华东师大版 九上数学 24章《解直角三角形》单元测试题(含答案)

合集下载

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章解直角三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、等腰三角形的一边长为5,一边为11,则它的周长为( )A.21B.27C.21或27D.162、如果一个三角形的两边分别为2和4,则第三边长可能是()A.8B.6C.4D.23、在△ABC中,|sinC﹣|+(﹣cosB)2=0,则∠A=()A.100°B.105°C.90°D.60°4、如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A. B. C. D.5、以下各组线段长能组成三角形的是()A.1,5,6B.4,3,5C.2,5,8D.5,5,126、如图,矩形中,,以为圆心,3为半径作,为上一动点,连接,以为直角边作,使,,则点与点的最小距离为()A. B. C. D.7、如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cmA.3B.2C.4 -1D.38、sin60°=()A. B. C. D.9、如图,在Rt△ABC中,∠ACB=90°,以AC为边作等边△ADC,CD交斜边AB于E,若CE=2DE,则BC∶AC的值()A.1∶1B.3∶4C. ∶2D. ∶210、身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米11、已知:Rt△ABC中,∠C=90°,sinB=,则tanA等于()A. B. C. D.12、如图,在中,,,,则的度数为()A.12°B.13°C.14°D.15°13、如图,在△ABC中,AB=10,AC=8,则BC边上的中线AD的取值范围是( )A.2<AD<18B.3<AD<6C.4<AD<12D.1<AD<914、在△ABC中,∠C =90o,若cosB= ,则∠B的值为().A. B. C. D.15、如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°二、填空题(共10题,共计30分)16、如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10 海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?17、如图,点P、Q是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A出发,沿线段AB运动,点Q从顶点B出发,沿线段BC运动,且它们的速度都为1CM/S,连接AQ、CP交于点M,在P、Q运动的过程中,假设运动时间为t秒,则当t=________秒时,△PBQ为直角三角形.18、已知等腰三角形的边长是方程的两个根,则此三角形的周长为________.19、坐落在扬州市区(A点)南偏西15°方向上的润扬大桥(B点)已经正式通车,则扬州市区位于润扬大桥的________方向上.20、如图,Rt△ACB中,∠ACB=90°,AC=2BC=4,点P为AB边中点,点D为AC边上不与端点重合的一动点,将△ADP沿着直线PD折叠得△PDE,若DE⊥AB,则AD的长度为________。

2022-2023年华东师大版数学九年级上册第24章 解直角三角形单元测试卷含答案

2022-2023年华东师大版数学九年级上册第24章 解直角三角形单元测试卷含答案

2022-2023年华师大版数学九年级上册第24章《解直角三角形》单元检测卷一、选择题(本大题共12小题,每小题3分,共36分)1.在Rt △ABC 中,∠C=90°,BC=3,AB=4,则sinA 的值为( ) A. B. C. D.2.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,BC=3,AC=4,则sin ∠1的值为( ) A.0.6 B.0.8 C.0.75 D.3.在Rt △ABC 中,∠C=90°,BC=4,cosB=23,则AB 的长为( ) A.6 B.2 5 C.181313 D.1213134.如图,已知Rt △ABC 中,∠C=90°,AC=4,tanA=12,则BC 的长是( )A.2B.8C.2 5D.4 55.在△ABC 中,若+(1-tanB)2=0,则∠C 的度数是( )A.45°B.60°C.75°D.105°6.如图,在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的高,下列线段的比值等于cosA 的值的有( )个(1) (2) (3) (4).A.1B.2C.3D.47.如图,在平面直角坐标系中,点A坐标为(4,3),那么cosa的值是()A. B. C. D.8.如图,在△ABC中,CA=CB=4,cosC=14,则sinB的值为( )A. B. C. D.9.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=,则小车上升的高度是( )A.5米B.6米C.6.5米D.12米10.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.103海里B.(102-10)海里C.10海里D.(103-10)海里11.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A.米 B.米 C.米 D.米12.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为( )A.63°B.27°C.90°D.50°二、填空题(本大题共6小题,每小题3分,共18分)13.计算:2cos30°﹣﹣(12)﹣2= .14.△ABC中,∠A、∠B都是锐角,且sinA=cosB=12,则△ABC是三角形.15.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积= cm2.16.一架梯子AB斜靠在墙上,若梯子底端到墙的距离是AC=3米,且,则梯子AB的长度为米.17.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)18.如图,在△ABC中,sinB=,tanC=,AB=3,则AC的长为.三、解答题(本大题共8小题,共66分)19.计算:tan30°cos60°+tan45°cos30°.20.计算:21.在Rt△ABC中,∠C=90°,AC=7,BC=24.(1)求AB的长;(2)求sinA,cosA,tanA的值.22.先化简,再求代数式:(+)÷的值,其中x=sin60°﹣cos45°23.如图,已知在△ABC中,D是AC上一点,联结BD,且∠ABD =∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB= 7,求AC的长.ADBC24.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:2≈1.4,3≈1.7)25.芜湖长江大桥采用低塔斜拉桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2 m,两拉索底端距离AD为20 m,请求出立柱BH的长.(结果精确到0.1 m,3≈1.732)26.按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC 上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A 在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)参考答案1.A2.A3.A4.C5.D6.D.7.A.8.A ;9.D.10.D11.B.12.C.13.答案为:﹣23﹣4, 14.答案为:直角. 15.60. 16.答案为:4;17.答案为:(5+53).18.答案为: 319.解:原式===. 20.解:原式=3+ 3.21.解:(1)由勾股定理得AB=AC 2+BC 2=72+242=25.(2)sinA=BC AB =2425,cosA=AC AB =725,tanA=BC AC =247. 22.解:原式=(﹣)• =• ==,当x=sin60°﹣cos45°=×﹣×=时,原式=﹣17.23.解:24.解:如图所示:过点C作CD⊥AB于点D,在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=103km,在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=102km,则AC+BC﹣AB=20+102﹣103﹣10≈7(km),答:打通长江路后从A地道B地可少走7km的路程.25.解:设DH=x米,∵∠CDH=60°,∠H=90°,在Rt△CHD中,∴CH=DH·tan 60°=3x,∴BH=BC+CH=2+3x,∵∠A=30°,同理,∴AH=3BH=23+3x,∵AH=AD+DH,∴23+3x=20+x,解得:x=10-3,∴BH=2+3(10-3)=103-1≈16.3(m).答:立柱BH的长约为16.3 m.26.解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=AB=20(海里),∵∠ACD=45°,∴AC=AD=20(海里).答:小岛A与港口C之间的距离为20海里.。

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)解直角三角形测试题一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=() A.43 B.34 C. 53 D. 352. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是() A. 21 B. 33 C. 1 D. 3 3. 在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是()A.EGEF G =sin B. EF EH G =sin C. FGGH G =sin D. FG FH G =sin 5. sin65°与cos26°之间的关系为()A. sin65°<cos26°< p="">B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=16. 已知30°<α<60°,下列各式正确的是()A. B. C. D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是() A.32 B.52 C.54 D. 521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是()米2A. 150B.375C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是()A. 7米B. 9米C. 12米D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A. αsin 1B. αcos 1 C. αsin D. 1 二. 填空题:(每小题2分,共10分) 11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3.12. 若,则锐角α=__________。

