一次方程知识点总结

合集下载

一次函数解方程知识点总结

一次函数解方程知识点总结

一次函数解方程知识点总结一次函数是指函数的形式为y=ax+b的函数,其中a和b为常数且a不等于0。

一次函数解方程是指求解形式为ax+b=0的一次方程,其中a和b为已知的常数,x为未知数。

一次函数解方程的基本思想是通过移项、合并同类项、对等式两边进行相反运算等方法,使得方程的未知数x的系数化为1,从而求解出x的值。

下面将详细介绍一次函数解方程的基本步骤、方法和常见题型。

一、基本步骤1. 移项:将方程中所有含有未知数x的项移到等式的一边,将常数项移到等式的另一边。

注意,移项时要保持等式两边的平衡,不改变等式的值。

2. 合并同类项:将移项后的同类项进行合并,化简方程。

3. 求解未知数:通过对等式两边进行相反运算,使得未知数x的系数化为1,从而求解出x的值。

二、方法1. 加减法法:通过加减法将方程中的多项式进行合并,化简方程,最终求解出x的值。

2. 乘除法法:通过乘除法将方程中的系数进行变形,从而化简方程,最终求解出x的值。

3. 通解法:当一次函数解方程有多组解时,可使用通解法求出所有解的形式表示。

4. 检验法:在得到x的值后,将x代入原方程进行检验,以确认所得的x是否为方程的解。

5. 方程有两个未知数时,需用两个方程一起求解。

比如连个方程是a * x +b * y = cd * x +e * y = f6. 方程组方法:将两个一次方程联立起来成为一个方程组,通过消元法解方程组以求出未知数的值。

三、常见题型1. 类型一:一次方程的基本形式,如ax+b=0。

例题:求解方程2x-5=0的解。

解答:移项得2x=5,再除以2得x=5/2,所以方程的解为x=5/2。

2. 类型二:一次方程的变形形式,如ax+b=c例题:求解方程3x+7=10的解。

解答:移项得3x=10-7,再化简得3x=3,再除以3得x=1,所以方程的解为x=1。

3. 类型三:带有括号的一次方程,如ax+(b+c)x=d例题:求解方程2(x+3)=5的解。

一次方程与方程组知识点

一次方程与方程组知识点

知识点1:一元一次方程的概念只含有一个未知数,并且未知数的次数都是1,像这样的整式方程叫做一元一次方程。

(如:21,314223x x x x --=+=-) 特点:①等号两边都是整式②只含有一个未知数③未知数的次数都为1.判断方法:首先要将整式方程化简,然后再判断是否满足一元一次方程的三个特点。

知识点2:等式的基本性质1.等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

即如果a b =,那么a c b c ±=±;2.等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。

即如果a b =,那么ac bc =,(0)a b c c c=≠; 3.对称性:如果a b =,那么b a =;4.传递性:如果a b =,b c =,那么a c =。

知识点3:一元一次方程的解法1.移项法则把方程的某一项改变符号后,从方程的一边移到方程的另一边,叫做移项法则。

2.解一元一次方程的步骤①去分母:在方程两边都乘以各分母的最小公倍数;②去括号:先去小括号,再去中括号,最后去大括号;③移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(移项要变号) ④合并同类项:把方程变成(0)ax b a =≠的形式⑤系数华为1:在方程两边都除以未知数的系数a ,得到方程的解b x a =。

知识点4:(1)二元一次方程的概念含有两个未知数,且未知项的最高次数是1的整式方程叫做二元一次方程。

如:1,323,32m x y x y n +=-=+=都是二元一次方程。

(2)二元一次方程组的概念由两个二元一次方程组成的方程组叫做二元一次方程组。

(如:2324x y x y +=⎧⎨-=⎩) 知识点5:二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解。

知识点6:二元一次方程组的解法(1)用代入法求解二元一次方程组步骤:①从方程组中选一个系数比较简单的方程,将这个方程的一个未知数用含另一个未知数的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x (或y )的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x 、y 的值用“{”联立起来,就是方程组的解。

