《电力电子技术》第五版第4章逆变电路(精)
(完整word版)电力电子技术第五版课后习题答案
电力电子技术第五版课后习题答案第二章 电力电子器件2. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
或:u AK >0且u GK >0。
3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
4. 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。
002π2π2ππππ4π4π25π4a)b)c)图1-430图2-27 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m =π2m I (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πm I (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t I m =22mI π2143+≈0.6741I m c) I d3=π21⎰20)(πωt d I m =41 I m I 3 =⎰202)(21πωπt d I m =21 I m5. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I≈329.35, I d1≈0.2717 I m1≈89.48 b) I m2≈6741.0I≈232.90, I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314,I d3=41 I m3=78.5第三章 整流电路1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。
电力电子技术-第4章逆变电路讲解
4.3.1 单相电流型逆变电路
(1)电路结构
①用④阻载② 载来③ 联 确4并抗电个采 电限应C谐联,压桥和用 压制称振谐谐波臂L负 (晶之式振波形、,载 呈闸为逆回在接R每换 容管容变构路负近桥相性开性电成对载正臂方)通小路并基上弦晶式。时失(联波产波闸,的谐但谐呈生。管要d负最振高的i各/求载d终电阻压t串负)负路抗降联载载,,很一电仍故对小个流略此谐,电略显电波因抗超容路呈此器前性称低负L于T,为,负并准
4.2.1 单相电压型逆变电路
1、 半桥逆变电路 •(1)电路图
+
Ud 2
Ud
Ud 2
-
V1 io R L
u o V 2
a)
VD 1
VD 2
*导电方式:
V1,V2信号互补,
各导通180゜。
•半桥逆变电路有两个桥臂, 每个桥臂有一个可控器件和一 个反并联二极管组成。 •在直流侧接有两个相互串联 的足够大的电容,两个电容的 联结点是直流电源的中点。 •负载联结在直流电源中点和 两个桥臂联结点之间。
能否不改变直 流电压,直接进行 调制呢?为此提出 了导电方式二:
移相导电方式。
*导电方式二:移相调压 调节输出电压脉冲的宽度
采用移相方式调节逆变电路的输出电压
• 各IGBT栅极信号为180°正偏, 180°反偏,且V1和V2栅极信号互补, V3和V4栅极信号互补; • V3的基极信号不是比V1落后180°,
而是只落后q ( 0< q <180°);
• 也就是:V3、V4的栅极信号分别比
V2、V1的前移180°-q 。
工作过程
•t1时刻以前V1,V4通,u0=ud, io 从 0 增加; •t1时刻V4断,V1,VD3续流,u0=0,io 下降; • t2时刻V1也关断,io 还未下降到0,于是VD2,VD3续流,u0=-ud。 •直到io过0变负,V2,V3通,u0=-ud, io从0负增加; •t3时刻V3断,V2,VD4续流,u0=0,io 负减小; • t4时刻V2也关断,io 还未减小到0,于是VD1,VD4续流,u0=ud。
电力电子技术4章 无源逆变电路
图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图
4.3.3 电压型三相桥式逆变电路
1、工作过程:
电压型三相桥式逆变电路的基 本工作方式为180°导电型,即每个 桥臂的导电角为180°,同一相上下 桥臂交替导电的纵向换流方式,各 相开始导电的时间依次相差120°。
在一个周期内,6个开关管触 发导通的次序为T1→T2 →T3 →T4 →T5→T6 ,依次相隔60°,任一时 刻均有三个管子同时导通,导通的 组合顺序为T1T2T3,T2T3T4,T3T4T5 ,T4T5T6,T5T6T1,T6T1T2,每种组 合工作60°。
2、工作原理:
输出Ud负为载输。入直流电压,R为逆变器的
,当逆开变关器输T1、出T电4闭压u合0=,UTd;2、T3断开时
,当输开出关电压T1、u0T=4-断U开d
,T2、T3闭 ;
合
时
T4.2当2、.4以T(3b频时)所率,示f则S的交在交替电变切阻电换R压开上波关获形T1得,、如其T4
和 图 周
由
Ud
d L
io
dt
L2Iom Ts
2
可得负载电流峰值为:
Iom 4TLs Ud
(4.3.7)
2020/6/17
图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图
4.3.2 电压型单相全桥逆变电路
3)阻感负载RL时
0≤θ≤ωt期间,T1和T4有驱动信号 ,由于电流i0为负值,T1和T4不导通, D1、D4 导 通 起 负 载 电 流 续 流 作 用 ,
其线电压的瞬时值为:
