直线与抛物线位置关系
直线与抛物线的位置关系
即:y 2 pmy p 0
2 2
p x my 2
y A F B x
y1 y2 p (定值)
2
例2、过抛物线焦点作直线交抛物线y 2 2 px( p 0)于 A ,B两点,设A( x1 , y1 ), B( x2 , y2 ), 求证 : y1 y2 p 2 .
解 由题意, 设直线 l的方程为 y 1 k x 2.
由方程组
2
y 1 k x 2 , y 4x ,
2
①
可得 ky 4 y 4 2k 1 0
1 当k 0时,由方程 ① 得 y 1,
1 把 y 1代入 y 4 x, 得 x . 4
y
C H D E F A
B O
x
例4、已知抛物线y2=2x,过Q(2,1)作直线与抛物线 交于A、B,求AB中点的轨迹方程.
y
解: 设A( x1, y1 ), B( x2 y2 ), AB中点M ( x, y)
2 y 1 2 x1 y1 y2 2 由 2 相减得: ( x1 x2 ) x1 x2 y1 y2 y2 2 x2
x
设A( x1, y1 ), B( x2 , y2 ), A, B到 准线l的距离分别为 d A , dB .
由抛物线的定义可知 AF d A x1 1, BF d B x2 1,
B’
所以 AB AF BF x1 x2 2 8
变式: 过抛物线y2=2px的焦点F任作一条直线m, 交这抛物线于A、B两点,求证:以AB为直径的圆 和这抛物线的准线相切.
3.3.3直线与抛物线的位置关系课件(人教版)
3.3.3直线与抛物线的位置关系
学习目标
掌握抛物线的几何性质. 会判断直线与抛物线的位置关系.
准备好了吗?一起去探索吧!
抛物线的几何性质.
重点
难点
弦长公式的求解. 判断直线与抛物线的位置关系.
提问
探究一 抛物线的方程与性质
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F, 且与抛物线相交于 A,B 两点,求线段 AB 的长?
在前面椭圆,双曲线的学习中,我们也遇到过类似的直线与椭圆、 双曲线相交的问题,回忆一下是如何解决的? 对于这道题你有什么解题思路?
解答方法一
将直线与抛物线联立为方程组,求出两个交点 A,B, 然后利用两点间的距离公式求 AB 的长.
解法一:可求得直线的方程为 y x 1,
yx1
联立直线的方程与抛物线的方程 y2 4 x ,整理得 x2 6x 1 0 ,
∵ M (2,y0 ) 在直线上,∴ y0 2 ,
AB
1 k 2 x2 x1
5
42
4
4 22
2
15 .
探究二 直线和抛物线的位置关系
(1) 设直线 l : y kx b ,抛物线 y2 2 p(x p 0),
ykxb
直线与抛物线交点的个数等价于方程组 y2 2 px 解的组数, 也等价于方程 ky2 2 py 2bp 0解的个数
a.当 k 0 时,若 0 ,则直线和抛物线相交,有两个公共点; 若 =0 ,则直线和抛物线相切,有一个公共点; 若 0 ,则直线和抛物线相离,无公共点.
b. 当 k=0 时,直线y=b与抛物线 y2 2 p(x p 0)相交, 有一个公共点.特别的,当直线l的斜率不存在时, 设 l : x m ,则当 m 0 时,l与抛物线相交,有两个公共点. 则当 m 0 时,l与抛物线相切,有一个公共点. 则当 m 0 时,l与抛物线相离,无公共点.
第7节 第2课时 直线与抛物线的位置关系--2025年高考数学复习讲义及练习解析
第2课时直线与抛物线的位置关系课标解读考向预测1.会判断直线与抛物线的位置关系.2.会求直线与抛物线相交所得的弦长.3.能解决与抛物线的切线相关的简单几何问题.从近几年高考来看,直线与圆锥曲线的综合问题是高考考查的重点,高考试题中加大了思维能力的考查,以及二级结论的考查,减少了对复杂运算的考查.预计2025年高考对直线与抛物线综合问题考查的难度会增加,平时应注意二级结论的应用.必备知识——强基础1.直线与抛物线的位置关系(1)直线与抛物线的三种位置关系(2)设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立,整理成关于x 的方程k 2x 2+(2km -2p )x +m 2=0.①若k ≠0,当Δ>0时,直线与抛物线04相交,有05两个交点;当Δ=0时,直线与抛物线06相切,有07一个交点;当Δ<0时,直线与抛物线08相离,09无交点.②若k =0,直线与抛物线10只有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此,直线与抛物线只有一个交点是直线与抛物线相切的11必要不充分条件.2.弦长问题设直线与抛物线交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x1-x2|=1+k2·(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2·(y1+y2)2-4y1y2(k为直线的斜率,k≠0).3.抛物线的焦点弦问题若MN为抛物线y2=2px(p>0)的焦点弦(过焦点的弦),则焦点弦长为|MN|=12x1+x2+p(x1,x2分别为M,N的横坐标).设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则四种标准方程形式下的弦长公式如下表.标准方程弦长公式y2=2px(p>0)|AB|=x1+x2+py2=-2px(p>0)|AB|=p-(x1+x2)x2=2py(p>0)|AB|=y1+y2+px2=-2py(p>0)|AB|=p-(y1+y2)4.抛物线的切线(1)过抛物线y2=2px(p>0)上的点P(x1,y1)的切线方程是y1y=p(x+x1).(2)抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+p2k(k≠0).抛物线焦点弦的几个常用结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2;(2)若A在第一象限,B在第四象限,则|AF|=p1-cosα,|BF|=p1+cosα,弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);(3)1 |FA|+1|FB|=2p;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上;(7)通径:过焦点与对称轴垂直的弦,长度为2p;(8)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点.设直线l1的倾斜角为α,则|AB |=2psin 2α,|DE |=2psin =2p cos 2α.1.概念辨析(正确的打“√”,错误的打“×”)(1)抛物线C :y 2=2px (p >0)的焦点F 到准线l 的距离为2,则过点A (-1,0)恰有2条直线与抛物线C 有且只有一个公共点.()(2)已知过抛物线C :y 2=x 的焦点F 的直线l 与C 交于A ,B 两点,若直线l 垂直于x 轴,则|AB |=1.()(3)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x 的焦点为F ,直线l 的倾斜角为60°且经过点F .若l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,则x 1x 2=2.()答案(1)×(2)√(3)×2.小题热身(1)(人教A 选择性必修第一册3.3例4改编)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=()A .83B .163C .5D .33答案B解析由题意得,抛物线的焦点为F (1,0),直线AB 的方程为y =3(x -1).=3(x -1),2=4x ,得3x 2-10x +3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,所以|AB |=x 1+x 2+2=163.(2)(人教A 选择性必修第一册习题3.3T12改编)过定点P (0,1)且与抛物线y 2=8x 有且仅有一个公共点的直线有________条.答案3解析当斜率不存在时,直线方程为x =0,只有一个公共点,符合题意;当斜率存在时,设直线方程为y =kx +1,=kx +1,2=8x ,得k 2x 2+(2k -8)x +1=0,当k =0时,直线方程为y=1,只有一个公共点,符合题意;当k ≠0时,令Δ=(2k -8)2-4k 2=0,解得k =2,即直线与抛物线有一个公共点,符合题意.所以满足题意的直线有3条.(3)过点P (4,-3)作抛物线y =14x 2的两条切线,切点分别为A ,B ,则直线AB 的方程为________________.答案2x -y +3=0解析设切点为A (x 1,y 1),B (x 2,y 2),又y ′=12x ,则切线PA 的方程为y -y 1=12x 1(x -x 1),即y =12x 1x -y 1,同理,切线PB 的方程为y =12x 2x -y 2,由P (4,-3)是PA ,PB 的交点可知,-3=2x 1-y 1,-3=2x 2-y 2,由两点确定一条直线,可得过A ,B 的直线方程为-3=2x -y ,即2x -y +3=0.(4)(2024·山东济南模拟)已知A ,B 为抛物线C :x 2=4y 上的两点,M (-1,2),若AM →=MB →,则直线AB 的方程为________________.答案x +2y -3=0解析由题意知点M (-1,2)在抛物线内,且M (-1,2)是线段AB 的中点,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2,21=4y 1,22=4y 2,两式相减得(x 1-x 2)(x 1+x 2)=4(y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 24=-12,则直线AB 的方程为y -2=-12(x +1),即x +2y -3=0.+2y -3=0,2=4y ,消去y ,得x 2+2x -6=0,Δ=22-4×(-6)>0,故斜率为-12符合题意.因此直线AB 的方程为x +2y-3=0.考点探究——提素养考点一抛物线的切线例1(1)过抛物线x 2=4y 上一点(4,4)的抛物线的切线方程为()A .2x -y -4=0B .2x +y -4=0C .x -2y +4=0D .x +2y +4=0答案A解析解法一:设切线方程为y -4=k (x -4).-4=k (x -4),2=4y⇒x 2=4(kx -4k +4)⇒x 2-4kx +16(k -1)=0,由Δ=(-4k )2-4×16(k -1)=0,得k 2-4k +4=0.∴k =2.故切线方程为y -4=2(x -4),即2x -y -4=0.解法二:由x 2=4y ,得y =x 24,∴y ′=x 2.∴y ′|x =4=42=2.∴切线方程为y -4=2(x -4),即2x -y-4=0.