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

初中一次方程知识点总结-初二数学一次方程知识点

初中一次方程知识点总结-初二数学一次方程知识点

初中一次方程知识点总结-初二数学一次
方程知识点
本文将总结初中一次方程的知识点,主要针对初二数学一次方程的研究内容。

一次方程的定义和性质
- 一次方程是指次数为1的代数方程,其形式为ax + b = 0,其中a、b为已知数,x为未知数。

- 一次方程的解是使方程成立的未知数的值,结果可以是一个或多个解。

- 一次方程解存在唯一性和零解的性质。

一次方程的解法
1. 移项法:通过移项将未知数的项和常数项分别移到方程的两边,逐步化简求解.
2. 消元法:通过消去方程中的一个未知数,得到只含一个未知数的新方程,从而求解出未知数的值.
一次方程的一些常用性质
1. 反比例:两个变量之间成反比关系时,可以建立一次方程进
行求解.
2. 平均数:求一组数的平均数时,可以利用一次方程的性质进
行计算.
3. 增量法:通过建立两个一次方程,利用方程的解的性质求解
题目中的未知数.
实际问题中的一次方程应用
对于一次方程的应用,我们可以在实际问题中找到以下几个方
面的应用:
1. 实际问题的建立:通过将实际问题转化为一次方程,建立方
程模型,从而求解未知数的值.
2. 实际问题的解答:通过求解一次方程来解答实际问题,得出
问题的答案.
3. 实际问题的推广:通过解答一次方程的实际问题,将问题进
行推广,探索更深层次的数学知识.
总结
初中一次方程是数学学科中的基础内容,掌握一次方程的定义、解法、常用性质以及应用方法,可以帮助学生提高数学解题能力和
应用能力。

通过不断练和应用,初中生可以更好地理解和掌握一次方程的知识。

以上就是初中一次方程的知识点总结,希望对初二数学研究有所帮助。

一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。

例如2x + 3 = 0就是一元一次方程。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

例如x = - (3)/(2)是方程2x+3 = 0的解。

3. 等式的性质。

- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c = b±c。

- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。

- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。

4. 一元一次方程的解法步骤。

- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。

例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。

- 去括号:根据乘法分配律将括号去掉。

如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。

- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。

例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。

- 合并同类项:将方程中同类项合并。

如3x+2x=6 - 3+2合并同类项得5x = 5。

- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。

如5x = 5两边同时除以5得x = 1。

二、二元一次方程(组)1. 二元一次方程。

一元一次方程知识点总结

一元一次方程知识点总结

牛娃出品、必属精品一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式不变.若a b=那么a c b c+=+②等式两边同时乘以或除以同一个不为0的整式,等式不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.牛娃出品、必属精品二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了牛娃出品、必属精品要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax ba≠)的形式.=(0⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.牛娃出品、必属精品(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

