高中数学必修综合测试题附答案

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

(完整版)高中数学必修五综合测试题 含答案

(完整版)高中数学必修五综合测试题 含答案

.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。

新课标数学高中必修一综合测试及答案

新课标数学高中必修一综合测试及答案

高中必修一综合测试一.选择题:(本大题共12个小题,每小题5分,共60分)1、已知全集{}{}{}123456781567U M N ===、、、、、、、,、3、5、7,、、 则()U M N = ð(A ){5,7} (B ) {2,4} (C ){2.4.8} (D) {1,3,5,6,7}解析:画出韦恩图即可得答案C2.如图所示的韦恩图中,A 、B 是非空集合,定义A *B 表示阴影部分的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A *B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:A ={x |0≤x ≤2},B ={y |y >1},A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0},由图可得A *B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.3.设集合A ={x |y =x 2-4},B ={y |y =x 2-4},C ={(x ,y )|y =x 2-4},则下列关系:①A ∩C =∅;②A =C ;③A =B ;④B =C .其中不.正确的共有( ) A .1个 B .2个 C .3个D .4个解析:②、③、④都不正确. 答案:C4.函数f (x )=ln(x +1)-2x(x >0)的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e )D .(3,4)[答案] B[解析] f (1)=ln2-2<0,f (2)=ln3-1>0,又y =ln(x +1)是增函数,y =-2x在(0,+∞)上也是增函数,∴f (x )在(0,+∞)上是增函数,∴f (x )在(1,2)上有且仅有一个零点. 5、若函数()y f x =是函数x y a =()0,1a a >≠的反函数,且()21f =,则()f x =( ) A.2log x B.12x C.12log x D.22x - 答案A 解析:函数x y a =()0,1a a >≠的反函数为()f x =log a x ,从而可得答案6、函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><<b aD .0,10<<<b a答案:D解析:因为函数单调递减,所以01a <<,再根据图像平移的特点可得答案7.已知函数f (x )=ln e x -e -x2,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减 [答案] A[解析] 由e x -e -x 2>0得e x >1ex ,∴x >0,故f (x )为非奇非偶函数,又e x 为增函数,e -x为减函数,∴e x -e -x2为增函数,∴f (x )为增函数,故选A.8.函数f (x )=x 2+ax (a ∈R),则下列结论正确的是( )A .存在a ∈R ,f (x )是偶函数B .存在a ∈R ,f (x )是奇函数C .对于任意的a ∈R ,f (x )在(0,+∞)上是增函数D .对于任意的a ∈R ,f (x )在(0,+∞)上是减函数 [答案] A[解析] 显然当a =0时,f (x )=x 2是偶函数,故选A.9、设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是[答案]D解析:由映射的定义排除A ,B ,CB.C.10.已知函数y =f (x )是偶函数,且函数y =f (x -2)在[0,2]上是单调减函数,则( )A .f (-1)<f (2)<f (0)B .f (-1)<f (0)<f (2)C .f (0)<f (-1)<f (2)D .f (2)<f (-1)<f (0)[答案] C[解析] y =f (x -2)是由函数y =f (x )的图象向右平移2个单位得到的,∵y =f (x -2)在[0,2]上是减函数,∴y =f (x )在[-2,0]上是减函数,∴f (-2)>f (-1)>f (0),∵f (x )为偶函数,∴f (0)<f (-1)<f (2).11.设323log ,log log a b c π=== A. a b c >>B. a c b >>C. b a c >>D. b c a >>解析 22log log log b c <>2233log log 2log 3log a b a b c π<=<∴>∴>>.12.函数f (x )=⎩⎪⎨⎪⎧ax 2+1,x ≥0(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是( ) A .(-∞,-2]∪(1,2] B .[-2,-1)∪[2,+∞) C .(1,2] D .[2,+∞)[答案] A[解析] 若a >0,则f (x )=ax 2+1在[0,+∞)上单调增,∴f (x )=(a 2-1)e ax 在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0a 2-1≤1,∴1<a ≤ 2. 同理,当a <0时,可求得a ≤-2,故选A.二、填空题:本大题共4小题,每小题5分,共20分。