华东师大版九年级数学上第24章《解直角三角形》单元测试答案

华东师大版九年级数学上第24章《解直角三角形》单元测试答案

第24章《解直角三角形》单元测试参考答案一.选择题(每小题3分,共24分)1答案:D.解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.2.答案:D.解:在直角△OAC中,OC=2,AC=3,则OA===,则sin∠AOB===.故选D.3.答案:A.解:在Rt△BDC中,BF=CF,∴DF=BC,Rt△ABC中,AE=CE,∴BE=AC,∵BC<AC,∴BE>DF,故选:A.4.答案:D.解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.5.答案:C.解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.6.答案:C.解:作ME⊥OB于E,∵MD⊥OB,∠OMD=75°,∴∠MOD=15°,∵OM平分∠AOB,∴∠AOB=2∠MOD=30°,∵MC∥OB,∴∠ECM=∠AOB=30°,∴EM=MC=4,∵OM平分∠AOB,MD⊥OB,ME⊥OB,∴MD=ME=4,故选:C.7.答案:B.解:连接AH,CH,∵在四边形ABCD中,∠BCD=∠BAD=90°,H是BD的中点,∴AH=CH=BD.∵点G时AC的中点,∴HG是线段AC的垂直平分线,∴∠EGH=90°.∵∠BEC=80°,∴∠GEH=∠BEC=80°,∴∠GHE=90°﹣80°=10°.故选B.8.答案:C.解:如图:过点M作MN⊥AC于点N,根据题意得:∠MAN=60°﹣30°=30°,∠BCM=75°,∠DCA=60°,∴∠MCN=180°﹣75°﹣60°=45°,设MN=x米,在Rt△AMN中,AN==x(米),在Rt△CMN中,CN==x(米),∵AC=1000米,∴x+x=1000,解得:x=500(﹣1),∴AN=x≈634(米).故选C.二.填空题(每小题3分,共24分)9.答案:55°.解:∵sinα=cos35°,∴α=90°﹣35°=55°,故答案为55°.10.答案:.解:∵A(﹣1,3),∴OA=,∴角α的余弦值为=;故答案为:.11.答案:0°<∠A<45°.解:∵∠A是Rt△ABC的一个内角,∴∠A<90°,∵sinA<,∴0°<∠A<45°.12.答案:.解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=,∴sin,∴sin∠EBC=,故答案为:.13.答案:.解:令α=45°,β=30°,则sin15°=×﹣×,=.故答案为:.14.答案:1﹣.解:∵30°<α<β<90°,∴cosβ<cosα,cosβ<.∴原式=|cosβ﹣cosα|+cosβ﹣+1﹣cosα=﹣cosβ+cosα+cosβ﹣+1﹣cosα=1﹣.故答案为:1﹣.15.答案:150a.解:如图,作BA边的高CD,设与BA的延长线交于点D,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD=×20×15=150m2,∵每平方米售价a元,∴购买这种草皮的价格为150a 元.故答案为:150a.16.答案:.解:如图,延长AD交地面于E,过D作DF⊥CE于F.∵∠DCF=45°,∠A=60°,CD=4m,∴CF=DF=m,EF=DFtan60°=(m).∵,∴(m).三.解答题(8个小题,共72分)17. 解:(1)原式=4×﹣×+×=1+3;(2)原式=•+()2﹣+2×=+﹣+=1+.18. 解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.19. 解:∵点E是Rt△ABC,Rt△ACD斜边AC的中点,∴BE=DE=AC=CE,DE⊥AC,∴∠ACB=∠EBC,∠BDE=∠EBD,又∵∠ACB=30°,∴∠AEB=∠EBC+∠ECB=30°+30°=60°∴∠BED=∠BEA+∠DEA=60°+90°=150°∴∠BDE=(180°﹣∠BED)=(180°﹣150°)=15°.20. 解:如图,PQ⊥AB于点C.∵在Rt△QBC中,QC:BC=5:12,∴设QC=5x米,BC=12x米,∵BQ=13米,∴(5x)2+(12x)2=132,∴x=±1(负值舍去),∴QC=5米,BC=12米.∵AB=8米,∴AC=AB+BC=20米.∵tanα=0.75,∴=0.75,即=0.75,∴PC=15.∴PQ=PC﹣QC=15﹣5=10米.答:香樟树PQ的高度为10米.21.解:如图,作BE⊥l于点E,DF⊥l于点F.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.22.解:(1)作AD⊥OC,易知台风中心O与A市的最近距离为AD的长度,∵由题意得:∠DOA=45°,OA=60km,∴AD=DO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.23. 解:过点N作NF⊥AE于点F,则四边形NDEF为矩形,ND=EF,设BF=x米,在Rt△BMF中,∵∠BMF=30°,∴MF=BF=x,∵MN=10米,∴NF=x﹣10,∵∠ANF=45°,∴AF=NF=x﹣10,∴x﹣10+1.7=18.7,解得:x=9,则AB=AF﹣BF=17﹣9.即广告屏幕AB的长度为(17﹣9)米.24.解:(1)△A1A2B2是等边三角形,理由如下:连结A1B2.∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=30×=10,又∵A2B2=10,∠A1A2B2=60°,∴△A1A2B2是等边三角形;(2)如图,∵B1N∥A1A2,∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,∴∠A1B1B2=75°﹣15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=10,∴∠B1A1B2=105°﹣60°=45°.在△B1A1B2中,∵A1B2=10,∠B1A1B2=105°﹣60°=45°,∠A2A1B2=60°,由阅读材料可知,=,解得B1B2==,所以乙船每小时航行:÷=20海里.。

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章解直角三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.2、下列长度的三条线段,能组成三角形的是()A. ,,B. ,,C. ,,D. ,,3、平行四边形中一边长为10cm,则其两条对角线的长度可以是()A.4cm,6cmB.6cm,8cmC.8cm,12cmD.20cm,30cm4、的值等于()A. B. C. D.5、如图,△ABC的顶点是正方形网格的格点,则cos∠C=()A. B. C. D.6、如图,AB是⊙O 的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O 于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF、BF,则()A.sin∠AFE=B.cos∠BFE=C.tan∠EDB=D.tan∠BAF=7、等腰三角形底边长为6,周长为22,则腰长是()A.11B.10C.8D.68、如图,AC是电线杆AB的一根拉线,测得BC的长为6米,∠ACB=50°,则拉线AC的长为()A. 米B. 米C.6cos50°米D. 米9、如图,有两张矩形纸片ABCD和EFGH、AB=EF=2cm,BC=FG=8cm,把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合,当两张纸片交叉所成的角最小α时,tanα等于()A. B. C. D.10、如图,在矩形ABCD中,以点A为圆心,AD的长为半径画弧,交AB于点E,取BC的中点F,过点F作一直线与AB平行,且交弧DE于点G,则∠AGF的度数为()A.110°B.120°C.135°D.150°11、如图,在中,,以点为圆心,任意长为半径画弧,分别与,交于点,,再分别以点,为圆心,大于的长为半径画弧,两弧在内部相交于点,作射线,交边于点.若cos,则的长为()A.2B.3C.4D.612、已知三角形的三边为4、5、x ,则不可能是()A.6B.5C.4D.113、如图,等边△ABC的边长为1,D,E两点分别在边AB,AC上,CE=DE,则线段CE的最小值为()A.2﹣B.2 ﹣3C.D.14、已知为锐角,且sin(-10°)=,则等于()A.50°B.60°C.70°D.80°15、如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A. B. C.D.二、填空题(共10题,共计30分)16、如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是________ .(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出草图,BC=________.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)17、如图水库堤坝的横断面是梯形,BC长为30m,CD长为20 m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为________m 。

