔是中国现存年代最久的佛塔,堪称世界上最早的筒体建筑.某校数学社闭的同学利用所学知识来测量嵩岳寺塔的高度,如图,D处利用测角仪测得嵩岳寺塔顶端B的仰角为角为35︒,已知建筑物CD的高为15米,︒≈果精确到0.1m,参考数据:sin350.57【变式8-2】(2023春·山东菏泽·九年级统考期中)31.某校数学兴趣小组借助无人机测量一条河流的宽度方河流的左岸C处的俯角为α,无人机沿水平线为30︒.线段AM的长为无人机距地面的垂直高度,点米.(1)求无人机的飞行高度AM;(结果保留根号)【题型9解直角三角形的应用之方向角问题】【例9】(2023·重庆·九年级专题练习)33.五一节日到来,重庆又一次成为全国火热城市,小明和小亮两人相约去观赏洪崖洞夜景,小明从(1)求AB的长度(结果保留根号)(2)他们在D处汇合的时间恰好为(1)求AC的距离;(结果精确到1m(2)两人准备从B地出发,突然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了偏东22°走了1800m到达D地,根据相关要求,凡是确诊者途经之处家会被划为管控区吗?请说明理由(参考数据:︒≈).tan370.75(1)如图2,当支撑点E在水平线BC上时,支撑点E与前轮轴心B之间的距离(2)如图3,当座板DE与地面保持平行时,问变形前后两轴心BC的长度有没有发生变化?若不变,请通过计算说明;若变化,请求出变化量.(参考数据:sin534 5︒≈,cos533 5︒≈,tan【变式10-2】(2023秋·河北石家庄39.下图是测温员使用测温枪的侧面示意图,其中枪柄垂直.量得胳膊MN=BA=.枪身8.5cm(1)求PMB∠的度数;(2)测温时规定枪身端点,A与额头距离范围为此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(参考数据:sin66.40.92,cos66.4︒≈试卷第21页,共21页。

精品 九年级数学 下册解直角三角形同步讲义+练习16页

精品 九年级数学 下册解直角三角形同步讲义+练习16页
0
10 3 cm,求∠B,AB 及 BC. 3
第 3 页 共 16 页
九年级数学 下册同步讲义
16.在△ABC 中,AB=AC=5,sin∠ABC=0.8,则 BC=
. .
4 0 17.在 Rt△ABC 中,∠C=90 ,tanA= ,BC=8,则△ABC 的面积为 3
0
18.如图,某山坡的坡面 AB=200 米,坡角∠BAC=30 ,则该山坡的高 BC 的长为______米.
九年级数学 下册同步讲义
解直角三角形
第 01 课 三角函数的定义
知识点: 解直角三角形的概念: 在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形 中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。 ∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作 sinA,即 sin A
0
例 2.探索 30 、45 、60 角的三角函数值.
0
0
0
ቤተ መጻሕፍቲ ባይዱ
第 1 页 共 16 页
九年级数学 下册同步讲义
例 3.计算: (1)(1)cos60 + sin 45 -tan34 ·tan56
0 2 0 0 0
(2)已知 tanA=2,求
2 sin A cos A 的值. 4 sin A 5 cos A
0
13.如图,点 E 是矩形 ABCD 中 CD 边上一点,△BCE 沿 BE 折叠为△BFE,点 F 落在 AD 上. (1)求证:△ABE∽△DFE; (2)若 sin∠DFE=
1 ,求 tan∠EBC 的值. 3
第 8 页 共 16 页
九年级数学 下册同步讲义
第 02 课 三角函数综合应用

冀教版九年级上册数学《解直角三角形的应用》教学说课复习课件

冀教版九年级上册数学《解直角三角形的应用》教学说课复习课件

在Rt△AOC中 tan AOC AC
O
OC
AC OC tan 50o 4.5 1.19 5.36
∴AB=AC+BC=1.44+5.36=6.8
D
A
C B
4.5
认识方位角
北 D E
45° 45°
西
C
O
F
B南
H (1)正东,正南,正西,正北 射线OA OB OC OD