u B C 2 3 U d si t n 1 5 s5 it n 7 1 s7 it n 1 1 s1 1 it n 1 1 1 s3 1 it n 3 (4.3.10)
电力电子技术 第四章逆变电路
V1
V2
VD1 VD2 VD1 VD2
t2~t3:负载—— C2——VD2,二极管VD2续流, 输出电压左正右负
Uo
+
Ud/2 Ud
Ud/2
-
C1 i0 R
+ u0
C2
V1 L
-
V2
Um
VD1 0
t
-Um
io
VD2 0
t3 t4
t
t1 t2
t5 t6
V1 V2
V1
V2
VD1 VD2 VD1 VD2
根据相关电路和变压器相关知识可以计算出 移相全桥零电压开关PWM变换器元器件参数:
变压器原和副边匝数比K=32:6 输出滤波电感设计Lf=18.4uH 输出滤波电容Co=14.8uF 谐振电感设计Lr=80uH
DC/AC全桥移相电路驱动波形图
DC/AC全桥移相电路漏源电压波形图
输出直流电压波形图
强迫换流的定义:
设置附加的换流电路,给欲关断的晶闸 管强迫施加反电压或反电流的换流方式称为 强迫换流。
强迫换流的分类
直接耦合 式强迫换流
电感耦合 式强迫换流
S
--
VT
C
+
+
负载
图4-2 直接耦合式强迫换流原理图
S
S
-
VD
+ -
C
VT
+
L+
L
负载 (a)
负载 (b)
图4-3 电感耦合式强迫换流原理图
换流方式总结:
器件换流——适用于全控型器件 其余三种方式——针对晶闸管 器件换流和强迫换流——属于自换流 电网换流和负载换流——属于外部换流
电力电子技术-第4章逆变电路
ON
VD
14
VD
VD b)
VD
固定180°移相方波控制方式
思考2:在导电方式一下工作,如果要改变输出电 压的有效值(即幅值),应该采取什么样的方式? ★只能靠改变输入直 流电压的大小来改变 输出电压的有效值。 能否不改变直流电 压,直接进行调制 呢?为此提出了导 电方式二:
移相导电方式。
课程回顾
uo S 4
图5-1 i 从电源负极流出,经 S S3流回正极,负载电 2、负载和 o t1时刻断开 St 、 S ,合上 S 、 S , u 变负,但 u 1 1前: 4 S1、S4通, 2 3 o 和i o o 均为正 io不能立刻 电流从一条支路转移到另一条支路称为换流。 感能量向电源反馈, io逐渐减小,t2时刻降为零,之后io 反向
负载提供能量。
VD V
2 2
• VD 1 或 VD 2 通时, i o 和 u o 反
a) uo Um O -Um io O t3 t4 t1 t 2 t5 t6 V1 V2 V1 V2 VD 1 VD 2 VD 1 VD 2 b)
向,负载电感中贮藏的能量
向直流侧反馈。
t
• 输出电压 uo 为矩形波,幅
• 全桥逆变电路
*导电方式一: V1,V4同时通断;
uo Um O
V2,V3同时通断;
V1,V4与V2,V3信号 互补,各导电180 ゜。
-Um
io O t3 t1 t 2 V 14 VD
14
t
t4 t5 t6 V 23
23
t
V2
23
ON
V 14
14
VD
VD b)
VD
思考:在导电方式一下工作,如果要改变输出电压
《电力电子技术》电子课件(高职高专第5版) 4.3 电压型逆变电路
0 2
2
(4.3.1)
输出电压瞬时值为:
uo
n 1, 3 , 5 ,
2U d n
s in nt
(4.3.2)
其中, 2f s 为输出电压角频率。
当 n=1时其基波分量的有效
值为:
U O1
2U d
2
0.45U d
(4.3.3)
图4.3.1 电压型半桥逆变电路及 其电压电流波形
4.3.1 电压型单相半桥逆变电路
图4.3.1 电压型半桥逆变电路 及其电压电流波形
4.3.1 电压型单相半桥逆变电路
2、工作原理:
在一个周期内,电力晶体 管 周正T1和偏T,2的半基周极反信偏号,各且有互半补。
若负载为纯电阻,在[0,π] 期 T2通π2截间 ,]期止,T间1,T截1,则有止T驱,u20有动则=U驱信ud0动。号=-信在导Ud号[通π。导,, 动 信信 号若号 ,负截 由载止于为,感纯尽性电管负感载T,1有中T驱的2无动电驱 流i。不能立即改变方向,于 是 D1导通续流,u0=-Ud /2 。
3、特点: 优点: 简单,使用器件少;
缺点:
1)交流电压幅值仅为Ud/2; 2)直流侧需分压电容器; 3)为了使负载电压接近正弦波通常在输出端要接LC 滤波器,输出滤波器LC滤除逆变器输出电压中的高次 谐波。 4、应用:用于几kW以下的小功率逆变电源;
4.3.2 电压型单相全桥逆变电路
电路工作原理:
(4.3.7)
图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图
4.3.2 电压型单相全桥逆变电路
3)阻感负载RL
0≤ ωt ≤ θ期间,T1和T4有驱动信号, 由于电流i0为负值,T1和T4不导通,D1、
电力电子技术第4章 晶闸管有源逆变电路
第三节
三相桥式逆变电路
三相桥式逆变电路必须采用三相全控桥。其主 电路的结构与三相全控桥式整流电路完全相同,它 相当于共阴极三相半波与共阳极三相半波逆变电路 的串联,其逆变工作原理的分析方法与三相半波逆 变电路基本相同。因其变压器不存在直流磁势,利 用率高;而且输出电压脉动较小,主回路所需电抗 器的电感量较三相半波小,故应用较广泛。
24
二、晶闸管出现故障 如果晶闸管参数选择不当,例如额定电压选择 裕量不足;或者晶闸管质量本身的问题,使晶闸管 在应该阻断的时候丧失了阻断能力,而应该导通的 时候却无法导通。读者不难从有关波形图上进行分 析,从而将会发现,由于晶闸管出现故障,也将导 致电路的逆变失败.