九年级数学上册《第二十四章-解直角三角形》单元测试卷及答案-华东师大版

九年级数学上册《第二十四章-解直角三角形》单元测试卷及答案-华东师大版

九年级数学上册《第二十四章 解直角三角形》单元测试卷及答案-华东师大版班级 姓名 学号一、选择题1.如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,AB :AC=1:9,则建筑物CD 的高是( )A .9.6mB .10.8mC .12mD .14m2.如图,在矩形ABCD 中,已知AE BD ⊥于E ,∠BDC=60°,BE=1,则AB 的长为( )A .3B .2C .3D 33.已知33tanA =,A ∠是锐角,则A ∠的度数为( ) A .30︒B .45︒C .60︒D .90︒4.用计算器求 sin 2437︒' 的值,以下按键顺序正确的是( )A .B .C .D .5.如图,在Rt ABC 中,90C ∠=︒和13cosA =,则tanB 的值为( )A .2B .3C 32D 2 6.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高2m ,测得3m 6m AB BC ==,.则建筑物CD 的高是( )A .4mB .9mC .8mD .6m7.边长为5,7,8的三角形的最大角和最小角的和是( ).A .90°B .150°C .135°D .120°8.如图,在Rt ABC 中,∠BAC=90°,若AB=6,AC=8,点D 是AC 上一点,且13CD AD =,则sin DBC ∠的值为( ).A .25B .210C .26D .159.如图,某超市电梯的截面图中,AB 的长为15米,AB 与AC 的夹角为α,则高BC 是( )A .15αsin 米B .15αcos 米C .15αsin 米 D .15αcos 米 10.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60︒的方向,在码头B 北偏西45︒的方向4km AC =游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v =:( )A 2B .22C .4D .6二、填空题11.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3米,CA =1米,则树的高度为 米.12.已知在ABC 中=AB AC ,∠C=30°,AB ⊥AD ,AD=2cm ,则BC 的长等于 .13.如图,已知大正方形ABCD 的面积是25,小正方形EFGH 的面积是1,那么sin ADF ∠= .14.河堤横断面如图所示,斜坡AB 的坡度3i =:(即BC :AC ),6m AB =则BC 的长是 .三、解答题15.为测量一棵大树的高度,设计的测量方案如图所示:标杆高度3m CD = 人的眼睛A 、标杆的顶端C 和大树顶端M 在一条直线上,标杆与大树的水平距离14m DN =,人的眼睛与地面的高度1.6m AB = 人与标杆CD 的水平距离2m BD =,B 、D 、N 三点共线 AB BN CD BN MN BN ⊥⊥⊥,, 求大树MN 的高度.16.如图,在矩形ABCD 中,两条对角线相交于点O ,120 2.5AOD AB ∠=︒=,求这个矩形对角线的长.17.先化简,再求代数式2311442a a a a +⎛⎫÷+ ⎪+++⎝⎭的值,其中2cos302tan45a =︒-︒.18.如图,小聪全家自驾到某风景区旅游,到达A 景点后,导航显示沿北偏西60︒方向行驶8千米到达B 景点,在B 景点查询C 景点显示在北偏东45︒方向上,到达C 景点,小聪发现C 景点恰好在A 景点的正北方向,求B ,C 两景点的距离.四、综合题19.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO OD ⊥,EF FG ⊥已知小明的身高EF 为1.8米.(1)求建筑物OB的高度;(2)求旗杆的高AB.20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12,求DEDF的值.21.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE,点F落在AD上.(1)求证:ABF DFE~;(2)若2sin=3DFE∠,AF=6,求BF的值.22.如图,在一片海域中有三个岛屿,标记为A,B,C.经过测量岛屿B在岛屿A的北偏东65︒,岛屿C在岛屿A的南偏东85︒,岛屿C在岛屿B的南偏东70︒.(1)直接写出ABC 的三个内角度数;(2)小明测得较近两个岛屿10km AB =,求BC 、AC 的长度(最终结果保留根号,不用三角函数表示).参考答案与解析1.【答案】B【解析】【解答】解:∵EB ∥CD∴△ABE ∽△ACD ∴BE AB CD AC = ,即 1.219CD = ∴CD=10.8(米). 故答案为:B.【分析】利用EB ∥CD 可证得△ABE ∽△ACD ,利用相似三角形的对应边成比例,可得比列式,即可求出CD 的长.2.【答案】B 【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.3.【答案】A【解析】【解答】解:∵3tanA =,且A ∠是锐角∴30A ∠=︒ 故答案为:A.【分析】根据特殊角的三角函数值进行解答.4.【答案】A【解析】【解答】解:先按键“sin ”,再输入角的度数24°37′,按键“=”即可得到结果.故答案为:A .【分析】利用计算器的使用步骤得到结论。

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列几组线段能组成三角形的是( )A.3cm,5cm,8cmB.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,4cm,8cm2、在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A. B. C. D.3、三角形的两边长分别为和,则周长的范围是()A. B. C. D.4、已知Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A. B. C. D.5、如图,在中,,点是上的点,且,垂直平分,垂足是,如果,则等于()A. B. C. D.6、在Rt△ABC中,∠C=90°,BC=4,sinA= ,则AB的长为()A. B.6 C.12 D.87、一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm,现沿底边从下到上依次裁剪宽度均为3cm的矩形纸条(如图所示),则裁得的纸条中恰为张正方形的纸条是()A.第4张B.第5张C.第6张D.第7张8、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cmB.15cm,8cm,6cmC.10cm,4cm,7cm D.3cm,3cm,7cm9、已知直角三角形中30°角所对的直角边长是2cm,则另一条直角边的长是()A.4cmB. cmC.6cmD. cm10、如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70°B.20°C.35°D.110°11、如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高AB为()A. B. C. D.12、下列长度(单位:cm)的三条线段能构成三角形的是( )A.5,5,13B.1,2,3C.5,7,12D.11,12,1313、如图,在平行四边形中,对角线、相交成的锐角,若,,则平行四边形的面积是A.6B.8C.10D.1214、如图,某水库堤坝横断面迎水坡AB的斜面坡度是1:,堤坝高BC=50m,则迎水坡面AB的长度是()A.100mB.120mC.50 mD.100 m15、已知,则锐角A的度数是()A.30°B.45°C.60°D.75°二、填空题(共10题,共计30分)16、如图,已知,是平分线上一点,,交于点,,垂足为点,且,则等于________.17、有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是________。

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是A.1B.2C.3D.42、在▱ABCD中,若∠A=30°,AB边上的高为8,则BC=()A. B. C.8 D.163、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF 交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有()A.1个B.2个C.3个D.4个4、设计一张折叠型方桌子如图,若AO=BO=50cm,CO=DO=30cm,将桌子放平后,要使AB距离地面的高为40cm,则两条桌腿需要叉开的∠AOB应为()A.60°B.90°C.120°D.150°5、如图,一艘海轮位于灯塔P的东北方向,距离灯塔40 海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为()海里.A.40+40B.80C.40+20D.806、计算sin230°+cos260°的结果为()A. B. C.1 D.7、如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面AC的长度为( )A. mB.10 mC. mD. m8、如果线段a,b,c能组成三角形,那么它们的长度比可能是()A.1:2:4B.2:3:4C.3:4:7D.1:3:49、如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为( )A.100mB.100 mC.100 mD. m10、若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.711、二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C 点.连接AC、BC,则tan∠CAB的值是()A. B. C. D.212、等腰三角形两边长分别为 5、11,则它的周长为()A.21B.27C.21 或27D.不能确定13、已知三角形的两条边分别是和,那么第三条边可能是().A. B. C. D.14、如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2 ,则AC的长是( )A. B.2 C.3 D.15、等腰三角形两边长为3和6,则周长为()A.12B.15C.12或15D.无法确定二、填空题(共10题,共计30分)16、已知正方形的边长为2,分别是边,上的两个动点,且满足,连接,,则的最小值为________.17、如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为________.18、在中,,,,则________.19、如图,在一笔直的海岸线1上有相距的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线1的距离是________ .20、如图,A,B,C三点在正方形网格线的交点处,将△ACB绕着点A逆时针旋转得到△AC′B′,若A,C,B′三点共线,则tan∠B′CB=________.21、一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西65°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为________ 海里/分.22、一个等腰三角形两边的长分别为2m、5cm.则它的周长为________cm.23、正方形网格中,如图放置,则tan的值为________ .24、三角形两边长分别是2,4,第三边长为偶数,第三边长为________25、已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是________.三、解答题(共5题,共计25分)26、计算:(tan60°)﹣1×﹣|﹣|+23×0.125.27、小明利用刚学过的测量知识来测量学校内一棵古树的高度。