(2)(2023·四川成都适应性考试)已知A ,B 为抛物线y =x 2上两点,以A ,B 为切点的抛物线的两条切线交于点P ,过点A ,B 的直线斜率为k AB ,若点P 的横坐标为13,则k AB =________.答案23解析设A (x 1,y 1),B (x 2,y 2),以A ,B 为切点的抛物线的切线斜率分别为k A ,k B ,由y =x 2,得y ′=2x ,故k A =2x 1,k B =2x 2,所以切线PA 的方程为y -x 21=2x 1(x -x 1),即x 21-2x 1x +y =0.同理可得,切线PB 的方程为x 22-2x 2x +y =0.设点P 的坐标为(x 0,y 0),所以x 21-2x 1x 0+y 0=0,x 22-2x 2x 0+y 0=0,所以x 1,x 2为方程x 2-2x 0x +y 0=0的两根,故x 1+x 2=2x 0,x 1x 2=y 0,则k AB =y 1-y 2x 1-x 2=x 1+x 2=2x 0=23.【通性通法】求抛物线切线方程的方法方法一首先设出切线方程,然后与抛物线方程联立,利用判别式求解方法二首先求导得出切线的斜率,然后由点斜式得出切线方程方法三过抛物线C :y 2=2px (p >0)上一点P (x 0,y 0)的切线方程为y 0y =p (x +x 0)【巩固迁移】1.(多选)(2023·辽宁名校联考)已知抛物线C :x 2=2py (p >0)的准线l 的方程为y =-1,过C 的焦点F 的直线与C 交于A ,B 两点,以A ,B 为切点分别作C 的两条切线,且两切线交于点M ,则下列结论正确的是()A .C 的方程为x 2=2yB .∠AMB =90°C .M 恒在l 上D .|MF |2=|AF |·|BF |答案BCD解析由题得-p2=-1,所以p =2,因此C 的方程为x 2=4y ,A 错误;由题意可知AB 的斜率存在,F (0,1),设AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),=kx +1,2=4y ,得x 2-4kx-4=0,所以x 1+x 2=4k ,x 1x 2=-4.由y =14x 2得y ′=12x ,所以AM 的斜率为k AM =12x 1,所以AM 的方程为y -y 1=12x 1(x -x 1),即y -14x 21=12x 1(x -x 1)①,同理BM 的斜率为k BM =12x 2,所以BM 的方程为y -14x 22=12x 2(x -x 2)②,所以k AM ·k BM =14x 1x 2=-1,即AM ⊥BM ,所以∠AMB=90°,B 正确;由①②得(x 2-x 1)y =14x 1x 2(x 2-x 1),因为x 1≠x 2,所以y =-1,将y =-1代入①②得x =x 2+x 12=2k ,所以点M 的坐标为(2k ,-1),又C 的准线l 的方程为y =-1,所以M 恒在l 上,C 正确;当AB 的斜率k 不为零时,则k MF =-1-12k =-1k ,所以k AB ·k MF =-1,所以AB ⊥MF ,当AB 的斜率k =0时,点M 的坐标为(0,-1),显然AB ⊥MF ,在Rt △ABM 中,由△AMF ∽△MBF 得|MF ||AF |=|BF ||MF |,所以|MF |2=|AF |·|BF |,D 正确.故选BCD.考点二焦点弦问题例2(1)(2024·河北邯郸模拟)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |=()A .4B .92C .5D .6答案B解析解法一:易知直线l 的斜率存在,设为k ,则其方程为y =k (x -1).=k (x -1),2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,设点A ,B 的横坐标分别为x A ,x B ,则x A x B =1①,因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1),即x A =2x B +1②,由①②解得x A =2,x B =12,所以|AB |=|AF |+|BF |=x A +x B +p =92.解法二:由对称性,不妨设点A 在x 轴的上方,如图,设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E ,设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m ,由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式,得|AB |=2p sin 2θ=92.解法三:因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92.(2)(多选)(2023·湖北鄂州市教学研究室期末)已知抛物线C :x 2=4y 的焦点为F ,准线l 与y 轴的交点为D ,过点F 的直线m 与抛物线C 交于A ,B 两点,点O 为坐标原点.下列结论正确的是()A .存在点A ,B ,使∠AOB ≤π2B .|AB |的最小值为4C .DF 平分∠ADBD .若点M (2,3)是弦AB 的中点,则直线m 的方程为x -y +1=0答案BCD解析抛物线C 的焦点F 的坐标为(0,1),由题意分析可知,直线m 的斜率一定存在.设A (x 1,y 1),B (x 2,y 2),直线m 的方程为y =kx +1,与抛物线C :x 2=4y 联立,得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4,所以OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 214·x 224=-4+1=-3<0,所以∠AOB 为钝角,故A 错误;|AB |=y 1+y 2+2=kx 1+1+kx 2+1+2=k (x 1+x 2)+4=4k 2+4≥4(当且仅当k =0时,等号成立),故B 正确;因为点D (0,-1),k DA +k DB =y 1+1x 1+y 2+1x 2=kx 1+2x 1+kx 2+2x 2=2kx 1x 2+2(x 1+x 2)x 1x 2=2k ×(-4)+2×4kx 1x 2=0,即直线DA 和直线DB 的倾斜角互补,所以DF 平分∠ADB ,故C 21=4y 1,22=4y 2,两式相减得(x 1+x 2)(x 1-x 2)=4(y 1-y 2),因为点M (2,3)是弦AB 的中点,所以x 1+x 2=4,所以直线m 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1,所以直线m 的方程为x -y +1=0,故D 正确.故选BCD.【通性通法】解决焦点弦问题的策略(1)利用抛物线的定义把过焦点的弦分成两个焦半径,然后转化为到准线的距离,再求解.(2)利用与抛物线焦点弦有关的二级结论求解.【巩固迁移】2.(2024·山东聊城质检)已知抛物线y2=2px(p>0)的焦点为F,过F作斜率为2的直线l与抛物线交于A,B两点,若弦AB的中点到抛物线准线的距离为3,则抛物线的方程为()A.y2=125x B.y2=245xC.y2=12x D.y2=6x 答案B解析因为直线l的方程为y=即y=2x-p,2=2px,=2x-p,消去y,得4x2-6px+p2=0,设A(x1,y1),B(x2,y2),则x1+x2=3p2,又因为弦AB的中点到抛物线准线的距离为3,所以|AB|=6,而|AB|=x1+x2+p,所以x1+x2=6-p,故3p2=6-p,解得p=125,所以抛物线的方程为y2=245x.故选B.3.(多选)(2023·新课标Ⅱ卷)设O为坐标原点,直线y=-3(x-1)过抛物线C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则()A.p=2B.|MN|=83C.以MN为直径的圆与l相切D.△OMN为等腰三角形答案AC解析对于A,直线y=-3(x-1)过点(1,0),所以抛物线C:y2=2px(p>0)的焦点为F(1,0),所以p2=1,即p=2,所以抛物线C的方程为y2=4x,A正确;对于B,不妨设M(x1,y1),N(x2,y2),x1>x2,=-3(x-1),2=4x,消去y并化简,得3x2-10x+3=0,解得x1=3,x2=13,所以|MN|=x1+x2+p=3+13+2=163,B错误;对于C,设MN的中点为A,M,N,A到直线l的距离分别为d1,d2,d,因为d=12(d1+d2)=12(|MF|+|NF|)=12|MN|,即A到直线l的距离等于|MN|的一半,所以以MN为直径的圆与直线l相切,C正确;对于D,由上述分析可知y1=-3×(3-1)=-23,y2=-3×=233,所以|OM|=32+(-23)2=21,|ON |=133,所以△OMN 不是等腰三角形,D 错误.故选AC.考点三直线与抛物线的综合问题例3(2023·重庆统考模拟预测)如图,已知抛物线C :y 2=2px (p >0),F 为其焦点,点A (2,y 0)在C 上,△OAF 的面积为4.(1)求抛物线C 的方程;(2)过点P (m ,0)(m >0)作斜率为-1的直线l 1交抛物线C 于点M ,N ,直线MF 交抛物线C 于点Q ,以Q 为切点作抛物线C 的切线l 2,且l 2∥l 1,求△MNQ 的面积.解(1)由题意,可知抛物线C 的焦点将A (2,y 0)代入抛物线C 的方程,得y 20=4p ,且p >0,则|y 0|=2p ,因为△OAF 的面积为12×p 2×2p =p p 2=4,解得p =4,所以抛物线C 的方程为y 2=8x .(2)由(1)可得抛物线C 的方程为y 2=8x ,焦点F (2,0),设直线l 1:x =-y +m (m >0),M (x 1,y 1),N (x 2,y 2),Q (x 3,y 3),=-y +m ,2=8x ,消去x ,得y 2+8y -8m =0,则Δ=64+32m >0,可得y 1+y 2=-8,y 1y 2=-8m ,因为点M (x 1,y 1)在抛物线上,则y 21=8x 1,即x 1=y 218,所以直线MF 的方程为x =x 1-2y 1y +2=y 218-2y 1y +2=y 21-168y 1y +2,=y 21-168y 1y +2,2=8x ,消去x ,得y 2+16-y 21y 1y -16=0,可得y 1y 3=-16,即y 3=-16y 1,则x 3=y 21-168y 1×2=32y 21,即因为l 2∥l 1,可设l 2:x =-y +n ,代入得32y 21=16y 1+n ,即n =32y 21-16y 1,所以l 2:x =-y +32y 21-16y 1,=-y +32y 21-16y 1,2=8x ,消去x ,得y 2+8y +0,因为l 2为抛物线C 的切线,则Δ=64-0,整理得y 21-8y 1+16=0,解得y 1=4,又因为y 1+y 2=-8,y 1y 2=-8m ,y 1y 3=-16,可得y 2=-12,m =6,y 3=-4,即Q (2,-4),l 1:x =-y +6,可得|MN |=2×|4-(-12)|=162,点Q (2,-4)到直线l 1:x +y -6=0的距离d =|2-4-6|2=42,所以S △MNQ =12|MN |·d =12×162×42=64.