25
三、交流电源出现异常 从逆变电路电流公式 可看出当电路在有源逆变状态下,如果交流电 源突然断电,或者电源电压过低,上述公式中的 Ud 都将为零或减小,从而使电流 Id 增大以至发生 电路逆变失败
21
输出电流的有效值为 晶闸管流过电流平均值为 晶闸管流过电流有效值为
22
第四节
逆变失败原因分析及逆变角的限制
电路在逆变状态运行时,如果出现晶闸管换流 失败,则变流器输出电压与直流电压将顺向串联并 相互加强,由于回路电阻很小,必将产生很大的短 路电流,以致可能将晶闸管和变压器烧毁,上述事 故称之为逆变失败,或叫做逆变颠覆。 造成逆变失败的原因很多,大致可归纳为下列 几个方面:
18
一、逆变工作原理及波形分析 三相桥式逆变电路结构如图 4.6(a)所示。 如果变流器输出电压 Ud 与直流电机电势 ED的极 性如图所标示(均为上负下正),当电势 ED 略大 于平均电压 Ud,则回路中产生电流 Id 为
19
图 4.6 三相桥式有源逆变电路
《电力电子技术》电子课件(高职高专第5版) 4.4 电流型逆变电路
4.4 电流型逆变电路
4.4.1 电流型单相桥式逆变电路
1、工作原理:
I0=当Id ;T1反、之T4,导I通0=,-IdT。2、T3关断时, T如4图和当T以42、.频4.T1率3(时fb交,)替则所切在示换负的开载电关上流管获波得形T1、。
输出电流波形为矩形波,与 电路负载性质无关,而输出电压 波形由负载性质决定。
③ 直流侧电感起缓冲无功能量的作用,因电流不 能反向,故可控器件不必反并联二极管。
④ 当用于交-直-交变频器且负载为电动机时,若交 -直变换为相控整流,则可很方便地实现再生制动。
导 通 顺 序 T1→T2→T3→T4→T5→T6, 依 次间隔60°,每个桥臂导通120°,每个 时刻上桥臂组和下桥臂组中都各有一个臂 导通。
输出电流波形与负载性质无关。
输出电压波形由负载的性质决定。
输出电流的基波有效值I01和直流电流Id 的关系式为:
图4.4.2 电流型三相桥式逆变 电路原理图
主电路开关管采用自关断器 件时,如果其反向不能承受高电 压,则需在各开关器件支路串入 二极管。
图4.4.1 电流型单相桥式逆变 电路及电流波形
4.4.1 电流型单相桥式逆变电路
2、参数计算:
将图4.4.1(b)所示的电流波形i0展开成傅氏级数,有
io
4Id
(sint
1 sin3t 3
1 sin5t 5
6 I01 Id 0.78Id
(4.4.4)
图4.4.3 电流型三相桥式逆变电路 的输出电流波形
4.4.3 电流型逆变电路的特点
① 直流侧接大电感,相当于电流源,直流电流基 本无脉动,直流回路呈现高阻抗。
电力电子技术——有源逆变电路
其值为
E0 Ud 1.17U2 cos60 0.585U2
非线性特性
图4-10 电流断续时电动势的特性曲线
Goback
❖实际上,当Id减小至某一定值Idmin以后,电流变 为断续,真正的理想空载点远大于此值,因为
此时晶闸管触发导通时的相电压瞬时值为 2U2 。
❖考虑直流等效回路,左侧电源为脉动直流电压
ud波形,最大瞬时值为 2U 2 ,并且由于整流器
件的单向导电性,回路电流Id的方向是固定的,
只有当反电动势EM等于脉动直流电压ud的最大
峰值时,电流才能完全等于零,否则,只要EM
比ud的最大峰值略小一点,就总是存在断断续
续的电流脉冲。因此 2U2 才是实际的理想空载
no Ke
Goback
2. 电流断续时电动机的机械特性 • 由于整流电压是一个脉动的直流电压,当电动
机的负载减小时,平波电抗器中的电感储能减 小,致使电流不再连续,此时电动机的机械特 性也就呈现出非线性。
• 电流断续时电动机机械特性的第一个特点: 当 电流断续时,电动机的理想空载转速抬高。
❖由三相半波电路电流连续时反电动势表达式,
变化很小也可引起很大的转速变化。
❖ 设整流控制角一定,由于轻载时电流断续,各晶闸管 的导通角 120 ,此时ud波形将发生一定的变化,水 平直线E以下的部分作用时间将比电流连续时缩短,负 面积减小,平均面积Ud比电流连续时的计算值升高, 在电流连续的条件下得出的Ud计算公式不再适用。
整流波形
图4-11 考虑电流断续时不同时反电动势的特性曲线
➢整流输出电压ud是脉动的,可分为两部分:直 流分量Ud,和交流分量。交流电流分量的大小 主要取决于直流侧的回路电感,特别是平波电
《电力电子技术》电子课件(高职高专第5版) 4.6 负载换流式逆变电路