华师大九年级数学上第24章解直角三角形单元测试含答案解析

华师大九年级数学上第24章解直角三角形单元测试含答案解析

第24章解直角三角形单元测试一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列等式:①b=ccosB;②b=atanB;③a=csinA;④a=ccosB;⑤a=btanA;⑤a=bcotA,其中正确的有()A.1 个B.2 个C.3个D.4个2.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于( )A. B. C. D.3.在平面直角坐标系中,已知点A(3,0),点B(0,-4),则tan∠OAB的值为().A. B. C. D.4.cos30o=()A. B. C. D.5.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.302海里B.303海里C.60海里D.306海里6.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度为()A. 米B.米C.米D.米7.周末,小明和小华来滨湖新区渡江纪念馆游玩,看到高雄挺拔的“胜利之塔”,萌发了用所学知识测量塔高的想法,如图,他俩在塔AB前的平地上选择一点C,树立测角仪CE,测出看塔顶的仰角约为30°,从C点向塔底B走70米到达D点,测出看塔顶的仰角约为45°,已知测角仪器高为1米,则塔AB的高大约为(3≈1.7)()A、141米B、101米C、91米D、86米8.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡顶A处的俯角为15°,山脚处B的俯角为60°,已知该山坡的坡度i=1: 3 ,点P、H、B、C、A在同一个平面上,点HBC在同一条直线上,且PH⊥BC,则A到BC的距离为()A.10 3 米B.15米C.20 3 米D.30米9.下列是张悦、王强和赵涵的对话,张悦:“从学校向西直走500米,再向北直走100米就到医院了”.王强:“从学校向南直走300米,再向西直走200米就到电影院了.”赵涵:“火车站在电影院正北方向的200米处.”,则医院与火车站相距()A、100 米B、200米C、300米D、500米10.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米二、填空题(共8题;共25分)11.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,=50cm,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________。

华东师大版九年级上册数学《第24章解直角三角形》检测题试卷(含答案)

华东师大版九年级上册数学《第24章解直角三角形》检测题试卷(含答案)

第24章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( C ) A.55 B. 5 C.12D .2(第1题图) (第2题图) (第3题图) (第4题图)2.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比为1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( A )A .53米B .102米C .15米D .10米3.如图,正方形ABCD 中,对角线AC ,BD 交于点O ,点M ,N 分别为OB ,OC 的中点,则cos ∠OMN 的值为( B ) A.12 B.22 C.32D .1 4.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且cos α=35,AB =4,则AC 的长为( C )A .3 B.165 C.203 D.1635.如图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =2,CD =3,则AB =( D )A .4B .5C .2 3 D.833(第5题图) (第6题图) (第9题图) (第10题图)6.如图,cos B =22,sin C =35,AC =5,则△ABC 的面积是( A ) A.212B .12C .14D .21 7.式子2cos 30°-tan 45°-(1-tan 60°)2的值是( B )A .23-2B .0C .2 3D .28.李红同学遇到了这样一道题:3tan (α+20°)=1,你认为锐角α的度数应是( D )A .40°B .30°C .20°D .10°9.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC.能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组10.如图,某人在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡角i 为1∶3,点P ,H ,B ,C ,A 在同一个平面上,点H ,B ,C 在同一条直线上,且PH ⊥HC.则A ,B 两点间的距离是( B )A .15米B .203米C .202米D .103米二、细心填一填(每小题3分,共24分)11.若α为锐角,cos α=35,则sin α=__45__,tan α=__43__. 12.在Rt △ABC 中,∠C =90°,tan A =512,△ABC 的周长为18,则S △ABC =__545__. 13.小志同学书桌上有一个电子相框,将其侧面抽象如图所示的几何图,已知AB =AC =15 cm ,∠BAC =40°,则点A 到BC 的距离为__14.1__cm.(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.结果精确到0.1 cm ,可用科学计算器)(第13题图) (第15题图) (第16题图) (第17题图)14.在△ABC 中,若|2cos A -1|+(3-tan B)2=0,则∠C =__60°__.15.如图,在顶角为30°的等腰三角形ABC 中,AB =AC ,若过点C作CD ⊥AB 于点D ,则∠BCD =15°,根据图形计算tan 15°=.16.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB长13米,且tan ∠BAE =125,则河堤的高BE 为__12__米. 17.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且BD 平分AC.若BD =8,AC =6,∠BOC =120°,则四边形ABCD 的面积为__.(结果保留根号)18.如图,在Rt △ABC 中,∠C =90°,AC =3,tan A =43.点D ,E 分别是边BC ,AC 上的点,且∠EDC =∠A.将△ABC 沿DE 所在直线对折,若点C 恰好落在边AB 上,则DE 的长为__12548__. 三、用心做一做(共66分)19.(10分)解下列各题:(1)先化简,再求代数式(1x +x +1x )÷x +2x 2+x 的值,其中x =3cos 30°+12; 解:原式=x +1,当x =2时,原式=3(2)已知α是锐角,且sin(α+15°)=32.计算8-4cos α-(π-3.14)0+tan α+(13)-1的值. 解:α=45°,原式=320.(8分)解下列各题:(1)已知∠A ,∠B ,∠C 是锐角三角形ABC 的三个内角,且满足(2sin A -3)2+tan B -1=0,求∠C 的度数;解:75°(2)(原创题)已知tan α的值是方程x 2-x -2=0的一个根,求式子3sin α-cos α2cos α+sin α的值. 解:∵方程的根为x 1=2,x 2=-1.又∵tan α>0,∴tan α=2,∴原式=3tan α-12+tan α=3×2-12+2=5421.(10分)如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC.(1)求证:AC =BD ;(2)若sin C =1213,BC =12,求AD 的长.解:(1)∵AD 是BC 上的高,∴AD ⊥BC ,∴∠ADB =90°,∠ADC =90°,在Rt △ABD 和Rt △ADC 中,∵tanB =AD BD ,cos ∠DAC =AD AC,又tanB =cos ∠DAC ,∴AD BD =AD AC ,∴AC =BD (2)在Rt △ADC 中,sinC =1213,故可设AD =12k ,AC =13k ,∴CD =AC 2-AD 2=5k.∵BC =BD +CD ,AC=BD ,∴BC =13k +5k =18k ,∴18k =12,∴k =23,∴AD =12k =12×23=822.(8分)如图,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是30°,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°.若坡角∠FAE =30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,3≈1.73)解:延长BD 交AE 于点G ,过点D 作DH ⊥AE 于点H.由题意知∠DAE =∠BGA =30°,DA =6,∴GD =DA =6,∴GH =AH =DA ·cos30°=33,∴GA =6 3.设BC 的长为x 米.在Rt △GBC 中,GC =BC tan ∠BGC=x tan30°=3x.在Rt △ABC 中,AC =BC tan ∠BAC =x tan48°∵GC -AC =GA ,∴3x -x tan48°=63,∴x ≈13,即大树的高度约为13米23.(8分)如图,登山缆车从点A 出发,途经点B 后到达终点C.其中AB 段与BC 段的运行路程均为200 m ,且AB 段的运行路线与水平面的夹角为30°,BC 段的运行路线与水平面的夹角为42°,求缆车从点A 运行到点C 的垂直上升的距离.(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)解:根据题意可知∠BAD =30°,∠CBE =42°,AB =BC =200 m .在Rt △ABD 中,BD =AB ·sin30°=200×12=100(m ).在Rt △BCE 中,CE =BC ·sin42°≈200×0.67=134(m ),∴BD +CE ≈100+134=234(m ),因此,缆车从点A 运行到点C 的垂直上升的距离约为234 m24.(10分)如图是我国某海域内的一个小岛,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据:2≈1.414,3≈1.732,6≈2.449)(2)求∠ACD 的余弦值.解:连结AC ,∵AB =BC =15千米,∠B =90°,∴∠BAC =∠ACB =45°,AC =152千米,又∵∠D =90°,∴AD =AC 2-CD 2=(152)2-(32)2=123(千米),∴周长=AB +BC +CD +DA ≈55(千米),面积=S △ABC +S △ADC ≈157(平方千米)(2)cos ∠ACD =CD AC =32152=1525.(12分)如图,甲、乙只捕捞船同时从A 港出海捕鱼,甲船以每小时15 2 km 的速度沿北偏西60°方向前进,乙船以每小时15 km 的速度沿东北方向前进.甲船航行2 h 到达C 处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.问: (1)甲船从C 处出发追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?解:过点A 作AM ⊥BC 于点M ,如图,(1)设甲船从C 处出发追赶上乙船用了x h ,则乙船从A 到B 用了(x +2)h.在Rt △ACM 中,AC =152×2=302(km ),∴MC =AM =AC ·sin ∠ACB =302×22=30(km ).在Rt △ABM 中,AM =12AB ,∴30=12×15×(x +2),解得x =2,答:甲船从C 处出发追赶上乙船用了2 h (2)在Rt △ABM 中,AM =30 km ,AB =60 km ,∴BM =AB 2-AM 2=602-302=303(km ),∴BC =MC +BM =30(1+3)(km ),∴甲船追赶乙船的速度是30(1+3)2=15(1+3)km/h.答:甲船追赶乙船的速度是每小时15(1+3)千米。