【通性通法】解决直线与抛物线综合问题的策略(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线y 2=2px 的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则一般用弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.【巩固迁移】4.(2023·甘肃张掖高台县第一中学统考期末)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求抛物线C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.解(1)抛物线C :y 2=2px (p >0)的焦点为准线方程为x =-p2,又点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,即(-2)2=2px 0,∴x 0=2p ,即-依题意,可得2p +p 2-2=12,解得p =1或p =4,∴y 2=2x 或y 2=8x .(2)证明:∵p <2,∴y 2=2x ,A (2,-2).设MN :x =my +n ,2=2x ,=my +n ,消去x ,整理得y 2-2my -2n =0,Δ=4m 2+8n >0,(ⅰ)且y 1+y 2=2m ,y 1y 2=-2n ,∴k AM ·k AN =2y 1-2·2y 2-2=-2,∴(y 1-2)(y 2-2)=-2,即y 1y 2-2(y 1+y 2)+6=0,∴n +2m =3,适合(ⅰ),将n =3-2m 代入x =my +n ,得x -3=m (y -2),-3=0,-2=0,=3,=2,∴直线MN 恒过定点Q (3,2).又AD ⊥MN ,∴点D 在以AQ 为直径的圆上,∵A ,Q |AQ |=(2-3)2+(-2-2)2=17,∴以AQ +y 2=174,∴存在点使得|DE |=172,为定值.课时作业一、单项选择题1.已知直线l 与抛物线x 2=2py (p >0)只有一个公共点,则直线l 与抛物线的位置关系是()A .相交B .相切C .相离D .相交或相切答案D解析直线l 与抛物线的对称轴平行或直线l 与抛物线相切时只有一个公共点,所以D 正确.故选D.2.过抛物线y 2=4x 的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若点C (x 1,0)与点D (x 2,0)关于直线x =32对称,则|AB |=()A .3B .4C .5D .6答案C解析抛物线y 2=4x ,∴p =2,过焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,则|AF |=x 1+p 2=x 1+1,|BF |=x 2+p 2=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2,又点C (x 1,0)与点D (x 2,0)关于直线x =32对称,则x 1+x 2=32×2=3,∴|AB |=3+2=5.3.(2023·四川资阳统考三模)已知抛物线C :y 2=8x ,过点P (2,-1)的直线l 与抛物线C 交于A ,B 两点,若|AP |=|BP |,则直线l 的斜率是()A .-4B .4C .-14D .14答案A解析设A (x 1,y 1),B (x 2,y 2),21=8x 1,22=8x 2,作差得y 21-y 22=8(x 1-x 2).因为|AP |=|BP |,所以P 是线段AB 的中点,所以y 1+y 2=-2,则直线l 的斜率k =y 1-y 2x 1-x 2=8y 1+y 2=-4.故选A.4.(2024·江西九江二模)青花瓷又称白地青花瓷,常简称青花,是中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.一只内壁光滑的青花瓷大碗水平放置在桌面上,瓷碗底座高为1cm ,瓷碗的轴截面可以近似看成是抛物线,碗里不慎掉落一根质地均匀、粗细相同且长度为22cm 的筷子,筷子的两端紧贴瓷碗内壁.若筷子的中点离桌面的最小距离为7cm ,则该抛物线的通径长为()A .16B .18C .20D .22答案C解析如图,建立平面直角坐标系,设抛物线为x 2=2py (p >0),焦点A (x 1,y 1),B (x 2,y 2),∵|AB |=22,|AB |≤|AF |+|BF |,∴y 1+y 2+p ≥22,设线段AB 的中点为M ,则2y M +p ≥22,由题意知,y M 的最小值为6,即12+p =22,得p =10,∴该抛物线的通径长为2p =20.故选C.5.(2023·辽宁名校联考)过抛物线C :x 2=4y 的焦点F 的直线l 交C 于A ,B 两点,点A 处的切线与x ,y 轴分别交于点M ,N .若△MON (O 为坐标原点)的面积为12,则|AF |=()A .2B .3C .4D .5答案A解析由题意可知,直线l 的斜率存在,且过抛物线C :x 2=4y 的焦点F ,与其交于A ,B 两点,设,14a又y =14x 2,所以y ′=x 2,所以点A 处的切线方程为y -14a 2=a2(x -a ).令x =0,可得y =-14a 2,即,-14a令y =0,可得x =a 2,即因为△MON 的面积为12,所以12×|-14a 2|×|a2|=12,解得a 2=4,所以|AF |=14a 2+1=2.故选A.6.(2023·河北石家庄模拟)过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A ,B 两点,若AB 中点的纵坐标为2,且|AB |=8,则p =()A .1B .2C .3D .4答案B解析设直线AB :y =k ≠0.2=2px ,=得k 2x 2-(k 2p +2p )x +k 2p 24=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k 2p +2p k2=p +2p k 2,y 1+y 2=k (x 1+x 2-p )=2pk .由题可知,x 1+x 2+p =8,y 1+y 22=2,+pk2=4,2,=1,=2.故选B.7.(2023·湖北武汉模拟)已知抛物线x 2=2py (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则该抛物线的准线方程为()A .y =-3B .y =-32C .x =-3D .x =-32答案B解析根据题意,设A (x 1,y 1),B (x 2,y 2),所以x 21=2py 1①,x 22=2py 2②,由①-②,得(x 1-x 2)(x 1+x 2)=2p (y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 22p ,因为直线AB 的斜率为1,线段AB 中点的横坐标为3,所以k AB =y 1-y 2x 1-x 2=x 1+x 22p =3p =1,即p =3,所以抛物线的方程为x 2=6y ,准线方程为y =-32.故选B.8.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10答案A解析抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则直线l 2的斜率为-1k ,故l 1:y =k (x -1),l 2:y =-1k (x -1).2=4x ,=k (x -1),消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=4+4k 2.同理可得|DE |=4+4k 2,∴|AB |+|DE |=8+4k 2+4k 2≥8+216=16,当且仅当1k 2=k 2,即k =±1时取等号.故|AB |+|DE |的最小值为16.二、多项选择题9.(2023·广州模拟)已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 交于A ,B 两点,则()A .|AB |=8B .OA ⊥OBC .△AOB 的面积为22D .线段AB 的中点到直线x =0的距离为2答案AC解析设A (x 1,y 1),B (x 2,y 2),因为抛物线C :y 2=4x ,则p =2,焦点为(1,0),则直线y =x -1过焦点.=x -1,2=4x ,消去y ,得x 2-6x +1=0,则x 1+x 2=6,x 1x 2=1,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=-4,所以|AB |=x 1+x 2+p =6+2=8,故A 正确;因为OA →·OB →=x 1x 2+y 1y 2=1-4=-3≠0,所以OA 与OB 不垂直,故B 错误;原点到直线y =x -1的距离为d =12,所以△AOB 的面积为S =12|AB |·d =12×8×12=22,故C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3,故D 错误.故选AC.10.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,直线l 过点F 且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,若M (m ,2)是线段AB 的中点,则下列结论正确的是()A .p =4B .抛物线的方程为y 2=16xC .直线l 的方程为y =2x -4D .|AB |=10答案ACD解析由焦点F 到准线的距离为4,并根据抛物线的定义可知p =4,故A 正确;抛物线的方程为y 2=8x ,故B 错误;因为焦点F (2,0),y 21=8x 1,y 22=8x 2,若M (m ,2)是线段AB 的中点,则y 1+y 2=4,所以y 21-y 22=8x 1-8x 2,即y 1-y 2x 1-x 2=8y 1+y 2=84=2,所以直线l 的方程为y =2x -4,故C 2=8x ,=2x -4,得x 2-6x +4=0,所以x 1+x 2=6,所以|AB |=|AF |+|BF |=x 1+x 2+4=10,故D 正确.故选ACD.三、填空题11.(2023·天津高考)过原点O 的一条直线与圆C :(x +2)2+y 2=3相切,交曲线y 2=2px (p >0)于点P ,若|OP |=8,则p 的值为________.答案6解析由题意得直线OP 的斜率存在.设直线OP 的方程为y =kx ,因为该直线与圆C 相切,所以|-2k |1+k2=3,解得k 2=3.将直线方程y =kx 与曲线方程y 2=2px (p >0)联立,得k 2x 2-2px=0,因为k 2=3,所以3x 2-2px =0,解得x =0或x =2p 3,设P (x 1,y 1),则x 1=2p3,又O (0,0),所以|OP |=1+k 2|x 1-0|=2×2p3=8,解得p =6.12.