初中数学知识点总结 一元一次方程

初中数学知识点总结 一元一次方程

初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。

1、方程必须具备的两个条件(1)是等式。

(2)含有未知数。

(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。

符号语言:如果a=b,那么B土C=B土C。

(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。

三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。

(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。

依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。

依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。

(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。

4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。

依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。

依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。

(2)检验方程的解是否符合实际意义。

6、写出答案。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。

2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。

3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。

4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。

5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。

6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。

7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。

8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。

9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。

10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。

一元一次方程所有知识点

一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。

- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。

二、一元一次方程的解法。

1. 移项。

- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。

- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

2. 合并同类项。

- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。

- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。

3. 系数化为1。

- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。

- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。

三、一元一次方程的应用。

1. 行程问题。

- 基本公式:路程=速度×时间。

- 相遇问题:两者路程之和等于总路程。

例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。

- 追及问题:两者路程之差等于初始距离。

例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。

一元一次方程知识点

一元一次方程知识点

一元一次方程知识点
一元一次方程是指形式为ax + b = 0的方程,其中a和b是已
知实数,x是未知数。

以下是一元一次方程的关键知识点:
1. 方程的解:一元一次方程的解是使方程成立的数值。

解是方
程的根,可以通过解方程找到使方程成立的x的值。

2. 方程的系数:方程中的参数a和b是方程的系数。

它们是已知实数,决定方程的形式和解的特性。

系数a不能为0,否则方程将不再是一元一次方程。

3. 等式性质:一元一次方程中的等式性质成立。

即,方程两边同时加减、乘除一个数,仍保持相等。

通过利用等式性质,可以进行方程的
化简、合并同类项等操作。

4. 方程求解方法:解一元一次方程的常用方法有逆运算法和代入法。

逆运算法指通过逆向运算将方程转化为x = 某个数的形式,得到唯一解。

代入法指先假设一个解,将其代入方程,验证是否满足等式,若
满足则是方程的解。

5. 图形表示:一元一次方程可以通过图形来表示。

由于一元一次方程
的图像是一条直线,所以方程的解对应于直线与x轴的交点。

掌握了一元一次方程的相关知识,可以解决与实际问题有关的线
性关系的计算和分析,如求未知数的值、确定两个变量之间的关系等。

初中数学 一元一次方程 知识点

初中数学 一元一次方程 知识点

一元一次方程 知识点
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).
3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
(2)画图分析法: ………… 多用于“行程问题”
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间 时间距离速度=
速度距离时间=; (2)工程问题: 工作量=工效·工时工时工作量工效=工效
工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率=比率
部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价·折·10
1 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,
S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=3
1πR 2h.。

一次方程组知识点总结

一次方程组知识点总结

一次方程组知识点总结
一次方程组是代数学中的基本概念,它涉及到线性方程的求解
和图形解释。

一次方程组通常由多个线性方程组成,每个方程中的
未知数的最高次数为1。

以下是一次方程组的知识点总结:
1. 定义,一次方程组是由形如a1x + b1y = c1和a2x + b2y
= c2的线性方程组成,其中a1, b1, c1, a2, b2, c2为已知常数,x和y为未知数。