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE2、如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.3、在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A. B. C. D.4、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5、已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或15°或75°D.60°6、以下列各组线段为边,能组成三角形的是()A.4cm,5cm,6cmB.8cm,2cm,5cmC.12cm,5cm,6cm D.3cm,6cm,3cm7、如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1B.C.2D.8、如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3B.C.4D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C.1 D.210、等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.25cmB.20cmC.15cmD.20cm或25cm11、如图,已知P是射线OB上的任意一点,PM⊥OA于M,且OM:OP=4:5,则cosα的值等于( )A. B. C. D.12、已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A. B. C. D.13、如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.14、如图,正方形中,为的中点,为上一点,,设,则的值等于().A. B. C. D.15、在中,,,则的值等于()A. B. C. D. 或二、填空题(共10题,共计30分)16、计算:2sin45°cos45°=________.17、如图,已知等边的边长是6,点D在AC上,且延长BC到E,使,连接点F,G分别是AB,DE的中点,连接FG,则FG的长为________.18、如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长________.19、如图,在△ABC中,,,AD是△ABC的中线,AE是∠BAD的角平分线,DF//AB交AE的延长线于点F,则DF的长为________.20、如图,点是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧和弧都经过圆心,已知的半径为,则阴影部分的面积是________.21、已知等边的边长为3,点在直线上,点在直线上,且,若,则的长为________.22、在直角三角形ABC中,若2AB=AC,则cosC=________.23、已知tanα= ,那么sinα=________.(其中α为锐角)24、如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o得到正方形AB′C′D′,则它们的公共部分的面积等于________ 。

华师大版九年级数学上册 第24章《解直角三角形》单元测试题及答案

华师大版九年级数学上册 第24章《解直角三角形》单元测试题及答案

华师大版九年级数学上册第24章《解直角三角形》单元检测试卷一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A. B.C. D.2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. 15B. 16C. 18D. 193.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A. 120mB. 67.5mC. 40mD. 30m4.等腰三角形的周长为20cm,腰长为x cm,底边长为y cm,则底边长与腰长之间的函数关系式为()A. y=20﹣x(0<x<10)B. y=20﹣x(10<x<20)C. y=20﹣2x(10<x<20)D. y=20﹣2x(5<x<10)5.一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A. 12mB. 18mC. 6D. 126.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3007.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A. 4.5米B. 6米C. 7.2米 D. 8米8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10B. 12C. 14D. 169.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A. 5米B. 6米C. 8米 D. (3+ )米10.如图,在□ABCD中,AB∶AD=3∶2,∠ADB=60°,那么cosA的值等于()A. B. C.D.二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________.13.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的正切值是 ,则x=________,cosα=________.15.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=________16.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= +1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.20.已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a <b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= , cos53 °= , tan53 °= ,≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= =5.∴sinA= ,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。

华东师大版九上数学24章-解直角三角形-单元测试题(基础题)含答案

华东师大版九上数学24章-解直角三角形-单元测试题(基础题)含答案

解直角三角形单元测试题一、选择题:1、在△ABC中,若三边BC、CA、AB满足 BC:CA:AB=5:12:13,则sinA的值是( )A. B. C. D.2、已知∠A为锐角,且sinA≤,则()A.0°≤A≤60°B.60°≤A <90°C.0°<A ≤30°D.30°≤A≤90°3、在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A.1B.C.D.4、已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.5、如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45° B.1 C. D.无法确定6、如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.7、如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC的周长比为()A.1:2 B.1:3 C.1:4 D.1:98、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4 m,测得仰角为60°.已知小敏同学身高(AB)为1.6 m,则这棵树的高度约为(结果精确到0.1 m,≈1.73)( )A.3.5 m B.3.6 m C.4.3 m D.5.1 m9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米 D. 24米12、如图,在高度是90米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD是()(结果可以保留根号)A.30(3+)米 B.45(2+)米C.30(1+3)米 D.45(1+)米二、填空题:13、求值:sin60°•tan30°= .14、如图,∠1的正切值等于.15、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.16、如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.17、如图,小岛在港口的南偏东45°方向、距离港口81海里处.甲船从出发,沿方向以9海里/h的速度驶向港口;乙船从港口出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为h.(结果保留根号)18、如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.三、计算题:19、.20、计算:四、解答题:21、已知顶点为A(2,一1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,O);(1)求这条抛物线的表达式;(2)连接AB、BD、DA,求cos∠ABD的大小;(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.22、如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.23、如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.24、先化简,再求代数式的值÷(﹣),其中a=2cos30°﹣tan45°,b=2sin30°.25、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)26、南沙群岛是我国的固有领土,现在我南海渔民要在南沙群岛某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为防止某国的巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.27、如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)参考答案1、C2、C3、A4、A5、C6、B7、B8、D9、D10、A11、B12、A13、答案为:.14、答案为:.15、答案为:216、答案为:3617、答案为:18、答案为:2,19、.20、=1+2-(+1)-+2=221、解:(1)∵顶点为A(2,﹣1)的抛物线经过点C(1,0),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(1,0)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),令x=0,y=3, ∴B(0,3)∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BD A=90°,∴(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).22、解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.23、(1)过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°.∴在Rt△ACE中,CE=AC·cosC=1.∴AE=CE=1.在Rt△ABE中,tanB=,即=,∴BE=3AE=3.∴BC=BE+CE=4.(2)∵AD是△ABC的中线,∴CD=BC=2.∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°.∴sin∠ADC=.24、解:原式=÷=×=,当a=2cos30°﹣tan45°=2×﹣1=﹣1,b=2sin30°=2×=1时,原式===.25、解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.26、解:作AD⊥BC于D,设AD=x,依题意可知∠ABC=30°,∠ACB=45°,在Rt△ADC中,CD=AD=x,在Rt△ADB中∵=tan30°,∴BD=AD=x,∵BC=CD+BD=x+x=20(1+),即x+x=20(1+),解之得x=20,∴AC=AD=20.∴A、C之间的距离为20海里.27、解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.。