(2024·陕西咸阳二模)过抛物线y =14x 2的焦点F 的直线l 与抛物线交于A ,B 两点,若l的倾斜角为45°,则线段AB 的中点到x 轴的距离是________.答案3解析由题意,抛物线方程为x 2=4y ,则F (0,1),∴直线l 的方程为y =x +1,将直线方程代入抛物线方程,整理,得x 2-4x -4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,故线段AB的中点的横坐标为x 1+x 22=2,代入直线l 的方程,得y =3,∴线段AB 的中点到x 轴的距离是3.13.(2024·贵州遵义统考)已知抛物线x 2=2y 上两点A ,B 关于点M (2,t )对称,则直线AB 的斜率为________.答案2解析设A (x 1,y 1),B (x 2,y 2),代入抛物线方程x 2=2y ,21=2y 1,22=2y 2,则x 21-x 22=2(y 1-y 2)①,因为A ,B 两点关于点M (2,t )对称,则x 1≠x 2,x 1+x 2=4,所以由①得y 1-y 2x 1-x 2=x 1+x 22=2,即直线AB 的斜率为2.14.(2023·山东鄄城三模)已知抛物线C :y 2=2px (p >0)的焦点为F ,过A (-1,0)作抛物线C 的切线,切点为B ,|BF |=3,则抛物线C 上的动点P 到直线l :x -y +4=0的距离与到y 轴的距离之和的最小值为________.答案32-2解析根据抛物线的对称性,不妨设B (x 0,y 0)(y 0>0),由抛物线定义知,|BF |=x 0+p2=3,∴x 0=3-p2>0,∴p <6,∴y 0=6p -p 2,当y >0时,y =2px ,∴y ′=2p 2x ,∴2p23-p2=6p -p 23-p 2+1,解得p =0(舍去)或p =4或p =203(舍去),则抛物线C 的方程为y 2=8x ,焦点F (2,0),准线方程为x =-2,焦点F (2,0)到直线l :x -y +4=0的距离d =|2-0+4|12+(-1)2=32,抛物线C上的动点P 到直线l :x -y +4=0的距离与到y 轴的距离之和的最小值为32-2.四、解答题15.已知F 为抛物线T :x 2=4y 的焦点,直线l :y =kx +2与T 交于A ,B 两点.(1)若k =1,求|FA |+|FB |的值;(2)点C (-3,-2),若∠CFA =∠CFB ,求直线l 的方程.解由已知得F (0,1),设12=kx +2,2=4y ,得x 2-4kx -8=0,所以x 1+x 2=4k ,①x 1x 2=-8.②(1)|FA |+|FB |=x 214+1+x 224+1=(x 1+x 2)2-2x 1x 24+2.当k =1时,由①②,得|FA |+|FB |=10.(2)由题意可知,FA →1,x 214-FB →2,x 224-FC →=(-3,-3).由∠CFA =∠CFB ,得cos 〈FA →,FC →〉=cos 〈FB →,FC →〉,即FA →·FC →|FA →||FC →|=FB →·FC →|FB →||FC →|,又|FA |=x 214+1,|FB |=x 224+1,所以由FA →·FC →|FA →||FC →|=FB →·FC→|FB →||FC →|,得4+2(x 1+x 2)-x 1x 2=0,即4+8k +8=0,解得k =-32,所以直线l 的方程为3x +2y -4=0.16.(2024·江西南昌等四地联考)已知直线l :x -y +1=0与抛物线C :x 2=2py (p >0)交于A ,B 两点,|AB |=8.(1)求p ;(2)设抛物线C 的焦点为F ,过点F 且与l 垂直的直线与抛物线C 交于E ,G 两点,求四边形AEBG 的面积.解(1)设A (x A ,y A ),B (x B ,y B ),-y +1=0,2=2py ,可得x 2-2px -2p =0,易得Δ=4p 2+8p >0,所以x A +x B =2p ,x A x B =-2p ,则|AB |=2×(x A +x B )2-4x A x B =22×p 2+2p =8,即p 2+2p -8=0,因为p >0,所以p =2.(2)由题意可得抛物线C 的焦点为F (0,1),直线EG 的方程为x +y -1=0.+y -1=0,2=4y ,化简可得x 2+4x -4=0,则Δ=16+16>0,设E (x 1,y 1),G (x 2,y 2),则x 1+x 2=-4,y 1+y 2=2-(x 1+x 2)=6,则|EG |=y 1+y 2+p =8,因为AB ⊥EG ,所以S 四边形AEBG =12|AB |·|EG |=12×8×8=32.17.(多选)(2023·云南昆明模拟)设抛物线C :y 2=4x 的焦点为F ,O 为坐标原点,过F 的直线与C 交于A (x 1,y 1),B (x 2,y 2)两点,则()A .∠AOB 可能为直角B .x 1x 2为定值C .若与抛物线C 分别相切于点A ,B 的两条切线交于点N ,则点N 在抛物线C 的准线上D .以BF 为直径的圆与y 轴有两个交点答案BC解析设直线l AB :x =ty +1,与y 2=4x 联立并消去x ,得y 2-4ty -4=0,y 1y 2=-4,则x 1x 2=y 21y 2216=1,故B 正确;因为x 1x 2=1,所以k OA ·k OB =y 1y 2x 1x 2≠-1,所以∠AOB ≠π2,故A 不正确;设N (x 0,y 0),由y 2=4x ,得y =±2x ,所以y ′=±1x ,因为AN ,BN 均为切线,设k AN =1x 1,k BN =-1x 2,则AN 的方程为y -y 1=1x 1(x -x 1),化简,得yy 1-2x -2x 1=0,BN 的方程为y -y 2=-1x 2(x -x 2),化简,得yy 2-2x -2x 2=0,因为AN 与BN 的交点为N (x 0,y 0),所以y 0y 1-2x 0-2x 1=0,y 0y 2-2x 0-2x 2=0,则直线AB 的方程为y 0y -2x 0-2x =0,由于直线AB 过点F (1,0),所以x 0=-1,又因为抛物线C 的准线方程为x =-1,所以点N 在抛物线C 的准线上,故C 正确;设BF 的中点,|BF |2=1+x 22,则以BF 为直径的圆与y 轴相切,故D 不正确.故选BC.18.(多选)(2023·河北秦皇岛模拟)过抛物线C :y 2=2px (p >0)上一点A (1,-4)作两条相互垂直的直线,与C 的另外两个交点分别为M ,N ,则()A .C 的准线方程是x =-4B .过C 的焦点的最短弦长为8C .直线MN 过定点(0,4)D .当点A 到直线MN 的距离最大时,直线MN 的方程为2x +y -38=0答案AD解析将A (1,-4)代入C 的方程中,得p =8,所以C 的方程为y 2=16x ,所以C 的准线方程是x =-4,故A 正确;当过C 的焦点且与x 轴垂直时弦长最短,此时弦长为16,故B 不正确;设y y 直线MN 的方程为x =my +n ,将直线MN 的方程代入C 的方程,得y 2-16my -16n =0,所以y 1+y 2=16m ,y 1y 2=-16n .因为AM ⊥AN ,所以AM →·AN →=1,y 1+1,y 2+=(y 21-16)(y 22-16)256+(y 1+4)(y 2+4)=0.因为y 1≠-4,y 2≠-4,所以(y 1+4)(y 2+4)≠0,所以(y 1-4)(y 2-4)256+1=0,整理得y 1y 2-4(y 1+y 2)+272=0,所以-16n -64m +272=0,得n =-4m +17,所以直线MN 的方程为x =m (y -4)+17,所以直线MN 过定点P (17,4),故C 不正确;当MN ⊥AP 时,点A 到直线MN 的距离最大,此时直线MN 的方程为2x +y -38=0,故D 正确.19.(2023·河北石家庄三模)已知M ,N 为抛物线C :y 2=2px (p >0)上不同两点,O 为坐标原点,OM ⊥ON ,过O 作OH ⊥MN 于H ,且点H (2,2).(1)求直线MN 的方程及抛物线C 的方程;(2)若直线l 与直线MN 关于原点对称,Q 为抛物线C 上一动点,求点Q 到直线l 的距离最短时,点Q 的坐标.解(1)如图,由点H (2,2),得直线OH 的斜率为1,又OH ⊥MN ,则直线MN 的斜率为-1,故直线MN 的方程为y -2=-(x -2),整理,得直线MN 的方程为x +y =4.设M (x 1,y 1),N (x 2,y 2),+y =4,2=2px ,得y 2+2py -8p =0,1+y 22p ,1y 2=-8p ,由OM ⊥ON ,得OM →·ON →=0,即x 1x 2+y 1y 2=y 21y 224p2+y 1y 2=0,因为y 1y 2≠0,所以y 1y 2=-4p 2,所以-4p 2=-8p ,解得p =2,故抛物线C 的方程为y 2=4x .(2)设点A (x ,y )是直线l 上任一点,则点A 关于原点的对称点A ′(-x ,-y )在直线MN 上,所以-x +(-y )=4,即直线l 的方程为x +y =-4.设点Q (x 0,y 0),则y 20=4x 0,点Q 到直线l 的距离d =|x 0+y 0+4|2=|y 204+y 0+4|2=(y 0+2)2+1242,当y 0=-2时,d 取得最小值322,此时Q (1,-2).20.(2023·辽宁沈阳模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,且l 1与l 2交于点M .(1)求p 的值;(2)若l 1⊥l 2,求△MAB 面积的最小值.解(1)由题意知,准线方程为y =-p 2,焦点到准线的距离为2,即p =2.(2)由(1)知,抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x ,设12l 1:y -x 214=x 12(x -x 1),l 2:y -x 224=x 22(x -x 2),由于l 1⊥l 2,所以x 12·x 22=-1,即x 1x 2=-4.设直线l 的方程为y =kx +m ,与抛物线的方程联立,=kx +m ,2=4y ,消去y ,得x 2-4kx -4m=0,Δ=16k 2+16m >0,所以x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1,即直线l :y =kx +1,此时Δ=16k 2+16>0.=x 12x -x 214,=x 22x -x 224,=2k ,=-1,即M (2k ,-1).点M 到直线l 的距离d =|k ·2k +1+1|1+k 2=21+k 2,|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=4(1+k 2),所以S =12×4(1+k 2)×21+k 2=4(1+k 2)32≥4,当k =0时,△MAB 的面积取得最小值4.。
直线与抛物线的位置关系
点 F 交抛物线于 A , B 两点, O 为坐标原点,则△ ABO 的面积为
64
.
