中考数学圆的综合(大题培优 易错 难题)含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y.

(1)如图2,当AB ⊥OM 时,求证:AM=AC ;

(2)求y 关于x 的函数关系式,并写出定义域;

(3)当△OAC 为等腰三角形时,求x 的值.

【答案】 (1)证明见解析;(2) 2=

+y x 02<≤x 1422

=x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122

x (),再判断出2OA OC DM OE OD OD

==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.

详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.

∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .

∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM ,

∴AC =AM .

(2)如图2,过点D 作DE ∥AB ,交OM 于点E .

∵OB =OM ,OD ⊥BM ,∴BD =DM .

∵DE ∥AB ,∴

DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =122x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD

==, ∴22

DM OA y OD OE x =∴=+,02x ≤<

(3)(i)当OA=OC时.∵

111

222

DM BM OC x

===.在Rt△ODM

中,

222

1

2

4

OD OM DM x

=-=-.

2

1

2

12

2

4

x

DM x

y

OD x

x

=∴=

+

-

,.解得142

2

x

-

=,或

142

2

x

--

=(舍).

(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>

∠AOC,∴此种情况不存在.

(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.

即:当△OAC为等腰三角形时,x的值为

142

2

-

点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.

2.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .

(1)求证:直线PD是⊙A的切线;

(2)若PC=25,sin∠P=

2

3

,求图中阴影部份的面积(结果保留无理数).

【答案】(1)见解析;(2)20-4π.

【解析】

分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.

(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.

详解:(1)证明:如图,过A作AH⊥PD,垂足为H,

∵四边形ABCD是矩形,

∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,

又PD=BC,∴AD=PD,

∴△ADH≌△DPC,∴AH=CD,

∵CD=AB,且AB是⊙A的半径,

∴AH=AB,即AH是⊙A的半径,

∴PD是⊙A的切线.

(2)如图,在Rt△PDC中,∵sin∠P=

2

3

CD

PD

,PC=25,

令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)2=(25)2,解得:x=2,∴CD=4,PD=6,

∴AB=AE=CD=4,AD=BC=PD=6,DE=2,

∵矩形ABCD的面积为6×4=24,Rt△CED的面积为1

2

×4×2=4,

扇形ABE的面积为1

2

π×42=4π,

∴图中阴影部份的面积为24-4-4π=20-4π.

点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.

3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC.

(1)判断直线BE与⊙O的位置关系,并证明你的结论;

(2)若sin∠ABE=3

,CD=2,求⊙O的半径.

【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O

3

【解析】

分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:

连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC .

∵OD =OE ,∴∠OED =∠ODE .

又∵∠ABE =∠DBC ,∴∠ABE =∠OED ,

∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,

∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;

(2)连接EF ,方法1:

∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2.

∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=

∴23DC BD sin CBD

∠== 在Rt △AEB 中,∵CD =2,∴22BC =.

∵tan ∠CBD =tan ∠ABE ,∴

2222DC AE AE AE BC AB ,,==∴=, 由勾股定理求得6BE =

在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2. 设⊙O 的半径为r ,则222623r r +=()()

,∴r 3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°.

∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2.

∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=

. 设3DC x BD x ==,,则2BC x =.

∵CD =2,∴22BC =.

∵tan ∠CBD =tan ∠ABE ,∴

2222

DC AE AE AE BC AB ,,==∴=, ∴E 为AD 中点.

相关文档
最新文档