高中数学必修一综合测试二(含答案)

高中数学必修一综合测试二(含答案)

高中数学必修一综合测试二(含答案)高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足CI (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.AB B.BA C.A=B D.A∩B=3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)=eq \b\lc\{(\a\al(x2 x>0,π x=0,0 x<0)) ,则f{f [f(-3)]}等于A.0B.πC.π2 D.910.已知2lg(x-2y)=lgx+lgy,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0,C.( eq \f(1,2) ,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3>( eq \f(1,3) )x+1对一切实数x恒成立,则实数a的取值范围为___ ___.16. f(x)=,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log2x-logx+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)=eq \f(a,a2-2) (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.参考答案一、选择题二、填空题13. 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1] 17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).(CUA)∩(CUB)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100-eq \f(x-3000,50) )(x-150)-eq \f(x-3000,50) ×50整理得:f(x)=-eq \f(x2,50) +162x-2100=-eq \f(1,50) (x-4050)2+307050∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log2x-logx+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=logx ∵x∈[2,4],t=logx在定义域递减有log4<logx<log2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,-eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)=eq \f(a,a2-2) (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】 f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a-a-a+a)= eq \f(a,a2-2) (a-a)(1+)由于a>0,且a≠1,∴1+>0∵f(x)为增函数,则(a2-2)( a-a)>0于是有,解得a> eq \r(2) 或0<a<1PAGE6。

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题第一章至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(N)等于( )UA. B.C. D.(A∪B)【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}2.函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)3.下列图形中,不是函数图象的是( )【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x35.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)6.函数f(x)=若f(x)=2,则x的值是( )A. B.± C.0或1 D.0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )7.已知a=log2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+10010.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( ) A.3- B.3+C.2-D.2+11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.14.= .15.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.16.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【补偿训练】已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小). (注:总费用=途中费用+装卸费用+损耗费用)22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.高中数学必修一(第一至第三章) (参考答案)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(UN)等于( )A. B.C. D.【解析】选B.因为U N=,M=,所以M∩(UN)=.【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U(A∪B)= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以U(A∪B)={2,4}.2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小.【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选 C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3). 【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x).【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,,,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).【解析】原式=÷×=××=×a×=a2.18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩=或,因为RB=,所以(RB)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).(ax+b)的图象经过点A(2,1),B(5,2). 【补偿训练】已知函数f(x)=log3(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.f(x)+x2-6的值域.(3)当x∈(-3,4]时,求函数g(x)=log2【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].。

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。

一、选择题:(共12小题,每小题5分,共60分。

)1.sin300°的值为A。

-31 B。

3 C。

22 D。

1/22.角α的终边过点P(4,-3),则cosα的值为A。

4 B。

-3 C。

2/5 D。

-4/53.cos25°cos35°-sin25°sin35°的值等于A。

3/11 B。

3/4 C。

2/11 D。

-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。

AB+BC=AC B。

AB-AC=BCC。

AB-BC=BC D。

AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。

[0,π] B。

[π,2π] C。

[-π/2,π/2] D。

[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。

4/3 B。

-3/5 C。

-5/3 D。

-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。

y=sin(2x+π/3) B。

y=sin(2x+2π/3)C。

y=sin(2x-π/3) D。

y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。

1个 B。

2个 C。

3个 D。

4个9.下列命题中,正确的是A。

|a|=|b|→a=b B。

|a|>|b|→a>bC。

|a|=0→a=0 D。

a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。

(人教版A版2017课标)高中数学必修第一册:第一章综合测试(附答案)

(人教版A版2017课标)高中数学必修第一册:第一章综合测试(附答案)