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章解直角三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )A.3B.1+C.1+3D.1+2、如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为()A.1B.2C.D.23、如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,4、如图,是直立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为()A.4 米B.(2 +2)米C.(4 ﹣4)米D.(4 ﹣4)米5、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)6、下面各组线段中,能组成三角形的是()A.2,3,4B.4,4,8C.5,4,10D.6,7,147、如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cmB.4cmC.5cmD.8cm8、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.9、若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为()A.7B.3或7C.15D.11或1510、一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm,现沿底边从下到上依次裁剪宽度均为3cm的矩形纸条(如图所示),则裁得的纸条中恰为张正方形的纸条是()A.第4张B.第5张C.第6张D.第7张11、如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,连接 AO并延长,交BC于点D,OH⊥BC于点H;若∠BAC=60°,OH=3cm,则OA=()A.6cmB.5cmC.4cmD.3cm12、如图,在平面直角坐标系中,O为坐标原点,将等边△ABC放在第一象限,其中边BC 的端点B、C分别在x轴的正半轴、y轴的正半轴上滑动,D是AC的中点,AB=4,连接OD,则线段OD长度的最大值是()A.2B.4C.2D.213、已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长是()A.5B.7C.5或7D.1014、在Rt△ABC中,∠C=90°,tanA= ,BC=4,则AC的值为()A.8B.2C.4D.415、如图,某同学在距离建筑中心B点m米的点A处,测得旗杆底部点C的仰角为α,旗杆顶部点D的仰角为β,则旗杆CD的长为()A. B.mtanβ﹣mtanα C. D.msinβ﹣msinα二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AC是切⊙O于A的切线,BC交⊙O于点D,E是劣弧的中点,连接AE交BC于点F,若cosC= ,AC=6,则BF的长为________.17、如果cosA=0.8888,则∠A≈________ .(精确到″)18、如图,在高出海平面100m的悬崖顶A处,观测海平面上一艘小船B,测得它的俯角为30°,则船与观测者之间的水平距离约为________.(精确到1m.)19、计算:(﹣)﹣2﹣2cos60°=________.20、如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP=________.21、如图,正方形的边长为,正方形的边长为.如果正方形绕点旋转,那么、两点之间的最小距离是________ .22、如果三条线段可组成三角形,且,,是奇数,则________.23、有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是________.24、如图,四边形ABCD为菱形,AB=2,∠BCD=30°,点E在CD延长线上,且CD=DE,∠E=45°,点H是AC上的一个动点,则HD+HE的最小值为________25、如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为________.三、解答题(共5题,共计25分)26、计算:2tan60°﹣|1﹣|+(2015﹣π)0﹣()﹣1.27、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求弦DC 的长.28、如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标;(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?29、如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)30、如图,小明从P处出发,沿北偏东60°方向行驶200米到达A处,接着向正南方向行驶一段时间到达B处.在B处观测到出发时所在的P处在北偏西37°方向上,这时P、B 两点相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、D5、A6、A7、B8、C9、C10、C11、A12、B13、B14、A15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)

九年级上册数学单元测试卷-第24章解直角三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB边上的中线长为()A.1B.2C.1.5D.2、如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1B.2C.D.1+3、如果将长度为a-2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是()A.a﹥-1B.a﹥2C.a﹥5D.无法确定4、如图,一根铁管CD固定在墙角,若BC=5米,∠BCD=55°,则铁管CD的长为()A. 米B.5sin55°米C. 米D.5cos55°米5、等腰三角形的两边长为4,9,则它的周长是()A.17B.17或22C.20D.226、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cmB.4cm,6cm,8cmC.5cm,6cm,12cm D.2cm,3cm,5cm7、如图是一个的方阵,其中每行,每列的两数和相等,则a可以是()A. B. C.0 D.8、如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为()A. B. C.2 D.9、如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为a,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A.35tanαB.35sinαC.D.10、如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=3:2,顶宽是7米,路基高是6米,则路基的下底宽是()A.7米B.11米C.15米D.17米11、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于()A. :2B. :3C.1:2D. :112、如果三角形有两边长分别为2和3,那么周长可能是下列哪个数()A.6B.8C.10D.1213、如图,在四边形中,,,,,四边形的面积为,则的长为()A. B.2 C. D.14、在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米B.30米C.16米D.15米15、如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°二、填空题(共10题,共计30分)16、已知三角形的两边长分别为3、5,且周长为整数,则这样的三角形共有________ 个.17、如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以A为圆心4为半径D圆上的一点,连接BD,点M为BD中点,线段CM长度的最小值是________.18、如图,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cosB的值为________.19、如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2 ;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是________(把你认为正确结论的序号都填上).20、如图,某校教学楼与实验楼的水平间距米,在实验楼顶部点测得教学楼顶部点的仰角是,底部点的俯角是,则教学楼的高度是________米(结果保留根号).21、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB=________ 米.22、计算:2sin30°+(﹣1)2018﹣()﹣1=________.23、将矩形纸片ABCD按如图方式折叠,DE、CF为折痕,折叠后点A和点B都落在点O 处.若△EOF是等边三角形,则的值为________.24、如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E为AB中点,则EF+BF的最小值为________.25、如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A,B,C在同一条直线上),则河的宽度AB约为________.三、解答题(共5题,共计25分)26、(1)计算:﹣(2015﹣π)0﹣4cos45°+(﹣3)2.(2)解方程组:.27、将一副直角三角尺如图放置,A,E,C在一条直线上,边AB与DE交于点F,已知∠B=60°,∠D=45°,AD=AC= ,求DF的长.28、设等腰三角形的三条边分别为3、m、n,已知m、n是关于x的方程x2﹣4x+k=0的两个根,求k的值.29、如图,l为一条东西方向的笔直公路,一辆小汽车XRS在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A、B、C,P是一个观测点,PC⊥l,PC=60米,tan ∠APC=,∠BPC=45°,测得该车从点A行驶到点B所用时间为1秒.(1)求A、B两点间的距离;(2)试说明该车是否超过限速.30、如图,为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某段限速道路米,当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是,无人机继续向右水平飞行到达D处,此时又测得起点A的俯角是,同时测得限速道路终点B的俯角是.求无人机距离地面道路的高度和飞行距离各为多少米.(均精确到1米)(参考数据:)参考答案一、单选题(共15题,共计45分)1、A2、A4、C5、D6、B7、D8、A9、D10、C11、B12、B13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列各组线段的长为边,能组成三角形的是( )A.3,6,10B.3,3,6C.7,8,9D.8,4,42、如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα)3、反比例函数y (x˂0)交等边△OAB于C、D两点,边长为5,OC=3BD,则k的值()A. B. C. D.4、如图,在△中,,点是的中点,交于;点在上,,则的长为()A.3B.4C.5D.65、如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A. B.2 C. D.36、轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.A. B. C.50 D.257、下列长度的四根木棒中,能与长为4cm,9cm的两根木棒围成一个三角形的是()A.4cmB.5cmC.9cmD.14cm8、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),点B是y轴右侧⊙A上一点,则cos∠OBC的值为()A. B. C. D.9、下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.2,4,5D.1,7,910、一个等腰三角形一边长5cm,另一边长3cm,那么这个等腰三角形周长是()A.8cmB.11cmC.13cmD.11cm或 13cm11、如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.12、三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是()A.8B.10C.8或10D.不能确定13、如图,在□ABC D中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到B′C的距离为()A. B. C. D.14、在Rt△ABC中,已知∠C=90°,∠A=40°,BC=3,则AC等于()A.3tan50°B.3sin50°C.3tan40°D.3sin40°15、正六边形的边长为,则它的面积为()A. B. C. D.二、填空题(共10题,共计30分)16、小颖已有两根长度分别为、的木棒,再给一根多长的木棒,能方便她把三根木棒首尾相接摆成一个三角形?请你提供一个合适的木棒长度,你提供的长度是________ .17、某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为________ 米.18、如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为________m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)19、△ABC中,AB=AC,一腰上的中线BD把三角形的周长分为9cm和12cm两部分,则此三角形的腰长是________.20、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B坐标为(4,3),则tan ∠AOB的值为________.21、计算:=________.22、一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为________.23、如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m, ),反比例函数的图像与菱形对角线AO 交于D点,连接BD,当BD⊥x轴时,k的值是________24、如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为________ m.25、△ABC中,AB=AC,∠BAC=30°,△ABC的面积为49,P为直线BC上一点,PE⊥AB,PF ⊥AC,CH⊥AB,垂足分别为E,F,H.若PF=3,则PE=________三、解答题(共5题,共计25分)26、计算:27、如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B的仰角为∠BAD=60°,塔底C的仰角为∠CAD=45°,AC=200米,求电视塔BC的高.28、如图,A,B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB)。