4.6 负载换流式逆变电路
4.6.1 并联谐振式逆变电路
1、电路结构:
负载为中频电炉,实际上 是一个感应线圈,图中L和R串 联为其等效电路。因为负载功 率因数很低,故并联补偿电容 器C。
大滤波电感
小电感,限制晶闸 管电流上升率
电容C和电感L、电阻R构成
并联谐振电路,所以称这种电 路为并联谐振式逆变电路。
图 4.6.2 并联谐振式逆变电路换流的工作过程
4.6.1 并联谐振式逆变电路
2、工作原理
t2时刻触发T2,T3 ,电路开始换流。由于 T2,T3导通时,负载两端电压施加到T1,T4的 两端,使T1,T4承受负压关断。由于每个晶闸 管都串有换相电抗器LT ,故T1和T4在t2时刻不 能立刻关断,T2,T3中的电流也不能立刻增大
4Id
sint
1 sin3t
3
1 sin5t
5
②负载电压有效值U0和直流电压Ud的关系:
基波电流有效值
I 01
(4.6.3 ) (4.6.4)
逆变电路的输入功率Pi为
Pi U d Id
逆变电路的输出功率Po为 因为Po=Pi,于是可求得
Po U 0 I01 cos
负载的功率因数角φ由负载电流与电 压的相位差决定,从图4.6.3可知:
( tr
2
t
)
其中ω为电路的工作频率。
(4.6.1)
图4.6.3 并联谐振式逆变电路 的工作波形
4.6.1 并联谐振式逆变电路
3、参数计算
①负载电流i0和直流侧电流Id的关系:如果忽略换流过程,i0为矩形波。 展开成傅氏级数得
i0
到稳定值。
电力电子技术第4章 逆变电路1
学习指导
※ 熟悉逆变电路的电路结构、分类及主要性能指标 ※ 掌握基本方波逆变电路及其特点 ※ 了解多重化逆变电路和多电平逆变电路 ※ 掌握逆变电路的脉冲宽度调制(PWM)控制技术 ※ 熟悉PWM整流电路
第4章 逆变电路
4.1 逆变电路综述 4.2 方波逆变电路 4.3 多重逆变电路和多电平逆变电路 4.4 逆变电路的脉宽调制控制技术——PWM控制技术 4.5 PWM跟踪控制技术 4.6 空间电压矢量PWM(SVPWM)控制技术 4.7 PWM整流电路
逆变电路换流过程中,有的支路要从通态转移到断态,有的支 路要从断态转移到通态。
从断态向通态转移时,无论支路是由全控型还是半控型电力电 子器件组成,只要给门极适当的驱动信号,就可以使其开通。
但从通态向断态转移的情况就不同。全控型器件可以通过对门 极的控制使其关断,而对于半控型器件的晶闸管来说,就不能 通过对门极的控制使其关断,必须利用外部条件或采取措施才 能使其关断,所以关断晶闸管需要设置强迫换流电路。这种情 况增加了逆变电路的复杂,降低了可靠性,也限制了开关频率。
如今,绝大多数逆变电路都采用全控型电力半导体开关器件。 中、大功率逆变电路多用IGBT、IGCT,小功率逆变电路多用 功率MOSFET。
4.1.3晶闸管电路换流方式
1. 电网换流
由电网提供换流电压称为电网换流(Line Commutation)。对于 可控整流电路,无论其工作在整流状态还是有源逆变状态,都是 借助与电网电压实现换流的,都属于电网换流。
可见输出电压uo为矩形波,其幅值为 Um=Ud/2。输出电流io波形随负载情况而异。
逆变电路工作波形
设开关器件VT1和VT2的栅极信号在一个周 期内期内各有半周正偏,半周反偏,且二者
电力电子技术 第4章有源逆变电路
2018年9月25日
4.3
逆变电路的应用
分析可得整流后电机转子直流回路电压平衡方程式: Ud=Ui+IdR (4-6)
设异步电机带动恒转矩负载在某一转速下稳定运行。现在要改变其 转速,可以通过控制逆变电路的逆变角β来实现。当β角增大时,逆 变电压Ui相应减小,但受机械惯性作用,电机转速不会立即变化, 所以Ud仍维持原值。这样,根据式(4-6),转子整流回路电流Id就要 增大,转子电流和电磁转矩都会相应增大,而负载转矩未变,电机 做加速运动。在加速过程中,转子整流电压Ud随之减小,又使电流 Id减小,直到Ud、Ui与Id间依式(4-6)取得新的平衡为止。最后,电 机进人新的稳定运行状态,并以比原转速更高的转速运行。同理可 知,减小β角时,电机将降低转速运行。这就是以电力电子器件组成 的绕线转子异步电机电气串级调速系统的工作原理。
4.1
4.1.1
有源逆变电路
认识整流与逆变的关系