第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{|13}U x Z x =∈-≤≤,集合{|03}A x x =∈Z ≤≤,则u A =ð( )A .{1}-B .{1,0}-C .{1,0,1}--D .{|10}x x -≤<2.已知集合{|32},{| 4 1}A x x B x x x =-=-<<<或>,则A B =I ( )A .{}|43x x --<<B .1{|}3x x -<<C .{}|12x x <<D .|31{}x x x -<或>3.命题“2,210x x x ∀∈-+R ≥”的否定是( )A .2,210x x x ∃∈-+R ≤B .2,210x x x ∃∈-+R ≥C .2,210x x x ∃∈-+R <D .2,210x x x ∀∈-+R <4.设x ∈R ,则“3x <”是“1x -<<3”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知全集U =R ,{|1}M x x =<-,{|(2)0}N x x x =+<,则图中阴影部分表示的集合是( )A .{|10}A x x -≤<B .{|10}x x -<<C .{|21}x x --<<D .{|1}x x -<6.下列语句是存在量词命题的是( )A .整数n 是2和5的倍数B .存在整数n ,使n 能被11整除C .若370x -=,则73x = D .,()x M p x ∀∈7.已知{1,2,3},{2,4},A B ==定义集合,A B 间的运算*{|}A B x x A x B =∈∉且,则集合*A B 等于()A .{1,2,3}B .{2,4}C .{1,3}D .{2}8若命题“0x ∃∈R ,使得2003210x ax ++<”是假命题,则实数a 的取值范围是( )A .aB .a a ≤C .aD .a a <9.对于实数1,:01a a a α-+>,β:关于x 的方程210x ax -+=有实数根,则α是β成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.已知命题00:0,10p x x a ∃+-=>,若p 为假命题,则a 的取值范围是( )A .1a <B .1a ≤C .1a >D .1a ≥11.不等式组1,24x y x y +⎧⎨-⎩≥≤的解集为D ,下列命题中正确的是( ) A .(,),21x y D x y ∀∈+-≤B .(,),22x y D x y ∀∈+-≥C .(,),23x yD x y ∀∈+≤ D .(,),22x y D x y ∀∈+≥12.已知非空集合,A B 满足以下两个条件:(1){1,2,3,4,5,6},A B A B ==∅U I ;(2)若x A ∈,则1x B +∈.则有序集合对(,)A B 的个数为( )A .12B .13C .14D .15二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.已知集合{|21,},{|2,}A x x k k B x x k k ==-∈==∈Z Z ,则A B =I ________.14某中学开展小组合作学习模式,高二某班某组同学甲给组内同学乙出题如下:若命题“2,20x x x m ∃∈++R ≤”是假命题,求m 的范围.同学乙略加思索,反手给了同学甲一道题:若命题“2,20x x x m ∀∈++R >”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”或“否”)15.设,a b 为正数,则“1a b ->”是“221a b ->”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.已知集合{}22,,{0,1,3}A a a B =+=,且A B ⊆,则实数a 的值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)末位是0的实数能被2整除.(3)21,20x x ∃>->18.[12分]设全集U =R ,已知集合{1,2}A =,{|03}B x x =≤≤,集合C 为不等式组10,360x x +⎧⎨-⎩≥≤的解集. (1)写出集合A 的所有子集;(2)求u B ð和B C U .19.[12分]已知集合{}2|30,A x x ax a =-+=∈R .(1)若1A ∈,求实数a 的值;(2)若集合{}2|20,B x x bx b b =-+=∈R ,且{3}A B =I ,求A B U .20.