A (2)西北方向:_射__线__O_E___
∴CD=BD·tan∠CBD=√3x
在Rt△ACD中,
即 3x 3 20 x 3
tan CAD CD 3 AD 3
解得,x=10
CD 10 3 10
∴渔船不会进入危险区.
北E
C
F
60°
30°
A
20 B
D
两个直角三角形△BCD与 △ACD各用一次三角函数
方法二: 解: AB 30 2 20
解得 PC≈126.8km>100km.
答:计划修筑的这条高速公路不会穿越保护区.
6. 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为 30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离 为120m,这栋高楼有多高(结果精确到0.1m).
分析:我们知道,在视线与水平线所 成的角中视线在水平线上方的是仰角, 视线在水平线下方的是俯角,因此, 在图中,α=30°,β=60°.Rt△ABD中, α=30°,AD=120,所以利用解直角 三角形的知识求出BD;类似地可以求 出CD,进而求出BC.
cos A b c
tan A a b
B
c
a
bC
情景导入

华师大版数学九年级上册《解直角三角形》教学设计5

华师大版数学九年级上册《解直角三角形》教学设计5

华师大版数学九年级上册《解直角三角形》教学设计5一. 教材分析华师大版数学九年级上册《解直角三角形》是学生在学习了平面几何、相似三角形等知识后的进一步拓展。

本节课的主要内容是让学生掌握解直角三角形的方法,理解直角三角形的性质,能够运用勾股定理和锐角三角函数解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对相似三角形、勾股定理等概念有一定的了解。

但学生在解直角三角形时,仍存在对概念理解不深刻、解题方法不灵活、解决实际问题能力不强等问题。

因此,在教学过程中,需要关注学生的知识基础,引导学生理解和掌握解直角三角形的方法,提高解决实际问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的方法,理解直角三角形的性质,能够运用勾股定理和锐角三角函数解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生独立思考、合作交流的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:使学生掌握解直角三角形的方法,能够运用勾股定理和锐角三角函数解决实际问题。

2.教学难点:对直角三角形性质的理解和应用,以及解决实际问题的能力。

五. 教学方法采用问题驱动法、合作学习法、案例教学法等,引导学生通过自主学习、合作交流,主动探究解直角三角形的方法,提高解决实际问题的能力。

六. 教学准备1.教师准备:熟练掌握解直角三角形的相关知识,准备好教学课件、例题、练习题等教学资源。

2.学生准备:预习相关知识,了解直角三角形的概念和性质。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直角三角形的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体课件展示直角三角形的图像,引导学生观察和描述直角三角形的特征。

然后,介绍勾股定理和锐角三角函数的概念,引导学生理解解直角三角形的原理。

【中考数学夺分大模块复习权威课件】-第4模块《几何基础、三角形与全等、相似及解直角三角形》名师大串讲

【中考数学夺分大模块复习权威课件】-第4模块《几何基础、三角形与全等、相似及解直角三角形》名师大串讲
第13讲 几何初步、相交线与平行线
第14讲 三角形与全等三角形 第15讲 等腰三角形 第16讲 直角三角形 第17讲 图形的相似 第18讲 锐角三角函数
第13讲
几何初步、相交线与 平行线
┃考点自主梳理与热身反馈 ┃
考点1 点和线
1.下列说法错误的是 ( D ) A.平面内过一点有且只有一条直线与已知直线垂直 B.两点之间的所有连线中,线段最短 C.经过两点有且只有一条直线 D.经过一点,有且只有一条直线
第13讲┃ 几何初步、相交线与平行线
考点2

1.点 P 在∠MAN 内部,现在四个等式:①∠PAM=∠ NAP; 1 1 ②∠PAN= ∠ MAN;③∠MAP= ∠MAN;④∠MAN= 2 2 2∠ MAP,其中能表示 AP 是角平分线的等式有 ( D ) A. 1 个 B. 2 个 C. 3 个 D.4 个
第13讲┃ 几何初步、相交线与平行线
变式题 如图 13- 7,直线 AB, CD 相交于点 O, OE 平分∠ AOD,若∠ BOD= 100°,则∠ AOE= ________ 40° .
第13讲┃ 几何初步、相交线与平行线
考点3 相交线与对顶角 1. 如图 13- 1,已知直线 AB,CD 相交于点 O,OA 平分 ∠ EOC,∠ EOC= 110°,则∠BOD 的度数是 ( D ) A.25° B.35° C. 45° D. 55°
第13讲┃ 几何初步、相交线与平行线
2.如图 13- 2,直线 AB,CD 相交于点 O,OE⊥ AB, 48° 垂足为 O,如果∠ EOD= 42°,则∠ AOC= _____.
第13讲┃ 几何初步、相交线与平行线
50 2.若∠ α= 40°,则∠ α 的余角是________ °,∠α 的补 140 角是 ________ °.