整流时能量是交流电网发出经过电路转换成 能量 直流电供给负载,如图4.1(a)所示。而逆变时 传递: 能量是直流电源(此电源或为电机或为直流 电池)经过电路转换成交流电返回给电网或 者给负载,如图4.1(b)所示。
2018年9月25日
4.1
有源逆变电路
4.1.2 有源逆变电路的工作过程 以卷扬机械为例,由单相全波整流电路供电给直流电 动机为动力,分析提升和下放重物两种工作情况。 1.提升重物时,变流器工作于整流状态 (0°≤α ≤ 90° )
L V1 a ud b V3 V4 + E 重物 M _ V2 + id T + u2 i2 R+ u1 -源自4.1有源逆变电路
4.1.2 有源逆变电路的工作过程 2.下放重物时,变流器工作于逆变状态(0°≤α ≤ 90°)
电力电子技术4章 逆变电路
u WN'
c)
O
u UV
Ud
d)
O
t t
负载相电压
uUN uUN' uNN'
uVN uVN'
uNN'
uWN uWN' uNN '
图4-10电压型三相桥式逆 变电路的电压工作波形
College of Electrical Engineering and Automation
4.1.2 换流方式分类
换流方式总结:
器 件 换 流 —— 适 用 于 全 控 型 器 件 ( IGBT 、 MOSFET等)。
其余三种方式——针对晶闸管(SCR)。
器件换流和强迫换流——属于自换流(器件、 变流器自身)。
电网换流和负载换流——属于外部换流(电网、 负载电压)。
当电流不是从一个支路向另一个支路转移,而
Automation
College of Electrical Engineering and Automation
15/53
优缺点:
结构简单,使用器件较少。
输出交流电压的幅值 Um=±Ud/2。 ,且直流侧需 要两个电容器并联,工作时需 要考虑两个电容电压的均衡, 因而仅使用于小功率逆变电路。
与全桥电路的比较:
比全桥电路少用一半开关器件。
器件承受的电压为2Ud,比全桥电路高 一倍。 必须有一个变压器 。
College of Electrical Engineering and Automation
19/53
4.2.2 三相电压型逆变电路
三个单相半桥单元逆变电路可组合成一个三 相逆变电路 应用最广的是三相桥式逆变电路
《电力电子技术》习题解答(高职高专第5版) 第4章习题答案
第4章思考题与习题4.1 什么是电压型和电流型逆变电路?各有何特点?答:按照逆变电路直流侧电源性质分类,直流侧为电压源的逆变电路称为电压型逆变电路,直流侧为电流源的逆变电路称为电流型逆变电路。
电压型逆变电路的主要特点是:(1)直流侧为电压源,或并联有大电容,相当于电压源。
直流电压基本无脉动,直流回路呈现低阻抗。
(2)由于直流电压源的钳位作用,交流侧电压波形为矩形波,并且与负载阻抗角无关,而交流侧输出电流波形和相位因负载阻抗情况的不同而不同,其波形接近于三角波或正弦波。
(3)当交流侧为阻感性负载时,需提供无功功率,直流侧电容起缓冲无功能量的作用,为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了二极管。
(4)逆变电路从直流侧向交流侧传送的功率是脉动的,因直流电压无脉动,故功率的脉动是由交流电压来提供。
(5)当用于交—直—交变频器中,负载为电动机时,如果电动机工作在再生制动状态,就必须向交流电源反馈能量。
因直流侧电压方向不能改变,所以只能靠改变直流电流的方向来实现,这就需要给交—直整流桥再反并联一套逆变桥。
电流型逆变电路的主要特点是:(1)直流侧串联有大电感,相当于电流源,直流电流基本无脉动,直流回路呈现高阻抗。
(2)因为各开关器件主要起改变直流电流流通路径的作用,故交流侧电流为矩形波,与负载性质无关,而交流侧电压波形和相位因负载阻抗角的不同而不同。
(3)直流侧电感起缓冲无功能量的作用,因电流不能反向,故可控器件不必反并联二极管。
(4)当用于交—直—交变频器且负载为电动机时,若交—直变换为可控整流,则很方便地实现再生制动。
4.2 电压型逆变电路中的反馈二极管的作用是什么?答:在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
当输出交流电压与电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压与电流极性相反时,由反馈二极管提供电流通道。
电力电子技术_王兆安第五版_第4章