[12分]已知集合{|32}A x x =-<<,{|05}B x x =≤<,{|}x m C x =<,全集为R .(1)求()A B R I ð;(2)若()A B C ⊆U ,求实数m 的取值范围.21.[12分]已知20,::11,0100,x p q m x m m x +⎧-+⎨-⎩≥≤≤>≤,若p 是q 的必要条件,求实数m 的取值范围.22.[12分]已知:20,:40p x q ax -->>,其中a ∈R 且0a ≠.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.第一章综合测试答案解析一、1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】D11.【答案】B【解析】Q 不等式组1,24,x y x y +⎧⎨-⎩≥≤1,24,x y x y +⎧∴⎨-+-⎩≥≥ 1,201,x y x y y +⎧∴∴+⎨-⎩≥≥≥,即22x y +-≥成立. ∴若124x y x y +⎧⎨-⎩≥≤的解集为D 时,(,),22x y D x y ∀∈+-≥成立,故选B . 12.【答案】A【解析】由题意分类讨论,得若{}1A =,则{2,3,4,5,6}B =;若{}2A =,则B {1,3,4,5,6}=;若{}3A =,则B {1,2,4,5,6}=;若{}4A =,则{1,2,3,5,6}B =;若{}5A =,则{1,2,3,4,6}B =;若{1,3}A =,则{2,4,5,6}B =;若{1,4}A =,则{2,3,5,6}B =;若{1,5}A =,则{2,3,4,6}B =;若{2,4}A =,则{1,3,5,6}B =;若{2,5}A =,则{1,3,4,6}B =;若{3,5}A =,则{1,2,4,6}B =;若{1,3,5}A =,则{2,4,6}B =.综上可得,有序集合对(,)A B 的个数为12.故选A .二、13.【答案】∅14.【答案】是15.【答案】充分不必要【解析】1a b -Q >,即1a b +>.又,a b Q 为正数,2222(1)121a b b b b ∴+=+++>>,即221a b ->成立;反之,当1a b =时,满足221a b ->,但1a b ->不成立.∴“1a b ->”是“221a b ->”的充分不必要条件.16.【答案】1【解析】:①0a =,{0,2}A =与A B ⊆矛盾,舍去;②1a =,{1,3}A =,满足A B ⊆;③3a =,{3,11}A =与A B ⊆矛盾,舍去.1a ∴=.三、17.【答案】(1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题.(2)命题中省略了全称量词“所有”,是全称量词命题,真命题.(3)命题中含有存在量词“∃”,是存在量词命题,真命题.18.【答案】(1)A 的所有子集为,{1},{2},{1,2}∅.(2){|12}C x x =-≤≤,{|0 3}u B x x x =<或>ð,{|13}B C x x ∴⋃=-≤≤.19.【答案】(1)1,130,4A a a ∈∴-+=∴=Q(2){3},3,3A B A B ⋂=∴∈∈Q9330,1830,a b b -+=⎧∴⎨-+=⎩解得4,9.a b =⎧⎨=⎩{}2|430{1,3}A x x x ∴=-+==,{}23|29903,2B x x x ⎧⎫=-+==⎨⎬⎩⎭. 31,,32A B ⎧⎫∴⋃=⎨⎬⎩⎭. 20.【答案】(1){|05}B x x x =R <或≥ð,(){}|30A B x x ∴⋂=-R <<ð(2){|35}A B x x ⋃=-<<,()A B C ⋃Q ≤,5m ∴…,∴实数m 的取值范围为{|5}m m ≥.21.【答案】20:100x p x +⎧⎨-⎩≥,≤,Q :[2,10]p x ∴∈-. 又:[1,1],0q x m m m ∈-+Q >,且p 是q 的必要条件.[1,1][2,10]m m ∴-+⊆-012110m m m ⎧⎪∴--⎨⎪+⎩>≥≤03m ∴<≤.∴实数m 的取值范围是03m <≤.22.【答案】(1)设:{|20}p A x x =->,即:{|2}p A x x =>,:{|40}q B x ax =->,因为p 是q 的充分不必要条件,则A B Ü, 即0,42,a a⎧⎪⎨⎪⎩><解得2a >.所以实数a 的取值范围为2a >. (2)由(1)及题意得B A Ü.①当0a >时,由B A Ü得42a>,即02a <<; ②当0a <时,显然不满足题意.综上可得,实数a 的取值范围为02a <<.。