湘教版九年级(初三)数学上册解直角三角形的应用_课件1

湘教版九年级(初三)数学上册解直角三角形的应用_课件1
PB
∴PB ≈ 289(m) 答:小亮与妈妈相距约289米.


分析:在直角三角形 ABC中,已知了坡度即角α 的正切可求出坡角α,然后 用α的正弦求出对边BC的长.

CALeabharlann ●B解:用α 表示坡角的大小, 由题意可得
tana = 1 = 0.5 , 2
因此α ≈26.57°.
在Rt△ABC中,
∠B =90°,∠A = 26.57°,AC =240 ,
因此 sina =
3 1.732.
解:大树AB的高约为8.4米.
A
D
30
F
60
G B
C
E
中考试题
3.为促进我市经济的快速发展,加快道路建设,某高速
公路建设工程中需修隧道AB,如图,在山外一点C测得BC距 离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的 长.(参考数据:sin54°≈0.81,cos54°≈0.59, tan54°≈1.38, 3 ≈1.73,精确到个位)
∵ BD = 3500 m, AE = 1600 m,
AC⊥BD,∠BAC = 40°,
在Rt△ABC中,
BC BD - AE 0 tanBAC = = = tan 40 AC AC 3500 - 1600 0.8391,即AC 2264 (m ) AC
因此, A,B两点之间的水平距离AC约为2264 m.
解:过点C作CD⊥AB于D, ∵BC=200m,∠CBA=30°, 1 ∴在Rt△BCD中,CD= 2BC=100m, BD=BC•cos30°≈173(m),
在Rt△ACD中,AD≈74(m),
∴AB=AD+BD=173+74=247(m). 答:隧道AB的长为247m.

全国优质课一等奖人教版九年级数学下册《解直角三角形及其应用》公开课课件

全国优质课一等奖人教版九年级数学下册《解直角三角形及其应用》公开课课件
解:∵∠α+∠β=90°∴△ABC为直角三角形
仰角
而AD是水平线,所以AD⊥BC
∴△ABD, △ACD为直角三角形
且∠C= ∠ α=30°, ∠B= ∠ β =60°
勾股定理( + = )
∠A+∠B=90°
sin A=
直角三角形除直角外五个元素只要
知道其中的2个元素(至少有1个是边),
就可以求出其余的3个未知元素。
cos A=
tan A=

∠所对的边
斜边
∠所邻的边
斜边
∠所对的边
邻边
∠所对的边
=


sin B=
=


=
=


=
30°
【问题】尝试说出A,B关于坐标原点O的位置?
点A位于点O北偏东30°位置,点B位于点O南偏西45°位置
A
西
O
45°
B


02
解直角三角形应用举例
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,
热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
3
2
2
2
1
2
tan a
3
3
1
sin a
3
A
b
邻边
a 对边
C
01
解直角三角形
一般地,直角三角形中,除直角外共有五个元素,即三条边和两个锐角。
由直角三角形中的已知元素,求出其余未知元素的过程,叫解直角三角形。
【问题】在直角三角形中,除直角外的五个元素之间有哪些关系?

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

数学主题演讲5分钟

数学主题演讲5分钟

数学主题演讲5分钟数学已成为许多国家及地区的教育范畴中的一部分。

它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。

数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用为目标。

一起来看看数学主题演讲5分钟,欢迎查阅!数学主题演讲1尊敬的领导,各位评委:上午好!数学组在教导处的正确领导下,在大家齐心协力的努力下,已圆满完成了本学年度中计划中的任务,下面我就工作中的方方面面向大家做一个汇报,请你给予评价和指点。

我将从以下10各维度对数学组的教研工作作如下梳理,凡遇事则立,不预则废。

教研组工作计划工作总结每学期各两份,教师工作计划和工作总结共计12份,分别体现在手写在教案本上或打印出来的,这些不用赘述,因为学校评比的优秀中,像九年级全体数学老师,七,八年级大部分数学老师,都在学校的表彰之列。

他们的计划科学详实,易于操作,总结到位,有利于学科教师的成长,是教科研规划中的亮点。

在学科教研组学术科研方面,学科课题研究,我们准备以“和真课堂”开展新课改的探索。

论文方面,各位老师积极撰写心得体会,让自己的教研心得体会和及时整理,做到积少成多厚积而薄发。

教研组的常规活动,各位老师积极参加,认真研讨,大家集思广益,敢于展示自己的不足,同时把自己的好的做法与大家共同分享,教研组记录详实,首席发言人,准备讲稿,充分准备,让自己的见解得以充分展示。