华东师大版九上数学第24章 解直角三角形单元考试题含答案

华东师大版九上数学第24章 解直角三角形单元考试题含答案

华东师大版九上数学第24章解直角三角形单元考试题姓名:,成绩:;一、选择题(4×12=48分)1、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm2、如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.2553、在Rt△ABC中,∠C=90°,则表示()A.sinA B.cosA C.sinB D.以上都不4、小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°的角的正切值是()ECDA BFA.3+1B. 2+1C. 2.5D.55、在Rt△ABC中,∠C=90°,若tanA=512,则sinA=()A、1213B、512C、135D、513CBA6、已知∠A 为锐角,且sinA ≤21,则( ) A、0°≤A ≤60° B 、60°≤A <90° C 、0°<A ≤30° D 、30°≤A ≤90° 7、在Rt △ABC 中,斜边AB 的长为m ,∠A=55°,则直角边BC 的长是( )A .msin55°B .mcos55°C .sin 55m︒D .cos55m︒8、一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( ) A .米2 B .米2 C .(4+)米2D .(4+4tan θ)米29、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A、锐角三角形; B、 直角三角形; C、钝角三角形; D、等腰三角形.10、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD )急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF 的坡比i=1:2.下列说法正确的是( )A、AB的长为400米; B、AF的长为10米; C、填充的土石方为19200立方米; D、填充的土石方为384立方米11、如图,△ABC 中AB=AC=4,∠C=72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cosA 的值为( )A .B .C .D .12、如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:,则大楼AB 的高度约为( )(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.4二、填空题(4×6=24分)13、直角三角形斜边上的中线长是2.5,一直角边的长是3,则此直角三角形的面积为.14、如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.15、若某人沿坡度i=3:4的斜坡前进10m,则他所在的位置比原来的的位置升高 m。

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知三条线段的长是:①2,2,4;②3,4,5;③3,3,7;④6,6,10.其中可构成三角形的有()A.1个B.2个C.3个D.4个2、某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm3、已知在Rt中,∠C=90°,AC=2,BC=4,则下列结论正确的是( )A.sinA=B.tanA=C.cosA=D.sinB=4、如图,△ABC中,∠C=90°,∠A=30°,AB=4,点P是AC边上的动点,则BP的最小值为()A.1B.2C.3D.45、如图,在四边形ABCD中,E、F分别是AB、AD中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.6、如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.27、如图,小明同学用自制的直角三角形纸板EFG测量树的高度AB,他调整自己的位置,设法使斜边EG保持水平,并且边EF所在的直线经过点A.已知纸板的两条直角边EF=60cm,FG=30cm,测得小刚与树的水平距离BD=8m,边EG离地面的高度DE=1.6m,则树的高度AB等于()A.5mB.5.5mC.5.6mD.5.8m8、下列长度的三条线段,能组成三角形的是()A. ,,B. ,,12C. ,,D. ,,9、用线段EG,FH将正方形ABCD按如图1所示的方式分割成4个全等的四边形,且AE=BF=CG=DH,tan∠HFC=2,再将这四个四边形按如图2所示的方式拼成一个大正方形IJKL,若设正方形ABCD的面积为S1,正方形IJKL的面积为S2。

小四边形MNPQ的面积为8,则的值为( )A. B. C. D.10、如图,已知AE与BF相交于点D,AB⊥AE,垂足为点A,EF⊥AE,垂足为点E,点C在AD上,连接BC,要计算A、B两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,各组分别得到以下数据:甲:AC、∠ACB;乙:EF、DE、AD;丙:AD、DE和∠DCB;丁:CD、∠ABC、∠ADB.其中能求得A、B两地距离的数据有()A.甲、乙两组B.丙、丁两组C.甲、乙、丙三组D.甲、乙、丁三组11、某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A.1.25mB.10mC.20mD.8m12、一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是 ( )A.3cmB.4cmC.7cmD.11cm13、一个人从A点出发向北偏东60°方向走了一段距离到达B点,再从B点出发向南偏西15°方向走了一段距离到C点,则∠ABC的度数为()A.15°B.75°C.105°D.45°14、上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处(如图).从A,B两处分别测得小岛M在北偏东45°和北偏东15°方向,那么在B处船与小岛M的距离为()A.20海里B.20 海里C.10 海里D.20 海里15、下列长度的3条线段,能构成三角形的是()A.1cm,2cm,3cmB.2cm,3cm,4cm &nbsp;C.4cm,4cm,8cm D.5cm,6cm,12cm二、填空题(共10题,共计30分)16、若a,b,c是一个三角形的三条边,且a,b满足+|7﹣b|=0,则第三边c的取值范围为________17、在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)18、已知a,b,c是一个三角形的三条边长,则化简|a﹣b+c|﹣|b﹣a﹣c|=________.19、如图,AB切⊙O与点A,BE切⊙O于点E,连接AO并延长交⊙O于点C,交BE 的延长线于点D,连接EC,若AD=8,tan∠DEC=,则CD=________.20、如图,在四边形ABCD中,点E,F分别是AB,AD的中点.若EF=2,BC=5,CD =3,则tan C=________.21、如图,是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2.6米,斜坡AB的坡比为1:2.4,现把图中的货物继续向前平移,当货物顶点D 与C重合时,仍可把货物放平装进货厢,则货物的高度BD不能超过________米.22、a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状________.23、如图,点,依次在的图象上,点,依次在x轴的正半轴上,若,均为等边三角形,则点的坐标为________.24、如图,已知是一个锐角,以点O为圆心,任意长为半径画弧,分别交、于点A、B,再分别以点A、B为圆心,大于长为半径画弧,两弧交于点C,画射线.过点作,交射线于点D,过点D作,交于点E.设,,则________.25、如图,是的直径,是上的点,,过点作的切线交的延长线于点,则的值为________.三、解答题(共5题,共计25分)26、计算:(﹣2)3+ ﹣2sin30°+(2016﹣π)0.27、如图,建筑物的高为17. 32米.在其楼顶,测得旗杆底部的俯角为,旗杆顶部的仰角为,请你计算旗杆的高度.(,,,,结果精确到0.1米)28、如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?29、河滨公园有一不等臂跷跷板长为2.9米,为了缓冲一端下落时对人的冲击力,两端的下方分别固定一轮胎作为支持.已知两端着地时离地面的高度分别为:米,米;与水平线的夹角分别为,,求支柱的长.(结果精确到0.1米,参考数值:,)30、如图,某校少年宫数学课外活动初三小组的同学为测量一座铁塔AM的高度如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、B5、A6、A7、C8、D9、C10、D11、C12、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形测验解直角三角形测试题
一. 选择题:(每小题2分,共20分)
1. 在△EFG中,∠G=90°,EG=6,EF=10,则cotE=()
A. B. C. D.
2. 在△ABC中,∠A=105°,∠B=45°,tanC的值是()
A. B. C. 1 D.
3. 在△ABC中,若,,则这个三角形一定是()
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 等腰三角形
4. 如图18,在△EFG中,∠EFG=90°,FH⊥EG,下面等式中,错误的是()
A. B.
C. D.
5. sin65°与cos26°之间的关系为()
A. sin65°cos26°
C. sin65°=cos26°
D. sin65°+cos26°=1
6. 已知30°<α<60°,下列各式正确的是()
A. B. C. D.
7. 在△ABC中,∠C=90°,,则sinB的值是()
A. B. C. D.
8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是()米2
A. 150
B.
C. 9
D. 7
9. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=
2∶3,顶宽是3米,路基高是4米,则路基的下底宽是()
A. 7米
B. 9米
C. 12米
D. 15米
10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()
A. B. C. D. 1
二. 填空题:(每小题2分,共10分)
11. 已知0°<α<90°,当α=__________时,,当α=__________时,Cota=.
12. 若,则锐角α=__________。