高中数学新教材必修第一册综合测试数学试题(含参考答案)

高中数学新教材必修第一册综合测试数学试题(含参考答案)

新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

最新高中数学必修1综合测试题及答案复习进程

最新高中数学必修1综合测试题及答案复习进程

必修1综合检测 (时间:120分钟 满分:150分)一、选择题(每小题5分,共50分)1.函数y =xln(1-x)的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]2.已知U ={y|y =log 2x ,x>1},P =⎩⎨⎧⎭⎬⎫y|y =1x ,x>2,则∁U P =( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫0,12 C .(0,+∞) D .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ 3.设a>1,函数f(x)=log a x 在区间[a,2a]上的最大值与最小值之差为12,则a =( )A. 2 B .2 C .2 2 D .44.设f(x)=g(x)+5,g(x)为奇函数,且f(-7)=-17,则f(7)的值等于( )A .17B .22C .27D .125.已知函数f(x)=x 2-ax -b 的两个零点是2和3,则函数g(x)=bx 2-ax -1的零点是( )A .-1和-2B .1和2 C.12和13 D .-12和-136.下列函数中,既是偶函数又是幂函数的是( )A .f(x)=xB .f(x)=x 2C .f(x)=x -3D .f(x)=x -17.直角梯形ABCD 如图Z-1(1),动点P 从点B 出发,由B →C →D →A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为f(x).如果函数y =f(x)的图象如图Z-1(2),那么△ABC 的面积为( )A .10B .32C .18D .168.设函数f(x)=⎩⎨⎧x 2+bx +c ,x ≤0,2, x>0,若f(-4)=f(0),f(-2)=-2,则关于x 的方程f(x)=x 的解的个数为( )A .1个B .2个C .3个D .4个9.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是( )A .幂函数B .对数函数C .指数函数D .一次函数10.甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中( )A .甲刚好盈亏平衡B .甲盈利1元C .甲盈利9元D .甲亏本1.1元二、填空题(每小题5分,共20分)11.计算:⎝ ⎛⎭⎪⎫lg 14-lg25÷10012-=__________. 12.已知f(x)=(m -2)x 2+(m -1)x +3是偶函数,则f(x)的最大值是__________.13.y =f(x)为奇函数,当x<0时,f(x)=x 2+ax ,且f(2)=6;则当x ≥0时,f(x)的解析式为_______.14.函数y =2x -1x +1,x ∈[3,5]的最小值为________;最大值为________. 三、解答题(共80分)15.(12分)已知全集U =R ,集合A ={x|log 2(11-x 2)>1},B ={x|x 2-x -6>0},M ={x|x 2+bx +c ≥0}。

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。

(北师大版)高中数学必修第一册第三章综合测试01(含答案)

(北师大版)高中数学必修第一册第三章综合测试01(含答案)