➢ 输出线电压波形和负载性质有关,若有电感,因 电感的作用,每次换相时会产生电压冲击。
(2)串联二极管式晶闸管逆变电路
(串联二极管式晶 闸管逆变电路)
①主要用于中大功率交 流电动机调速系统。 ②电流型三相桥式逆 变电路,输出波形与 全控型器件时一样。
(1)电路结构
①用④阻载② 载来③ 联 确4并电抗个采电限C应谐联压,桥和用压制称振谐波谐臂L负(晶之式振形波、,载呈闸为逆回接在R每换容管容变构路近负桥相性开性电成对正载臂方)通小路并基弦上晶式。时失(联波波产闸,的谐但谐呈。生管要d负最振高的i各/求载d终电阻压t串负)负路抗降联载载,,很一电仍故对小个流略此谐,电略显电波因抗超容路呈此器前性称低负L于T,为,负并准
③各桥臂的晶闸管和 二极管串联使用。
④ 120°导电工作方式
⑤强迫换流方式,电 容C1~C6为换流电容。
重点分析:换流过程(因电容C,强迫换流)
➢电容器充电规律:对共阳极 晶闸管,它与导通晶闸管相 连一端极性为正,另一端为 负,不与导通晶闸管相连的 电容器电压为零
➢等效换流电容概念:分析从 VT1向VT3换流时,C13就是 C3与C5串联后再与C1并联的 等效电容.
※两个重要参数:
触发引前时间 :
t=t+ tb io超前于uo的 时间 :
t = t / 2 + tb
即为功率因数角。
4.3.2 三相电流型逆变电路(桥式)
(1)采用全控型器件GTO
基本工作方式是1200导电方式:每个臂一周期内 导电1200,每时刻上下桥臂组各有一个臂导通, 为横向换流。
三相电流型逆变输出特性(全控型器件):
电力电子技术第4章 逆变电路总结
UN'
◆把上面各式相加并整理可求得
U d 2
O u
VN'
t t t
b) u c) u d) u u
O
WN'
1 1 u NN' (uUN' uVN' uWN' ) (uUN uVN uWN ) 3 3
(4-6)
O
UV
U O
NN' UN
d
t
U d 6
设负载为三相对称负载,则有 uUN+uVN+uWN=0,故可得
图4-8 带中心抽头变 压器的逆变电路
◆与全桥电路相比较 ☞比全桥电路少用一半开关器件。 ☞器件承受的电压为2Ud,比全桥 电路高一倍。 ☞必须有一个变压器。
15/47
4.2.2 三相电压型逆变电路
■三个单相逆变电路可组合成一个三相逆变电路。 ■三相桥式逆变电路 ◆基本工作方式是180°导电方式。 ◆同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度 差120 °,任一瞬间有三个桥臂同时导通。 ◆每次换流都是在同一相上下两臂之间进行,也称为纵向换流。
u
UN'
a)
u b) u c) u d)
O
VN'
U d 2
t t t
O
WN'
O
UV
U O u u
NN' UN
d
t
U d 6
u UV u UN' u VN' u VW u VN' u WN' u WU u WN' u UN'
◆负载各相的相电压分别为
第四章 电力电子技术—逆变电路
—电力电子技术—
4.1换流方式 4.1换流方式
2. 换流方式分类
换流方式主要是如何使器件关断 换流方式 器件换流——利用全控型器件的自关断能力进行换流, 利用全控型器件的自关断能力进行换流, 器件换流 利用全控型器件的自关断能力进行换流 电力MOSFET 、GTO 、GTR等全控型器件 如IGBT 、电力 等全控型器件 的换流 电网换流——电网提供换流电压的换流方式,即将负的 电网提供换流电压的换流方式, 电网换流 电网提供换流电压的换流方式 电网电压施加在欲关断的VT上即可使其关断 上即可使其关断。 电网电压施加在欲关断的 上即可使其关断。不需要器 件具有门极可关断能力, 件具有门极可关断能力,不适用于没有交流电网的无源 逆变电路, 逆变电路,更多用于整流和有源逆变
uo Um O - Um io t1 t 2 t5 t6 V1 V2 V1 V2 ON VD 1 VD 2 VD 1 VD 2 O t3 t4
t
t
4.2电压型逆变电路 4.2电压型逆变电路
1. 单相电压型逆变电路 单相电压型逆变电路——半桥逆变电路 半桥逆变电路
工作原理 t2时刻前,V1为通态,V2为断态 时刻前, 为通态, t2时刻给 1关断信号,给V2开通信号, 时刻给V 关断信号, 开通信号, V1关断,但感性负载中的电流 o不能 关断,但感性负载中的电流i 立即改变方向, 立即改变方向,VD2续流 t3时刻 o降零时,VD2截止,V2开通, 时刻i 降零时, 截止, 开通, io开始反向 u U O 导通与续流 -U ——V1或V2通时,io和uo同向,直流侧向 通时, 同向, i