2. 解的存在性和唯一性,一次方程组可能有唯一解、无解或者
无穷多解。

这取决于方程组中系数的关系。

3. 解的求解方法,一次方程组可以通过消元法、代入法、加减
法等方法求解。

其中消元法是最常用的方法,通过逐步消去一个或
多个未知数,最终得到方程组的解。

4. 图形解释,一次方程组可以通过图形的方式解释。

在二维平
面上,方程组的解对应于直线的交点,这些交点就是方程组的解。

5. 矩阵表示,一次方程组可以用矩阵表示,这种表示方法在线
性代数中有重要的应用。

矩阵表示可以简化方程组的求解过程。

6. 应用,一次方程组在实际生活中有许多应用,例如在经济学、物理学、工程学等领域中都有广泛的应用。

总之,一次方程组是代数学中重要的概念,对于理解线性方程
的求解和应用具有重要意义。

通过掌握一次方程组的知识点,可以
更好地理解和应用线性代数的相关内容。

初中方程总结知识点

初中方程总结知识点

初中方程总结知识点一、一元一次方程一元一次方程的基本形式是ax + b = c,其中a、b、c分别是已知的常数,x是未知数。

一元一次方程的解就是使等式成立的x的取值。

解一元一次方程的方法主要有逆运算法和等式的性质法。

1.逆运算法逆运算法是指根据等式两边的运算逆运算来解方程的方法。

比如,当方程是2x + 3 = 7时,可以通过减去3再除以2来求得x的值,即x = (7-3)/2 = 2。

2.等式的性质法等式的性质法是指通过等式的性质,对等式进行变形求解方程的方法。

比如,当方程是3x - 5 = 7时,可以通过将等式两边同时加上5再除以3来求得x的值,即x = (7+5)/3 = 4。

二、一元二次方程一元二次方程的一般形式是ax² + bx + c = 0,其中a、b、c分别是已知的常数,x是未知数。

一元二次方程的解就是求出使等式成立的x的数值。

解一元二次方程的方法有两种,一种是配方法,另一种是公式法。

1.配方法配方法是指通过改变一元二次方程形式,将其化为完全平方三项式的形式,再利用完全平方公式求解方程的方法。

比如,当方程是x² + 6x + 9 = 0时,可以将其化为(x+3)²=0,然后得出x的值为-3。

2.公式法公式法是指利用一元二次方程的求根公式求解方程的方法。

一元二次方程的求根公式为x=(−b±√(b²−4ac))/2a。

根据这个公式,可以直接求出方程的两个根。

三、方程的应用方程在现实生活中有着广泛的应用,比如在物理学、化学、经济学等领域中都有方程的应用。

通过解方程,可以解决很多实际问题,比如物体的运动问题、化学反应问题、经济学中的成本与利润问题等。

总之,方程是数学学习中的一个重要内容,通过学习方程,可以培养学生的逻辑思维能力和解决问题的能力。

同时,方程也是高中阶段学习数学的基础,因此在初中阶段要加强方程的学习,掌握其基本概念和解法,为以后的学习奠定扎实的基础。

解方程的知识点总结

解方程的知识点总结

解方程的知识点总结一、一元一次方程。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

例如:2x + 3=5x - 1。

2. 一般形式。

- 一元一次方程的一般形式是ax + b = 0(a≠0),其中x是未知数,a是系数,b 是常数项。

3. 解法步骤。

- 移项:把含有未知数的项移到等号一边,常数项移到等号另一边。

注意移项要变号,例如方程3x+5 = 2x - 1,移项后变为3x - 2x=-1 - 5。

- 合并同类项:将等号两边的同类项进行合并,如上面移项后的方程合并同类项得到x=-6。

- 系数化为1:在方程ax = b(a≠0)的形式下,将x的系数a化为1,即x=(b)/(a)。

4. 实际应用。

- 步骤:审(审题,找出等量关系)、设(设未知数)、列(根据等量关系列出方程)、解(解方程)、答(检验并作答)。

例如:已知甲、乙两人相距100千米,甲的速度是20千米/小时,乙的速度是30千米/小时,两人同时相向而行,问多久后相遇?设x小时后相遇,根据路程 = 速度×时间,可列方程20x+30x = 100,解得x = 2小时。

二、二元一次方程组。

1. 定义。

- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

把两个二元一次方程联立在一起,就组成了二元一次方程组。

例如x + y=5 2x - y = 1。

2. 解法。

- 代入消元法:- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,如方程组x + y=5 2x - y = 1,由第一个方程x + y=5可得x = 5 - y。

- 将变形后的式子代入另一个方程,消去一个未知数,得到一个一元一次方程。

把x = 5 - y代入2x - y = 1,得到2(5 - y)-y = 1。

- 解这个一元一次方程,求出一个未知数的值。

初一一元一次方程所有知识点总结和常考题(含答案解析)

初一一元一次方程所有知识点总结和常考题(含答案解析)

初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则〔依据分配律:a (b+c )=ab+ac 〕1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax = b (a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念,同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9,1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间工作时间工作量工作效率=工作效率工作量工作时间= 合做的效率=各单独做的效率的和.一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。

第3章一元一次方程知识点总结

第3章一元一次方程知识点总结

一元一次方程知识点总结【知识点总结】1、定义:满足① ② ③ 的式子叫一元一次方程。

例题1:判断下列方程中属于一元一次方程的是( )(1)x-3 (2)x 2-1=0 (3)2x -3=0 (4)x -y=0 (5)x+=2 (6)2x 2-1=1-2(2x-x 2) 例题2:若方程3x 2m-1+1=6是关于x 的一元一次方程方程,则m 的值是 。

2、方程的解:知解则代入例题:已知5是关于x 的方程3x -2a=7的解,则a 的值为 。

3、等式的性质:(1)性质一: 。

(2)性质二: 。

【注意】性质二中等式两边同除时,除数不能 。

例题1:(2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

解:原方程可变形为去分母,得3(3x+5)=2(2x-1). (__________________________)去括号,得9x+15=4x-2. (__________________________)(____________________),得9x-4x=-15-2. (___________________________) 合并,得5x=-17. (合并同类项)(____________________),得x=. (_________________________) 例题2下列说法正确的是 ( )(A )在等式两边除以a ,可得b c = (B )在等式b c a a=两边都乘以a ,可得b c = (C )在等式a b =两边都除以(21c +),可得2211a b c c =++ (D )在等式22x a b =-两边除以2,可得x a b =- 4、解方程:步骤与常见错误步骤一: 。

常见错误:① 。

② 。

二: 。

常见错误:① 。

② 。

三: 。

常见错误: 。

四: 。

五: 。

常见错误: 。

5、应用题类型类型一:销售利润问题(1) 与销售有关的量:进价(成本价)、标价(原价)、售价(现价)、利润、利润率、让利(2) 有销售有关的公式:① 利润=售价-进价=标价×打折数-进价=标价×打折数-让利-进价=进价×利润率② 售价=标价×打折数=标价×打折数-让利类型二:工程问题(1)若一件工程甲6天独自做完,则甲的工作效率为: 。

数学解方程知识点大全总结

数学解方程知识点大全总结

数学解方程知识点大全总结一、一元一次方程1. 一元一次方程的定义一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。