(2)依题意,抛物线 C : y 2=16 x 的焦点为 F (4,0),
直线 l 的方程为 x = 3 y +4.
= 3 + 4,
由൝ 2
= 16,
消去 x ,整理得 y 2-16 3 y -64=0.
12
2
− 2 ,
22 =
22
2
− 2 ,
即 x 1, x 2是方程 x 2-4 x -4p 2=0的两根,
2
2
2 − 1
2 2
2 −1
2
2
所以 x 1+ x 2=4, x 1 x 2=-4 p ,所以 kAB =
=
= ,
2 −1
2 −1
所以| AB |= 1 + 2 · (1 +2 )2 − 41 2 =
直线与抛物线的位置关系
考点一
直线与抛物线的位置关系
过点(0,3)的直线 l 与抛物线 y 2=4 x 只有一个公共点,则直线 l 的
1
y = x +3或 y =3或 x =0
方程为
.
例1
3
1
当直线 l 的斜率 k 存在且 k ≠0时,由相切容易求出直线 l 的方程为 y = x
3
+3;当 k =0时,直线 l 的方程为 y =3,此时直线 l 平行于抛物线的对称
(6)通径:过焦点且垂直于对称轴的弦,长等于2p,通径是过焦点最
短的弦.
跟踪训练
2.
3
2
(2019·全国Ⅰ卷)已知抛物线 C : y =3 x 的焦点为 F ,斜率为 的直线 l
如何用代数法判断直线与抛物线的位置关系
谈学论教在解答圆锥曲线问题时,我们经常会遇到判断直线与抛物线位置关系的问题.此类问题侧重于考查直线的方程、弦长公式、点到直线的距离公式、抛物线的方程、一元二次方程的根的判别式、韦达定理等.判断直线与抛物线的位置关系,主要有代数法和几何法两种方法.本文主要探讨一下如何用代数法判断直线与抛物线的位置关系.一、直线与抛物线的位置关系直线与抛物线有三种位置关系:相交、相切、相离.如下图所示.其中相交的有两种情况,即相交于一点(当直线与抛物线的对称轴平行或重合时)、相交于两点.相交于一点相交于两点相离相切于一点二、用代数法判断直线与抛物线的位置关系的思路设抛物线的方程为y 2=2px (p >0),直线l 的方程为:y =kx +b ,则直线与抛物线的位置关系有如下几种情况:1.当直线l 的斜率存在时,设l :y =kx +b ,将此方程代入抛物线的方程y 2=2px (p >0),得k 2x 2+(2kb -2p )x+b 2=0()1,由于方程(1)的二次项系数中含有字母k ,因此方程的最高次数可能是2,也可能是1.若k =0,则方程(1)可化为-2px +b 2=0,由于p >0,所以方程(1)是一元一次方程,此时方程有1个解x =b 22p.由于k =0,所以直线l 与x 轴平行或重合,由图形知,直线与抛物线相交于一点.若k ≠0,则方程(1)是关于x 的一元二次方程.若∆>0,则方程有2个解x 1,x 2(x 1≠x 2),此时直线与抛物线相交于两点;若∆=0,则方程有1个解x 1=x 2,此时直线与抛物线相切于一点;若∆<0,则方程无解,此时直线与抛物线相离.2.当直线l 的斜率不存在时,设l :x =n ,将此方程代入到抛物线的方程,得y 2=2pn ()2,这是关于y 的一元二次方程.若∆>0,即2pn >0,则方程(2)有2个解y 1,y 2(y 1≠y 2),此时直线与抛物线相交于两点;若∆=0,即2pn =0,则方程(2)有1个解y 1=y 2,此时直线与抛物线相切于一点;若∆<0,即2pn <0,则方程(2)无解,此时直线与抛物线相离.综上所述,不管直线的斜率是否存在,要判断直线与抛物线的位置关系,只需将直线的方程代入抛物线的方程中,若得到的方程是一元一次方程,则直线与抛物线必相交于一点,此时直线与抛物线的对称轴平行或重合;若得到的方程是一元二次方程,则需分三种情况进行讨论.当∆>0时,直线与抛物线相交于两点;当∆=0时,直线与抛物线相切于一点;当∆<0时,直线与抛物线相离.这也就是说,当k =0时直线与抛物线相交于一点⇔k =0;当k ≠0时直线与抛物线相交于两点⇔{k ≠0,Δ>0;直线与抛物线相切于一点⇔{k ≠0,Δ=0;直线与抛物线相离⇔{k ≠0,Δ<0.例题:已知直线l 的方程为y =kx +1和抛物线C 的方程为y 2=4x ,请讨论直线l 与抛物线C 的公共点的个数.分析:直线与抛物线的公共点个数有三种情况:(1)2个公共点.即直线l 与抛物线C 相交于两点;(2)1个公共点.即直线l 与抛物线C 相交或相切于一点;(3)没有公共点.即直线l 与抛物线C 相离.这些位置关系与所得的一元二次方程的二次项系数及∆有关.解:将直线的方程代入抛物线的方程中得k 2x 2+(2k -4)x +1=0,若k =0,则l 与C 相交于一点;若{k ≠0,(2k -4)2-4k 2=0,即当k =1时,l 与C 相切于一点;若{k ≠0,(2k -4)2-4k 2>0,即当k <1,且k ≠0时,l 与C 相交于两点;当{k ≠0,(2k -4)2-4k 2<0,即k >1时,l 与C 相离.综上所述,当k =0,或1时,l 与C 有1个公共点;当k <1,且k ≠0时,l 与C 有2个公共点;当k >1时,l 与C 无公共点.利用代数法判断直线与抛物线的位置关系,关键是要构造出关于x 或y 的一元二次方程,讨论其二次项的系数和判别式.只要抓住了这个关键点,就能顺利解题.(作者单位:陕西省神木市第七中学)55。
直线与抛物线的位置关系
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少
“直线与抛物线的关系”精讲精练
直线与抛物线的关系【直线与抛物线的位置关系】直线与抛物线的位置关系:直线与抛物线有两个公共点;直线与抛物线有一个公共点; 直线与抛物线没有公共点. 直线与抛物线位置关系的判断:将直线与抛物线方程联立方程组,消去x 或y ,化得形如20ax bx c ++=的式子.1、当0a =时,方程20ax bx c ++=为一次方程,只有一解,即直线与抛物线只有一个公共点,此时直线与抛物线不是相切,而是相交(直线与抛物线对称轴平行或者重合).2、当0a ≠时,方程20ax bx c ++=为二次方程,①若0∆>,则方程有两个不相等的实数根,此时直线与抛物线相交于两点; ②若0∆=,则方程有两个相等的实数根,此时直线与抛物线相切; ③若0∆<,则方程没有实数根,此时直线与抛物线相离(即没有公共点). 【直线与抛物线相交的弦长】1、弦长公式:设直线交抛物线于点11(,)A x y 、22(,)B x y ,则A B AB x x =-2、若弦是“焦点弦”,则其长为12AB x x p =++ 【例题】1、经过x y 82=的焦点F 作与对称轴成3π的直线与抛物线相交于A 、B 两点,则AB =2、已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+3、直线2y x =-与抛物线22y x =相交于A 、B 两点,则O A O B ⋅=4、已知直线l :4y kx =-与抛物线C :28y x =有且只有一个公共点,则实数k = 5、抛物线2y x =上距直线24x y -=最近的点的坐标是6、过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( )A .有且仅有一条B .有且仅有两条C .有无数条D .不存在7、已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若39PAB S ∆=,则P 点的坐标.8、已知抛物线2y x =-与直线(1)y k x =+相交于,A B 两点,当OAB ∆时,求k 的值9、已知直线l :1y kx =+和抛物线28y x =.(1)若直线l 与抛物线有两个公共点,求k 的取值范围;(2)若直线l 与抛物线只有一个公共点,求k 的取值范围;(3)若直线l 与抛物线没有公共点,求k 的取值范围10、直线y x b =+与抛物线2(1)y x =-交于A 、B 两点,(!)求弦长AB 关于b 的函数关系式; (2)若弦AB 的中点M 落在圆224x y +=内部,求实数b 的取值范围.11、已知抛物线26y x =,过点(4,1)P 引一弦,使它恰好在点P 被平分,求这条弦所在的直线方程. 【练习】1、 已知直线2y x =-与抛物线2y ax =(0a ≠)相交于A 、B 两点,且O A O B ⊥,则实数a =2、 求过定点(0,1)M ,且与抛物线22y x =只有一个公共点的直线方程.3、已知(0,1),(3,2)A B -,P 是抛物线132+=x y 上任一点,求△PAB 面积最小值及此时P 点的坐标.4、已知抛物线的顶点在坐标原点,对称轴为轴,且与圆224x y +=相交的公共弦长等于,求此抛物线的方程.5、A 为抛物线272y x =-上一点,F 为抛物线的焦点,1198AF =,求过点F 且与OA 垂直的直线l 的方程.6、已知抛物线的顶点在原点,它的准线过椭圆)0(12222>>=+b a by ax 的一个焦点F ,且垂直于椭圆两焦点所在直线,已知抛物线与椭圆的一个交点为)362,32(M ,求椭圆和抛物线的方程.7、已知抛物线)0(22>=p px y 有一个内接直角三角形,直角顶点在原点,斜边长为角边的方程是2y x =,求抛物线的方程.8、已知点1122(2,8),(,),(,)A B x y C x y 在抛物线22y px =(0p >)上,ABC ∆的重心与此抛物线的焦点F 重合.(1)求出该抛物线的方程;(2)求出线段BC 中点M 的坐标;(3)求BC 所在直线的方程.。
直线与抛物线的位置关系
第3课时 直线与抛物线的位置关系一、直线与抛物线的位置关系1.直线与抛物线公共点的个数可以有0个、1个或2个. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线相切,若Δ>0,则直线与抛物线相交,若Δ<0,则直线与抛物线没有公共点.特别地,当直线与抛物线的轴平行时,直线与抛物线有一个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程根的问题.题型一、直线与抛物线的位置关系例1、已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1).(2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点;k =1±32或k =0时,l 与C 只有一个公共点;1-32<k <0或0<k <1+32时,l 与C 有两个公共点. 例2、已知点A(0,2)和抛物线C :2y =6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0. 由⎩⎨⎧x =0y 2=6x,得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0). 如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组 ⎩⎨⎧y =kx +2y 2=6x,由方程组消去x 得方程,ky 2-6y +12=0① 当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点()23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y+8=0.因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2. 