S1 Ud S2 uo io t1 t2
阻感负载
io 负载 S3 uo S 4
电力电子技术 第五版 (王兆安 刘进军 着) 机械工业出版社
开关速度低,为电流驱动,所需 驱动功率大,驱动电路复杂,存 在二次击穿问题
GTO
电压、电流容量大,适用于大功率场 合,具有电导调制效应,其通流能力 很强
电流关断增益很小,关断时门极 负脉冲电流大,开关速度低,驱 动功率大,驱动电路复杂,开关 频率低
案 0
π
答ud
2π
ωt
后0
π
2π
ωt
课
id
0
π
2π
ωt
当α=60°时,在 u2 正半周期 60°~180°期间晶闸管导通使电感 L 储能,电感 L 储藏的
能量在 u2 负半周期 180°~300°期间释放,因此在 u2 一个周期中 60°~300°期间以下微分方程
成立:
L d id = dt
2U 2 sin ωt
GTO 驱动电路的特点是:GTO 要求其驱动电路提供的驱动电流的前沿应有足够的幅 值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和 陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。
电力 MOSFET 驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且 电路简单。
对于电感负载:(α ~ π+α)期间,单相全波电路中 VT1 导通,单相全控桥电路中 VT1、VT4 导通,输出电压均与电源电压 u2 相等;(π+α ~ 2π+α)期间,单相全波电 路中 VT2 导通,单相全控桥电路中 VT2、VT3 导通,输出波形等于− u2。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向
案 相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。 答 以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。 后 ① 以晶闸管 VT2 为例。当 VT1 导通时,晶闸管 VT2 通过 VT1 与 2 个变压器二次绕组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.1 逆变电路的基本工作原理
◆ S1~S4是桥式电路的4个臂,由电力电子器件及 辅助电路组成。
uo Ud
S1
S2
io 负载 S3 uo S 4 a)
io t1 t2 b) t
图4-1
逆变电路及其波形
◆当开关S1、S4闭合,S2、S3断开时,负载电压
uo为正;当开关S1、S4断开,S2、S3闭合时,uo为
☞利用全控型器件的自关断能力进行换流。
2、电网换流(Line Commutation)
☞利用电网电压有自动过零并变负的特点提供
换流电压的换流方式。
☞将负的电网电压施加在欲关断的晶闸管上即
可使其关断。不需要器件具有门极可关断能力, 但不适用于没有交流电网的无源逆变电路(即对 直流回路中的SCR不适用)。
◆由于直流电压源的钳位作用,输出电压为矩形 波,输出电流因负载阻抗不同而不同。
◆局限性:不适用经常要求制动的装置。
◆阻感负载时需提供无功功率,为了给交流侧向直
流侧反馈的无功能量提供通道,逆变桥各臂并联反
馈二极管。
图4-5 电压型逆变电路举例(全桥逆变电路)
4.2.1 单相电压型逆变电路
一、半桥逆变电路 1、电路结构
二、交-直-交变频
+ VT1 VT2
UR
Ud R VT3 _ VT4
t
UR幅值:由可调直流电源Ud决定。 UR频率:由两对晶闸管的切换频率决定。 特点:调频范围大,应用范围广,一般 f出 < f电网 或f出 > f电网 。
4.1 换流方式
4.1.1 逆变电路的基本工作原理
4.1.2 换流方式分类
负,这样就把直流电变成了交流电。
◆改变两组开关的切换频率,即可改变输出交
流电的频率。
◆电阻负载时,负载电流io和uo的波形相同,相
位也相同。 ◆阻感负载时,io相位滞后于uo,波形也不同。
4.1.2 换流方式分类
一、换流
◆电流从一个支路向另一个支路转移的过程,也
称为换相。
二、换流方式