公开课,示范课,授课者的努力让人钦佩,备课组的磨课,你谈我论,进行思维碰撞,情感的交流,把新的理念传播,信息技术与教学进行融合,最终讨论形成智慧结晶,不管是校内公开课,还是展示课,赛课都取得了专家和观摩课的老师一致好评。

教学诊断方面,每次大型的期中,期末考试,我们都结合学校的成绩分析,进行撰写分析报告,不仅体现在组内,更针对性的体现在每位老师身上。

不仅如此,每位老师还结合自己班的情况,针对性的进行成绩分到个人,横向,纵向进行比较。

最终找到有效的方法,开展培优补差。

2020中考直通车-数学-深圳-第17讲-解直角三角形

2020中考直通车-数学-深圳-第17讲-解直角三角形
10 / 11
【要点总结】(课后由师生共同总结) 例题失误:(题号,失误原因,正解关键) 真题拾遗失误:(题号,失误原因,正解关键) 模拟演练失误:(题号,失误原因,正解关键) 复习要点:(课后需重点复习巩固的知识或题目类型) 备考建议:(教师根据课堂掌握情况提出考前复习建议)
11 / 11
2017 年, 仰角俯角问题继续考察,不过是出现在了选择题中,都是特殊角,12 题首次 出现了求解正切的问题。说明解直角三角形的知识,没有固定的题型,固定的知识点,考试
2 / 11
比较灵活多变,需要对基础知识和解题方法熟练掌握。 2018 年,特殊角的三角函数是每年的必考题,第 10 题就是考察了 60°角的三角函数值,
变。
选择题:12 道;填空题:4 道;解答题:7 道。
代数部分:几何部分:概率统计部分分值分布约为 56%:31%:13%。
重视基础,难度适中。重点突出函数、基本图形性质、图形间的基本关系等核心内容的
考察,加强了对基本的数学思想方法和应用问题的考察。
【考点分析】 2014 年,考察了解直角三角函数的一个常见的应用问题---仰角俯角问题,这个也是最
求:(1)P 到 OC 的距离. (2)山坡的坡度 tanα. (参考数据 sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
8 / 11
8.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部 门对钓鱼岛 海域实现了常态化巡航管理。如图,某日在我国钓鱼岛附近海域有两艘自西向 东航行的海监船 A、B,B 船在 A 船的正东方向,且两船保持 20 海里的距离,某一时刻两海 监船同时测得在 A 的东北方向,B 的北偏东 15°方向有一我国渔政执法船 C,求此时船 C 与 船 B 的距离是多少?(结果保留根号)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七讲解直角三角形
利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:
1.为线段、角的计算提供新的途径.
解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.
2.解实际问题.
测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.
【例题求解】
【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(2
4-)m,则电线杆AB
6
2
的长为.
思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.
【例2】如图,在四边形ABCD中,AB=2
4-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )
A.60°B.67.5°C.75°D.无法确定
思路点拨通过对内分割或向外补形,构造直角三角形.
注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.
在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.
【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠
ADC 是方程2)1(5)1
(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.
【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)
思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路
【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:
(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?
(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?
思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.
注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.
学历训练
1.如图,在△ABC 中,∠A=30°,tanB=3
1,BC=10,则AB 的长为 .
2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =3
4,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .
3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .
4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )
A .20海里
B .20海里
C .315海里
D .320
5.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )
A .直角三角形
B .等腰三角形
C .等边三角形
D .等腰直角三角形
6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )
A .24
B .34
C . 4
D .6
7.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.
8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)
9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DC
AD = .
10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .
11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .
12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )
A . 15°
B .30°
C .45°
D .60°
13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=3
1BC ,则∠1和∠2的大小关系是( )
A .∠1>∠2
B .∠1<∠2
C .∠1=∠2
D .无法确定
14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .
(1)求证:DF ×FC =BG ×EC ;
(2)当tan ∠DAF=3
1时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?
15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.
16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.
(1)该城市是否会受到这次台风的影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?
(3)该城市受到台风影响的最大风力为几级?
17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:
①测量数据尽可能少;
②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).
(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).
参考答案。

相关文档
最新文档