题型二、弦长问题例3、顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为______. [答案] y 2=12x 或y 2=-4x例4、已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1)、B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=__________________.[答案] 12 题型三、对称问题例5、已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1)、B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y 2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1,得⎩⎨⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.故实数k 的取值范围是-2<k <0.例6、求过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程.[正解] (1)若直线斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎨⎧ x =0y 2=2x ,得⎩⎨⎧x =0y =0.即直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,设为k ,则过点P (0,1)的直线方程为y =kx +1,由方程组⎩⎨⎧y =kx +1,y 2=2x .消去y ,得k 2x 2+2(k -1)x +1=0.当k =0时,得⎩⎨⎧x =12.y =1.即直线y =1与抛物线只有一个公共点;当k ≠0时,直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0,所以k =12,直线方程为y =12x +1.综上所述,所求直线方程为x =0或y =1或y =12x +1.课后作业一、选择题1.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 2.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是( )A .12B .-12C .3D .-3[答案] D[解析] 设A (y 214,y 1)、B (y 224,y 2),则OA →=(y 214,y 1),OB →=(y 224,y 2),则OA →·OB →=(y 214,y 1)·(y 224,y 2)=y 21y 2216+y 1y 2,又∵AB 过焦点,则有y 1y 2=-p 2=-4,∴OA →·OB →=(y 1y 2)216+y 1y 2=(-4)216-4=-3,故选D.3.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是( )A .1B .2 C.58 D.158[答案] D[解析] 如图所示,设AB 的中点为P (x 0,y 0),分别过A ,P ,B 三点作准线l 的垂线,垂足分别为A ′,Q ,B ′,由题意得|AA ′|+|BB ′|=|AB |=4,|PQ |=|AA ′|+|BB ′|2=2,又|PQ |=y 0+18,∴y 0+18=2,∴y 0=158.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B[解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为F A →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线与抛物线交于点A (x 1,y 1)、B (x 2,y 2),则y 21+y 22的最小值为( )A .4B .6C .8D .10[答案] C[解析] 当直线的斜率不存在时,其方程为x =1,∴y 21=4,y 22=4, ∴y 21+y 22=8.当直线的斜率存在时,设其方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得ky 2-4y -4k =0, ∴y 1+y 2=4k,y 1y 2=-4,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+8, ∵k 2>0,∴y 21+y 22>8,综上可知,y 21+y 22≥8,故y 21+y 22的最小值为8.6.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D[解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2)y 2=8x 消去y 得,k 2x 2+4x (k 2-2)+4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223. 二、填空题6.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP |+|MF |的最小值是______________________.[答案] 4[解析] 过P 作垂直于准线的直线,垂足为N ,交抛物线于M ,则|MP |+|MF |=|MP |+|MN |=|PN |=4为所求最小值.7.在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线y =kx +92对称,则k 的取值范围为__________________.[答案] k >14或k <-14[解析] 设M (x 1,x 21),N (x 2,x 22)关于直线y =kx +92对称, ∴x 21-x 22x 1-x 2=-1k ,即x 1+x 2=-1k .设MN 的中点为P (x 0,y 0),则x 0=-12k ,y 0=k ×(-12k )+92=4.因中点P 在y =x 2内,有4>(-12k )2⇒k 2>116,∴k >14或k <-14.三、解答题8.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1)、B (y 226,y 2).因为OA ⊥OB ,所以OA →·OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,① ∵点A 、B 与点P (4,2)在一条直线上, ∴y 1-2y 216-4=y 1-y 2y 216-y 226, 化简得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24. 将①式代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610. 9.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. [解析] (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, ∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x .消去x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0, 解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 综上知:t =1.所以符合题意的直线l 存在,其方程为2x +y -1=0. 10.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.[解析] (1)如图所示,由⎩⎪⎨⎪⎧y 2=-xy =k (x +1),消去x 得,ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由根与系数的关系得y 1·y 2=-1,y 1+y 2=-1k .∵A ,B 在抛物线y 2=-x 上,∴y 21=-x 1,y 22=-x 2,∴y 21·y 22=x 1x 2. ∵k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,∴OA ⊥OB .(2)设直线与x 轴交于点N ,显然k ≠0. 令y =0,得x =-1,即N (-1,0). ∵S △OAB =S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON |·|y 1-y 2|, ∴S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(-1k)2+4. ∵S △OAB =10, ∴10=121k 2+4,解得k =±16.。
直线与抛物线的位置关系
x2 x2
6 1
OF
x
B’ B
AB 2 (x1 x2 )2 4x1x2 8
所以,线段AB的长是8。
例2.斜率为1的直线L经过抛物线 y2 = 4x 的焦点F, 且与抛物线相交于A,B两点,求线段AB的长.
解法二:由题意可知,
y
p
2,
p 2
1,
准线l
:
x
1.
A’
§2.4.2 直线与抛物线的位置关系
一、直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一个交点,
两个交点)
与双曲线的
y
情况一样
O
x
例 1、已知抛物线的方程为 y2 4x ,直线 l 过 定点 P(2,1) ,斜率为 k , k 为何值时,直线 l 与抛 物线 y2 4x :⑴只有一个公共点;⑵有两个公共 点;⑶没有公共点?
解析: 抛物线的焦点为 F(1,0),准线方程为 x=-1.
由抛物线定义知|AB|=|AF|+|BF|=x1+p2+x2+p2 =x1+x2+p, 即 x1+x2+2=7,得 x1+x2=5,于是弦 AB 的中点 M 的横坐标为 52,因此点 M 到抛物线准线的距离为52+1=72.
课堂练习: 1.过抛物线 y2 = 8x的焦点,作倾斜角为 450
16 的直线,则被抛物线截得的弦长为_________
2.过点 M(0,1) 且和抛物线 C: y2 4x 仅有一个公共点的 直线的方程是__________________________.
y 1或 x 0或
联立
ykx y2 4x
1
y x1
直线和抛物线的位置关系
(2)M过(p,0) (3)M过(2p,0)
x1x2=p2;y1y2=-2p2. x1x2=4p2;y1y2=-4p2.
OA OB
(4)M过(3p,0)
x1x2=9p2;y1y2=-6p2.
(5)M过。。。。。。。
y
A
M
x
B
y2=2px
l
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
得到一元一次方程
直线与抛物线的 对称轴平行或重合
相交(一个交点)
得到一元二次方程 计算判别式
>0 =0 <0 相交 相切 相离
例1 求过定点P(0,1)且与抛物线 y2 2x
只有一个公共点的直线的方程.
{ { 解:
(1)若直线斜率不存在,则过点P的直线方程是
x0
x 0
xy=0.
由 y2 2x 得 y0
OF
x
B` B
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
(5)以AB为直径的圆与准线相切.
证明:如图,
y
M M1
A A1
B B1 2
AF BF 2
AB 2
l A1
A
故以AB为直径的圆与准线相切.