1、器件换流(Device Commutation)
交直交变频:把直流电能(经交流电源整流 而得)转变为所需频率的交流电能(间接变 频)。
■逆变电路的主要应用 ◆各种直流电源,如蓄电池、干电池、太阳能
电池等。 ◆交流电机调速用变频器、不间断电源、感应 加热电源等电力电子装置的核心部分都是逆变 电路。
一、交-交变频
UR t
正组 R 反组
UR幅值:改变变流器的控制角α调节。 UR频率:由正、反组变流器轮流导通的切换频率 所决定。 特点:一般 f出 < f电网 ,适应于低频大功率下应用, f出 =0.5 f电网 。
i
O i O uVT O
iVT iVT
1
4
iVT
2
iVT
3
ωt
ωt
4
u VT
t1
1
uVT b)
ωt
图4-2 负载换流电路及其工作波形
4、强迫换流(Forced Commutation)
☞设置附加的换流电路,给欲关断的晶闸管强 迫施加反压或反电流的换流方式称为强迫换流。 ☞通常利用附加电容上所储存的能量来实现,
图4-4 电感耦合式强迫换流原理图
√在这两种情况下,晶闸管都是在正向电流减至零且 二极管开始流过电流时关断,二极管上的管压降就 是加在晶闸管上的反向电压。 √也称电流换流。
总结 ◆器件换流只适用于全控型器件,其余三种方式 主要是针对晶闸管而言的。 ◆器件换流和强迫换流属于自换流,电网换流和 负载换流属于外部换流。 ◆当电流不是从一个支路向另一个支路转移,而 是在支路内部终止流通而变为零,则称为熄灭。
3、负载换流(Load Commutation)
☞由负载提供换流电压的换流方式。 ☞负载电流的相位超前于负载电压的场合,都可 实现负载换流。 如电容性负载和同步电动机
a) uo io O io
uo
ωt
☞负载:电阻、电感串联后和电 容并联,整个负载工作在接近并 联谐振状态而略呈容性,电容为 改善负载功率因数使其略呈容性 而接入,直流侧串大电感,id基本 没有脉动。 √负载对基波的阻抗大而对谐 波的阻抗小,所以uo接近正弦波。 √注意:触发VT2、VT3的时刻 t1必须在uo过零前并留有足够的裕 量,才能使换流顺利完成。
2、工作原理
Um O - Um io O
o
a)
t
t3 t4
t1 t 2 t5 t6 V1 V2 V1 V2 ON VD 1 VD 2 VD 1 VD 2 b)
图4-6 单相半桥电压型逆 变电路及其工作波形
t
☞开关器件V1和V2的栅极信 号在一个周期内各有半周正 偏,半周反偏,且二者互补。 ☞输出电压uo为矩形波,其幅 值为Um=Ud/2。 ☞阻感负载时,t2时刻给V1关 断信号,给V2开通信号,则 V1关断,但感性负载中的电 流io不能立即改变方向,于是 VD2导通续流,当t3时刻io降零 时,VD2截止,V2开通,io开 始反向。
4.2 电压型逆变电路
4.2.1 单相电压型逆变电路 4.2.2 三相电压型逆变电路
4.2 电压型逆变电路· 引言
■根据直流侧电源性质的不同,可以分为两类
◆电压型逆变电路:直流侧是电压源。
◆电流型逆变电路:直流侧是电流源。
■电压型逆变电路的特点
◆直流侧为电压源或并联大电容,直流侧电压基
本无脉动。
◆在直流侧接有两个相
Um O - Um io O
o
a)
互串联的足够大的电容,
t
两个电容的联结点便成为 直流电源的中点,负载联
t
t1 t 2 t5 t6 V1 V2 V1 V2 ON VD 1 VD 2 VD 1 VD 2 b)
图4-6 单相半桥电压型逆 变电路及其工作波形
t3
t4
接在直流电源中点和两个 桥臂联结点之间。
因此也称为电容换流。
☞分类
√直接耦合式强迫换流:由换流电路内电容
直接提供换流电压。
如图4-3,当晶闸管VT处于通态时,
预先给电容充电。当S合上,就可
使VT被施加反压而关原理图
√电感耦合式强迫换流:通过换流电路内的电
容和电感的耦合来提供换流电压或换流电流。 √图4-4a中晶闸管在LC振 荡第一个半周期内关断,图 4-4b中晶闸管在LC振荡第二 个半周期内关断,注意两图 中电容所充的电压极性不同。
第四章 逆变电路
4.1 换流方式
4.2 电压型逆变电路
4.3 电流型逆变电路 本章小结
引言
■逆变的概念
◆与整流相对应,直流电变成交流电。 ◆交流侧接电网,为有源逆变。 ◆交流侧接负载,为无源逆变。
■逆变与变频
◆变频电路:分为交交变频和交直交变频两种。 交交变频:直接将工频转变为所需频率 (直接变频)。