13. 在Rt△ABC中,∠C=90°,,,则a=__________,b=__________,c=__________,cotA=__________。

14. 若一个等腰三角形的两边长分别为2cm和6cm,则底边上的高为__________cm,底角的余弦值为__________。

15. 酒店在装修时,在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图21所示,则购买地毯至少需要__________元。

三. 解答题:(16、17每小题5分,其余每小题6分共70分)
16. 计算
17. 如图22,在△ABC中,∠C=90°,∠BAC=30°,AD=AB,求tanD。

18. 已知直角三角形中两条直角边的差是7cm,斜边的长是13cm,求较小锐角α的各三角函数值。

19. 如图23,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若。

(1)求△ANE的面积;(2)求sin∠ENB的值。

20. 已知在△ABC中,,AC=2,BC边上的高。

(1)求BC的长;
(2)若有一个正方形的一边在AB上,另外两个顶点分别在AC和BC上,求正方形的面积。

21. 已知,△ABC中,∠BAC=120°,AD平分∠BAC,AB=5,AC=3,求AD的长。

22. 如图,在△ABC中,∠C=90°,D是BC边上一点,DE⊥AB于E,∠ADC=45°,若DE∶AE=1∶
5,BE=3,求△ABD的面积。

23.已知中,AD为中线,,求的长。

24.在△ABC中,∠A=1200,AB=12,AC=6。

求sinB+sinC的值。

25.四边形ABCD中,BC⊥CD,∠BCA=600,∠CDA=1350,。

求AD边的长。

26.湖面上有一塔高15米,在塔顶A测得一气球的仰角为40,又测得气球在水中像的俯角为60,求气球高出水面的高度(精确到0.1米)。

27、由于过度采伐森林和破坏植被,使我国许多地区遭受沙尖暴侵袭。

近日A市××局测得沙尘暴中心在A市正西300公里的B处以10海里/时的速度向南偏东60的BF方向移动,距沙尘暴中心200公里的范围是受沙尘暴影响的区域。

(1)通过计算说明A市是否受到本次沙尘暴的影响?
(2)若A市受沙尘暴影响,求A市受沙尘暴影响的时间有多长?
试题答案
一. 选择题:
1. A
2. B
3. A
4. C
5. B
6. C
7. D
8. B
9. D 10. A
提示:10. 如图24所示,作AE⊥BC,AF⊥CD,垂足分别为E、F,依题意,有AE=AF=1,可证得∠ABE=∠ADF=α。

所以可证得△ABE≌△ADF,得AB=AD,
则四边形ABCD是菱形。

在Rt△ADF中,。

所以
二. 填空题:
11. 30°,30°;12. 60°;13. a=9,b=12,c=15,;
14. 15. 504。

提示:13. 设a=3t,c=5t,则b=4t,
由a+b+c=36,得t=3。

所以a=9,b=12,c=15。

14. 等腰三角形的腰只能是6,底边为2,腰不能为2,否则不满足三角形两边之和大于第三边,作底边上的高,利用勾股定理求高。

15. 利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为 5.8米,2.6米,则地毯的长度为2.6+5.8=8.4米,地毯的面积为8.4×2=16.8平方米,则买地毯至少需要16.8×30=504元。

三. 解答题:
16. ;
17. ;
18.
19. 分析:根据条件可知MN是AE的垂直平分线,则AN=NE。

所以∠AEN可以是Rt△EGN的一个锐角,或是Rt△GAN的一个锐角,或是Rt△EBA的一个锐角。

解:∵
∵DC+CE=10,
∴3a+2a=10,∴a=2。

∴BE=2,AB=6,CE=4。

又。

20. 根据条件显然有两种情况,如图25。

(1)在图25(1)中,可求CD=1,∠CAD=30°,∠B=30°,∠C=60°,BC=4,所以△ABC是直角三角形。

在图25(2)中,可求CD=1,∠CAD=30°,∠B=30°,∠BAD=60°,BC=AC=2,△ABC是等腰三角形,AC平分∠BAD。

(2)在图26(1)中,设正方形边长为x,∵,解得。

在图26(2)中,设正方形边长为x。

解得
21. 解法一:过B作CA延长线的垂线,交于E点,
过D作DF⊥AC于F。

∴DF∥BE
∴△FDC∽△EBC
∵AD平分∠BAC
∵∠BAC=120°
∴∠EAB=180°-∠BAC=60°
在Rt△ABE中,
在Rt△ADF中,∵∠DAC=60°
解法二:如图11,过C作CE⊥AD于D,过B作BF⊥AD交AD的延长线于F。

∵AD平分∠BAC,∠BAC=120°
∴∠BAD=∠CAD=60°。

在Rt△AEC中,
在Rt△ABF中,
∵CE∥BF
∴△BDF∽△CDE。

∵EF=1
分析:题目中有120°角及它的角平分线,所以有两个60°这个特殊角,要求60°角的一条夹边AD的长,可以构造等边三角形,得到与AD相等的线段。

解法三:如图12,过点D作DE∥AB交AC于E。

则∠ADE=∠BAD=∠DAC=60°
∴△ADE是等边三角形。

∴AD=DE=AE
设AD=x
∵△ABC∽△EDC
解法四:如图13,过B作AC的平行线交AD的延长线于E。

∵AD平分∠BAC,∠BAC=120°
∴∠BAD=∠DAC=∠E=60°。

∴△ADE是等边三角形
∴AE=AB=BE=5
∵AC∥BE
∴△CAD∽△BED
小结:解三角形时,有些图形虽然不是直角三角形,但可以添加适当的辅助线把它们分割成一些直角三角形和矩形,从而可以运用解直角三角形的有关知识去解决这些图形中求边角的问题。

另外,在考虑这些组合图形时,要根据题目中的条件和要求来确定边与边,角与角是相加还是相减。

22.解:在△AED中,∵DE⊥AB于E,
又∵DE∶AE=1∶5,∴设DE=x,则AE=5x。

在△ADC中,∵∠C=90°,∠ADC=45°,∴∠DAC=45°,
在Rt△BED和Rt△BCA中,∵∠B是公共角,
∠BED=∠BCA=90°,∴△BED∽△BCA。

∴AB=AE+BE=10+3=13。

23.解:
24提示:过C点作CE⊥BA交BA的延长线于E,过点B作BD⊥CA交
CA的延长线于D。

SinB+sinC=
25. 提示:作AF⊥AC于F,作AE⊥CD交CD的延长线于E。

可求AC=16,AD=8。

相关文档
最新文档