数列的概念单元测试题+答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.数列{}n a 的前n 项和记为n S ,()*

11N ,2n n n a a a n n ++=-∈≥,12018a =,

22017a =,则100S =( )

A .2016

B .2017

C .2018

D .2019

2.数列{}n a 的通项公式是2

76n a n n =-+,4a =( )

A .2

B .6-

C .2-

D .1

3.设数列{}n a 的前n 项和为n S 已知(

)*

123n n a a n n N

++=+∈且1300n

S

=,若

23a <,则n 的最大值为( )

A .49

B .50

C .51

D .52

4.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯

B .20191010⨯

C .20202020⨯

D .20192019⨯

5.已知数列{}n a 的前n 项和为n S ,且2

1n S n n =++,则{}n a 的通项公式是( )

A .2n a n =

B .3,1

2,2n n a n n =⎧=⎨≥⎩

C .21n a n =+

D .3n a n =

6.数列{}n a 满足11

1n n

a a +=-,12a =,则2a 的值为( ) A .1

B .-1

C .

13

D .13

-

7.

的一个通项公式是( )

A

.n a =

B

.n a =C

.n a =D

.n a =8.在数列{}n a 中,()11

11,1(2)n

n n a a n a --==+

≥,则5a 等于

A .

3

2

B .

53 C .85

D .

23

9.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11

02

a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+

D .71089a a a a +>+

10.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072

B .2073

C .2074

D .2075

11.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2

B .1

C .0

D .1-

12.已知数列{}n a 中,11a =,122

n

n n a a a +=+,则5a 等于( ) A .

25

B .

13 C .

23

D .

12

13.已知数列{}n a 的首项为2,且数列{}n a 满足11

1

n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( ) A .504

B .294

C .294-

D .504-

14.若数列{a n }满足1112,1n

n n

a a a a ++==-,则2020a 的值为( ) A .2

B .-3

C .12

-

D .

13

15.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4

B .6

C .8

D .10

16.数列{}n a 满足1

111,(2)2

n n n a a a n a --==≥+,则5a 的值为( )

A .

18

B .

17 C .

131

D .

16

17.已知数列{}n a 满足2122

1

1

1,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92

B .102

C .

81

82

D .112

18.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(

)*

3n n N

≥∈,,此数列在现代物理及化学等领域有着广泛的应用,

若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3

B .2

C .1

D .0

19.已知数列{}n a 的前n 项和为n S ,已知1

3n n S +=,则34a a +=( )

A .81

B .243

C .324

D .216

20.若数列的前4项分别是

1111,,,2345

--,则此数列的一个通项公式为( ) A .1(1)n n --

B .(1)n n -

C .1

(1)1

n n +-+

D .(1)1

n n -+

二、多选题

21.设数列{}n a 满足11

02

a <<

,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列

相关文档
最新文档