F
O
M1
M
X
B1
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
yc
-
py1 2x1
-
py1 2 y12
p2 y1
直线与抛物线的位置关系(附学生使用讲义)
直线与抛物线的位置关系一、 知识点1)直线与抛物线的位置关系的判断2)中点问题3)弦长问题4)韦达定理应用二、 教学过程1、 直线与抛物线位置关系例1 已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,k 为何值时,直线l 与抛物线只有一个公共点;两个公共点;没有公共点?解:设直线方程为1(2)y k x -=+,由方程组21(2)4y k x y x -=+⎧⎨=⎩可得 244(21)0ky y k -++=当0k =,一个公共点,当0k ≠,0∆=即11,,2k or k =-=时一个公共点, 当0k ≠,0∆>即11,02k k -<<≠时两个公共点 当0k ≠,0∆<即1-1,2k k <>时无公共点 说明:1)联立方程后,消元时,可以选择将抛物线方程代入直线方程2)判断位置关系用∆方法,当需注意二次项的系数的讨论,其中二次项系数为零对应的直线与抛物线的对称轴平行3)直线与抛物线的位置关系仍分相交、相切、相离三种情形,但当相交时有可能为一个或两个公共点,也即一个公共点不一定相切配套练习:求过点(1,2)P 且与抛物线24y x =只有一个交点的直线方程参考答案:2,,10y or x y =+-=2、中点问题例2 已知AB 为抛物线22(0)y px p =>的弦,1122(,),(,)A x y B x y ,00(,)M x y 为,A B 的中点,求证:1202AB p p k y y y ==+ 配套练习:过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦AB 恰被Q 平分,求弦AB 所在直线的方程.参考答案:4x -y -15=0.3、弦长公式例3 已知顶点在原点,焦点在y 轴上的抛物线截直线x -2y -1=0所得的弦长为15,求此抛物线的方程.解:设抛物线方程为x 2=ay (a ≠0),由方程组⎩⎪⎨⎪⎧x 2=ay ,x -2y -1=0,消去y ,得2x 2-ax +a =0. ∵直线与抛物线有两个交点,∴Δ=(-a )2-4×2×a >0,即a <0或a >8.∴|AB |==145(a 2-8a )a =-4或a =12, ∴所求抛物线的方程为x 2=-4y 或x 2=12y .4、韦达定理应用例4 若点 P (1,2),A (x 1,y 1),B (x 2,y 2)是抛物线y 2=2px (p >0)上的不同的三个点,直线AP ,BP 的斜率分别是k 1,k 2,若k 1+k 2=0,求直线AB 的斜率k .分析1:设直线AP :12(1)y k x -=-,联立抛物线方程24y x =可知,1142y k =-,同理2142y k =--,则1221p k y y ==-+ 分析2:设AB :y kx m =+,联立抛物线方程24y x =可知,2440ky y m --= 又121244022k k y y +=+=++,则1244y y k +=-=,所以1k =- 配套练习:已知AB 为抛物线22(0)y px p =>的动弦,且90AOB ∠=,求证直线AB 过定点参考:过定点(2,0)p直线与抛物线的位置关系讲义一、知识点1)直线与抛物线的位置关系的判断2)中点问题3)弦长公式4) 韦达定理应用二、教学过程2、 直线与抛物线位置关系例1 已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,k 为何值时,直线l 与抛物线只有一个公共点;两个公共点;没有公共点?练习:求过点(1,2)P 且与抛物线24y x =只有一个交点的直线方程2、中点问题例2 已知AB 为抛物线22(0)y px p =>的弦,1122(,),(,)A x y B x y ,00(,)M x y 为,A B 的中点,求证:1202AB p p k y y y ==+练习:过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦AB 恰被Q 平分,求弦AB 所在直线的方程.3、弦长公式例3 已知顶点在原点,焦点在y 轴上的抛物线截直线x -2y -1=0所得的弦长为15,求此抛物线的方程.4、韦达定理应用例4 若点 P (1,2),A (x 1,y 1),B (x 2,y 2)是抛物线y 2=2px (p >0)上的不同的三个点,直线AP ,BP 的斜率分别是k 1,k 2,若k 1+k 2=0,求直线AB 的斜率k .练习:已知AB 为抛物线22(0)y px p =>的动弦,且90AOB ∠=,求证:直线AB 过定点。
直线与抛物线位置关系
【学习目标】直线与抛物线的位置关系及判断方法(1) 直线和抛物线有三种位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一 个公共点)。
(2)直线和抛物线的位置关系的判断: 设直线方程:,m kx y +=抛物线方程:,22px y =两方程联立消去y 可得方程:222(22)0k x km p x m +-+=222(22)0k x km p x m +-+=,一般形式为20,Ax Bx C ++=若A=0,则直线与抛物线的对称轴平行或重合,直线与抛物线相交且只有一个交点;若A 0≠其判别式为∆=24B AC -当∆>0时,直线与抛物线相交且直线和抛物线有两个交点;当∆=0时,直线与抛物线相切且只有一个交点;当∆<0时,直线与抛物线相离,没有交点。
(注意:把直线和圆锥曲线的方程联立后得到方程20,ax bx c ++=它不一定是一元二次方程,要分析2x 的系数a ,才能确定。
如果不能确定,要分类讨论)。
(3)中点弦问题:在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.考向一:直线与抛物线的位置关系例1 已知抛物线24y x =过定点A(-2, 1)的直线l 的斜率为k,下列情况下分别求k 的 取值范围:(1)l 与抛物线有且仅有一个公共点;(2)l 与抛物线恰有两个公共点;(3) l 与抛物线没有公共点.考向二:弦长及中点弦问题例2、已知抛物线x y 22=,过点)1,2(Q 作一直线交抛物线于A 、B 两点,试求弦AB 的中点轨迹方程。
2.4.3直线与抛物线的位置关系 (第1课时,共1课时)考向三、 对称问题例3:已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.考向四 定点与定值问题①定值问题 在几何问题中,有些问题和参数无关,这就是定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。
高中数学 直线和抛物线的位置关系
1 直线和抛物线的位置关系有哪几种?
相交: 直线和抛物线有两个公共点,或一 个公
共点(直线和抛物线的对称轴平行或重合).
相切: 直线和抛物线有且只有一个公共点,且直
线和抛物线的对称轴不平行也不重合.
相离: 直线和抛物线没有公共点.
复习引入
1 直线和抛物线的位置关系有哪几种?
y L1 L4 L2 o x
例2 求过定点P(0,1)且与抛物线 只有一个公共点的直线的方程.
y 2x
2
解: (1)若直线斜率不存在,则过点P的直线方程是 x=0. 由
{
x 0 得 2 y 2x
{
x 0 y 0
故直线 x=0与抛物线只有一个交点. (2)若直线斜率存在,设为k,则过P点的直线方程是 y=kx+1, 由方程组
L3
2 直线和抛物线方程联立的方程组 解的个数与位置关系
若消元得到二次方程,则 0 方程组两组解
0 0
方程组一组解 方程组没有解
相交 相切
相离
若消元得到一次方程,则方程组只有一组解,直 线和抛物线的对称轴平行或重合,为相交关系.
例题选讲
例1 当b为何值时,直线y= -2x+b与抛物线 x 2 2y (1)相交,(2)相切,(3)相离?
解:由方程组
{
y 2x b x 2 2y
消去 y ,并整理得
x 2 4x 2b 0
Δ 42 4 (2b) 8(2 b)
(1)当 0 即b>-2时,直线与抛物线相交 (2)当 0 即b=-2时,直线与抛物线相切 (3)当 0 即b<-2时,直线与抛物线相离
另解二: 如图,由抛物线的定义可知, |AF| 等于点A到准 线 x=-1 的距离|AA’|,而|AA’|= x1 1 . 同理|BF|=|BB’|=x 2 1, y 于是得 |AB|=|AF|+|BF|= x1 x 2 2 . 又由方程 x 6x 1 0 可得
直线和抛物线的位置关系整理
直线和抛物线的位置关系1.直线与抛物线的位置关系:(1)位置关系的判定:联立直线:l y kx m =+和抛物线22(0)y px p =>消y 整理得:2222()0k x km p x m +-+=当0a ≠时0∆>⇔直线与抛物线相交,有两个不同公共交点0∆=⇔直线与抛物线相切,只有一个公共交点0∆<⇔直线与抛物线相离,没有公共交点当0a =时,则直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能成为相切(2)若直线与抛物线相交于1122(,),(,)A x y B x y ,则弦长AB =AB = 2.焦点弦问题: 设过抛物线)0(22≠=p px y 的焦点(,0)2p F 的直线与抛物线交于),(),,(1111y x B y x A , 直线与的斜率分别为21,k k ,直线的倾斜角为,则有 ①221p y y -=;②4221p x x =;③421-=k k ;④α221sin 2p p x x AB =++=, ⑤αcos 1-=p FA ,αcos 1+=p FB ;⑥112AF BF p+=, ⑦过,A B 两点做准线的垂线,垂足分别为,M N ,则090MFN ∠=, ⑧通径P AB 2=;⑨以弦AB 长为直径的圆总与准线相切题型一:交点个数问题例1. 抛物线C:x 4y 2=,直线L 过点P(0,1), 若L 与C 只有一个公共点,求直线L 的方程。
变式练习:已知直线l :1y kx =+和抛物线28y x =(1)若直线l 与抛物线有两个公共点,求k 的取值范围(2)若直线l 与抛物线只有一个公共点,求k 的取值范围(3)若直线l 与抛物线没有公共点,求k 的取值范围题型二:弦长问题例2.过抛物线x 2y 2=的焦点作倾斜角为45的直线交抛物线于A,B 两点,则线段AB 的长是多少?变式练习:已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若S △PAB =39,求P 点的坐标。
直线与抛物线的位置关系 课件
题型三 弦长问题
例 3 已知顶点在原点,焦点在 x 轴上的抛物线被直线
y=2x+1 截得的弦长为 15,求抛物线的方程.
解析:设抛物线的方程为 y2=2px,则
y2=2px, y=2x+1,
消去 y 得:4x2-(2p-4)x+1=0,
∴x1+x2=p-2 2,x1x2=14.
∴|AB|= 1+k2|x1-x2|
直线与抛物线的位置关系
设直线l: y=kx+m,抛物线:y2=2px(p>0),将直 线方程与抛物线方程联立整理成关于x的方程:ax2+bx+ c=0.
(1)若 a≠0,当Δ__>__0时,直线与抛物线相交,有
两个交点;
当Δ_=___ 0时,直线与抛物线相切,有一个交点; 当Δ_<___0时,直线与抛物线相离,无公共点.