一般形式为:ax+b=0,其中a≠0,a为系数,b为常数。

2. 一元一次方程的解法(1) 直接相减法对于方程ax+b=0,可以通过将b移到等号的另一侧,再将a约分来求得未知数的值。

(2) 换元法当遇到系数a较大或不便化简的情况时,可以通过引入新的未知数来简化方程的解法。

(3) 代入法可以通过将一个已知的值代入方程中来求解未知数的值。

(4) 图形法通过画出方程对应的直线图形,在图上找到方程的解。

(5) 相等系数法当两个或多个未知数满足同一个方程时,可以将其系数都等式化,然后联立求解。

3. 一元一次方程的实际应用一元一次方程可以应用在日常生活中的各种问题当中,例如物品的购买、运输时间的计算、工程建设的规划等等,都可以通过建立一元一次方程来进行求解。

4. 一元一次方程的解的判定一元一次方程存在唯一解的条件是系数a不为零。

当a=0时,如果b=0,方程有无穷多解;如果b≠0,方程无解。

二、一元二次方程1. 一元二次方程的定义一元二次方程是指方程中只含有一个未知数,并且未知数的最高次数为二的方程。

一般形式为:ax^2+bx+c=0,其中a≠0,a、b、c分别为系数。

2. 一元二次方程的解法(1) 因式分解法可以通过将一元二次方程进行因式分解,得到两个一元一次方程,再分别求解,得到方程的解。

(2) 完全平方公式当一元二次方程为完全平方公式的形式时,可以直接应用完全平方公式进行求解。

(3) 公式法通过一元二次方程的求根公式(即二次方程的根公式)进行求解。

(4) 完全平方差公式当一元二次方程为完全平方差公式的形式时,可以直接应用完全平方差公式进行求解。

3. 一元二次方程的实际应用一元二次方程可以应用在各种实际问题当中,例如抛物线运动的轨迹、图形的面积计算、物质的变化规律等,都可以通过建立一元二次方程来进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程(组)
考点一、一元一次方程的概念(6分)
1、等式:表示相等关系的式子叫等式。

2、方程:含有未知数的等式叫方程。

3、等式性质,①等式两边加(或减)同一个数(或式子),结果仍相等;
②等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

4、移项:将等式一边的某项改变符号后移到另一边叫移项。

5、方程的解:能够使方程两边相等的未知数的值叫方程的解(或叫方程的根)。

6、一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)
=
+b
ax叫做一元一次方程的
0≠
x
为未知数,
(0
a
标准形式,a是未知数x的系数,b是常数项。

7、解一元解一次方程的步骤是:去分母;去括号;移项(一般将含有未知数的项移至左端,常数项移至右端);合并同类项;方程两边同除以未知数的系数。

8、如何解应用题
第一步,设未知数;
第二步,分析题意,找出等量关系,列出方程;
第三步,解所列出的方程;
第四步,验算;第五步,写出答案。

考点七、二元一次方程组(8~10分)
9二元一次方程:含有两个未知数且未知数的次数都是1的方程叫二元一次方程。

10、二元一次方程组由两个二元一次方程组合在一起就叫二元一次方程组。

11、二元一次方程的解:使二元一次方程两边相等的两个未知数的值叫二元一次
方程的解。

12、二元一次方程组的解二元一次方程组中,两个方程的公共解,叫二元一次方
程组的解。

13、什么叫消元解二元一次方程组时,有哪几种消元法
解二元一次方程组时,由于有两个未知数,所以我们常常消去其中的一个未知数,将二元一次方程变为一元一次方程,这样的方法叫消元。

我们用的是代入消元法和加减消元法。

14、如何用代入消元法解二元一次方程组
①在二元一次方程组中选取一个方程,并将这个方程中的一个未知数(比如X)
用另一个未知数(比如Y)的代数式来表示;
②将代数式代入另一个方程中去,使其变为一元一次方程,解这个方程,得出
一个未知数的解;
③将②中解的结果代入到方程组中的一个方程,并解这个方程,得出另一个未
知数的解。

15、如何用加减消元法解二元一次方程组
①将方程变形,使两个方程中的一个未知数的系数相等或相反(如果原方程
中已有一个未知数系数相等或相反可省去这一步)
②将方程的两边相加减(系数相反相加,系数相同相减),消去一个未知数,
并解这个一元一次方程,得出一个未知数的解;
③将②中解的结果代入到方程组中的一个方程,并解这个方程,得出另一个
未知数的解。

相关文档
最新文档