∵P1P2 的中点为(4,1),∴6k=2,∴k=3,
∴所求直线方程为 y-1=3(x-4),
即 3x-y-11=0.
∴y1+y2=2,y1·y2=-22,
∴|P1P2|=
1
1+k2
(y1+y2)2-4y1y2=
3 .
点评:处理中点问题的基本方法是点差法和联立方程的方
∵P1,P2 在抛物线上, ∴y21=6x1,y22=6x2. 两式相减,得(y1+y2)(y1-y2)=6(x1-x2). ∵y1+y2=2,∴k=yx11--yx22=y1+6 y2=3,
∴直线的方程为 y-1=3(x-4). 即 3x-y-11=0.
由yy2==36xx-,11, 得 y2-2y-22=0,
∴y1+y2=2,y1·y2=-22,
∴|P1P2|= 1+19 22-
(-22) =2 3230.
直线和抛物线的位置关系
直线和抛物线的位置关系一.直线与抛物线的位置关系的判定(1) 相交:①直线与抛物线交于两个不同点⇔判别式0>∆;②直线与抛物线交于一点,直线平行于抛物线的对称轴或与抛物线的对称轴重合.(2) 相切0=∆⇔.(3) 相离0<∆⇔.二.有关弦长问题(1)一般弦长公式:设直线b kx y +=交双曲线于()111,y x P ,()222,y x P,则 ()21221222121411x x x x k kx x P P -+⋅+=+-=(2)焦点弦长问题 若AB 为抛物线()022>=p px y 的一条过焦点F 的弦,()11,y x A ,()22,y x B , 则弦长.21p x x BF AF AB ++=+=三、基础自测 1.抛物线x y 122=截直线12+=x y 所得弦长等于( ) (A) 15 (B) 152 (C)215 (D) 15 2.过抛物线x y 42=的焦点F 的直线交抛物线于()11,y x A ,()22,y x B ,若x 1+x 2=6,则|AB|的值为( )(A)4 (B)6 (C)8 (D) 123.过点P(0, 2)且与抛物线y 2=2px(p>0)只有一个公共点的直线有( )(A)1条 (B)2条 (C)3条 (D)4条4.设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
若AB 的中点为(2,2),则直线l 的方程为_____________.5.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于6.在直角坐标系xOy 中,直线l 过抛物线x y 42=的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
若直线l 的倾斜角为60º.则△OAF 的面积为7.已知抛物线x y 42=,过点P(4,0)的直线与抛物线相交于()11,y x A ,()22,y x B 两点,则2221y y +的最小值是 . 8.已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.9.已知斜率为1的直线经过抛物线()042>=p px y 的焦点,且与该抛物线交于A,B 两点,若三角形OAB 的面积为22(O 为原点),求该抛物线的方程.。
直线与抛物线的位置关系
y
0
x
2、直线和椭圆
y
F1 0
F2
x
3、直线与双曲线
y
渐进线方程
..
F
O
x
一、直线与抛物线位置关系种类
y 相离
O
相切
x
相交
一个交点或者 两个交点
二、判断方法探讨
1、直线与抛物线的对称轴平行
y
O
例:判断直线 y = 6与抛
物线 y2 =4x的位置
关系及求交点坐标?
x
计点坐标为(9,6)
二、判断方法探讨
1、直线与抛物线的对称轴平行
变式练习:
y
若直线y=kx+1与抛物
线y2= x仅有一个公共
点,则 k 的值?
O
x
2、直线与抛物线的对称轴不平行
y
O
例:判断直线 y = x -1与
抛物线 y2 =4x 的位置 关系及求弦长?
x 计算结果:
晚众叛亲离.悦悦,动作快些,这地方我一刻都不想呆.”一看见她就想起自己以前の白痴样,简直无地自容.“哎.”陈悦然开心地应下.所以,等陆羽收拾好东西出来客厅,发现早已人去楼空,留下一室の凌乱与垃圾.她没说什么,挽起袖子开始打扫卫生.傍晚时分,房东带着人来了,三下五除二就 把门锁换成新の,给了陆羽一把,其余の交还给房东.陆羽顺便告诉房东退租の事,并叮嘱说:“我那舍友已经搬出去,以后她找您拿钥匙不必给.”“好,”房东太太应下,语气关切地问,“那你找到房子了?剩下の三个月你一个人交租?”“嗯.”陆羽笑笑说,“我有事要出去一趟,可能需要三 两个月の时间,房租我会定期转帐の.”在人们眼里,一个十八岁就已经本科毕业の女孩跟天才儿童没区别,因此格外看重偏心.“哦,那这样吧,房租我给你减两百,”
14.直线和抛物线的位置关系3.4
x 2 2x C 0
由 Δ (2)
2
()
得 C=-1
又由()得 x=1,∴y=1.
4 (C) 0
故所求点的坐标是(1,1). 点评:此处用到了数形结合的方法.
y x2
y
p
O
x
2x-y-4=0
互动练习 1.过点(0,2)与抛物线 y 点的直线有( C) (A)1条 (B)2条 (C)3条 P (D)无数多条
直线和抛物线
的位置关系
一、直线和抛物线的位置关系
若消元得到二次方程,则 0 方程组两组解
0 0
相交
y
方程组一组解 方程组没有解
相切 相离
Oxຫໍສະໝຸດ 若消元得到一次方程, 直线和抛物线的对称轴平行或重合, 为相交关系.
思考:只有一个交点一定是相切吗?
例1.求过定点P(0,1)且与抛物线 y 2x 只有一个公共点的直线的方程.
A
O
.
M Q
F
x
B
k AB
又k AB
1 y
y 1 x2
1 y 1 即y 2 y x 2 0 y x2
当x1 x2 =2时, , y)为(2,0)满足y2 y x 2 0 (x
中点M轨迹方程为: y 2 y x 2 0
y2=64x
消x化简得 ∴b=-12
y2+48y-48b=0
△=482-4×(-48b)=0
∴切线方程为:y=-4/3 x-12 解方程组 y=-4/3 x-12 y2=64x 得 x=9 y=-24
∴切点为P(9,-24) 切点P到L的距离d=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结:过抛物线焦点的直线与抛物线交于 A、B 两点,直线 的倾斜角为 ,则有①
x1 x2
p2 4
;② y1 y2
p 2 ;③
AB
x1
x2
p
2p sin 2
当堂检测
1. 已知直线y=(a+1)x-1与曲线y2=ax恰有一个公共点,求实数a的值.
练习:
1. 经过 y 2 8x 的焦点 F 作与对称轴成 的直线与抛物线相交于 A、B 两点,求|AB|. 3
课堂内容展示
自学指导
规律总结
1、直线与抛物线的位置关系的判断
联 立 直 线 l : y kx m 和 抛 物 线 y2 2 px( p 0) 消 y 整 理 得 :
k 2x2 2(km p)x m2 0
当 k 0 时, 0 直线与抛物线
,有
不同公共交点
0 直线与抛物线
编者: 于方书
直线与抛物线位置关系(1)
审稿人:全组人员
星期
( )月( )日
授课类型: 新授课
1.理解直线与抛物线的各种位置关系,能利用方程根的判别式来研究直线与抛物线的各种位置关系; 2.掌握和运用直线被抛物线所截得的弦长公式; 3.进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想.
3. 设抛物线 y2 8x 的准线与 x 轴交于点 Q ,若过点 Q 的直线 l 与抛物线有公共点, 求直线 l 的斜率的取值范围
直线与抛物线(1) 第一页
类型题二:弦长公式
例 2:已知抛物线 y2 x 与直线 y k(x 1) 相交于 A, B 两点,当 OAB 的 面积等于 10 时,求 k 的值
,只有
公共交点
0 直线与抛物线
,
公共的对称轴或是和对称轴平行的直线,此时直线与抛物线
相交,只有
公共交点,但不能成为相切
思考:1)直线与双曲线有一个公共点是直线与抛物线相切的
条件。
2)直线与抛物线有一个公共点,都有哪些情况?
类型题一:直线与抛物线的位置
例 1.已知直线 l : y kx 1 和抛物线 y2 8x ,k 为何值(1)直线 l 与抛物线有两 个公共点(2)直线 l 与抛物线只有一个公共点(3)直线 l 与抛物线没有公共点
变式练习:
1. 求过定点 P(0,1) 且与抛物线 y 2 8x 只有一个公共点的直线的方程。
2. 求过定点 P(0,1) 且与抛物线 y 2 8x 相切的直线的方程。
2、当直线与抛物线相交时,利用弦长公式求直线被抛物线所截得的弦长
若 直 线 与 抛 物 线 相 交 于 A( x1, y1), B( x2, y2 ) , 则 弦 长
AB= 1 k 2 x1 x2 1 k 2 (x1 x2 )2 4x1 x2 =
或 AB
1
1 k2
( y1 y2 )2 4 y1 y2 ,特别注意解题是结合韦达定理来处理问题
2.顶点在原点,焦点在 x 轴上的抛物线截直线 2x y 4 0 所得的弦长为 3 5 ,
求抛物线的方程。
2. 已知抛物线 C: y2 4x 的焦点为 F,过点 F 的直线 l 与 C 相交于 A、B.
(1)
若
AB
16 3
,求直线
l
的方程.
(2) 求 AB 的最小值.
课堂小结 本节反思
反思一下本节课,你收获到了什么啊
直线与抛物线(1) 第一页