第三章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1111242x M N xx +⎧⎫=−=∈⎨⎬⎩⎭Z ,,<<,,则M N 为( )A .{}11−,B .{}1−C .{}0D .{}10−,2.在下列根式与分数指数幂的互化中,正确的是( ) A .())0.50x x −=≠B()130yy =<C.)340x xy y −⎛⎫=≠ ⎪⎝⎭D.13x−=3.已知关于x 的不等式42133x x −−⎛⎫⎪⎝⎭>,则该不等式的解集为( )A .[)4+∞,B .()4−+∞,C .()4−∞−,D .(]41−,4.下列函数中,值域为+R 的是( )A .125xy −=B .113xy −⎛⎫= ⎪⎝⎭C.y =D.y =5.已知函数()2020xx a x f x x −⎧⎪=⎨⎪⎩,≥,<若()()11f f −=,则a =( )A .14B .12C .1D .26.已知3114221133a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则下列不等式正确的是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>7.已知函数()()()x xf x x e ae x −=+∈R ,若()f x 是偶函数,记a m =,若()f x 是奇函数,记a n =,则2m n +的值为( )A .0B .1C .2D .1−8.在下图中,二次函数2y bx ax =+与指数函数xa yb ⎛⎫= ⎪⎝⎭的图象只可能是( )二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分)9.若函数()1x y a b =+−(0a >,且1a ≠)的图象不经过第二象限,则有( ) A .1a >B .01a <<C .1b >D .0b ≤10.已知函数()133xxf x ⎛⎫=− ⎪⎝⎭,则()f x ( )A .是奇函数B .是偶函数C .在R 上是增函数D .在R 上是减函数11.设指数函数()x f x a =(0a >,且1a ≠),则下列等式中正确的是( ) A .()()()f x y f x f y +=B .()()()f x f x y f y −=C .()()()nf nx f x n =∈⎡⎤⎣⎦QD .()()()()nnnf xy f x f y n +=∈⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦N12.已知3515a b ==,则a b ,可能满足的关系是( ) A .4a b +>B .4ab >C .()()22112a b −+−>D .228a b +<第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知函数()f x 是指数函数,且35225f ⎛⎫−=⎪⎝⎭,则()f x =________. 14.函数()2223x xf x −⎛⎫= ⎪⎝⎭的单调递减区间是________,值域为________.15.已知函数()x af x e −=(a 为常数).若()f x 在区间[)1+∞,上是增函数,则a 的取值范围是________. 16.设函数()31121x x x f x x −⎧=⎨⎩,<,≥,则满足()()2f a f f a =⎡⎤⎣⎦的a 的取值范围是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)00.54413925421e −⎛⎫⎛⎫−++− ⎪ ⎪−⎝⎭⎝⎭;(2)若346a b c ==,则1112a b c+−.18.(本小题满分12分)函数()y F x =的图象如图所示,该图象由指数函数()x f x a =与幂函数()b g x x =“拼接”而成. (1)求()F x 的解析式;(2)比较b a 与a b 的大小;(3)若()()432bbm m −−+−<,求m 的取值范围.19.(本小题满分12分)设()0x xe aa f x a e =+>,是R 上的偶函数.(1)求a 的值;(2)证明()f x 在()0+∞,上是增函数.20.(本小题满分12分)某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题: (1)写出x 年后该城市的人口总数y (万人)与年数x (年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万);(3)计算大约多少年以后该城市人口总数将达到120万(精确到1年).()()()1015161 1.2% 1.1271 1.2% 1.1961 1.2% 1.21⎡⎤+≈+≈+≈⎣⎦,,21.(本小题满分12分)已知函数()x f x b a =(其中a b ,为常数,且01a a ≠>,)的图象经过点()()16324A B ,,,.(1)试确定()f x ;(2)若不等式110x xm a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]81x ∈−,时恒成立,求实数m 的取值范围.22.(本小题满分12分)已知()f x 是定义在()11−,上的奇函数,当()01x ∈,时,()241xx f x =+. (1)求()f x 在()11−,上的解析式;(2)求()f x 的值域.第三章综合测试 答案解析1.【答案】B【解析】1124112212x x x +−+−∵<<,∴<<,∴<<.又x ∈Z ,{}{}101N M N =−=−∴,,∴∩.2.【答案】C【解析】)33440x y xy y x −⎛⎫⎛⎫==≠ ⎪⎪⎝⎭⎝⎭,故选C .3.【答案】B【解析】依题意可知,原不等式可转化为4233x x −+−>,由于指数函数3x y =为增函数,故424x x x −+−−>,>,故选B . 4.【答案】B【解析】选项A 中函数的值域为()()011+∞,,,选项C 中函数的值域为[)0+∞,,选项D 中函数的值域为[)01,,故选B . 5.【答案】A【解析】根据题意可得()()()()121221221f f f f a −==−===,∴,解得14a =,故选A . 6.【答案】D【解析】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,且13024<<,所以1b a >>.又因为x y π=在R 上单调递增,且102>,所以1c >.所以c b a >>.故选D . 7.【答案】B【解析】当()f x 是偶函数时,()()f x f x =−,即()()x x xx x e ae x e ae −−+=−+,即()()10x x a e e x −++=①.因为①式对任意实数x 都成立,所以1a =−,即1m =−.当()f x 是奇函数时,()()f x f x =−−,即()()x x x x x e ae x e ae −−+=+,即()()10x x a e e x −−−=②. 因为②式对任意实数x 都成立,所以1a =,即1n =,所以21m n +=. 8.【答案】C【解析】由二次函数常数项为0可知函数图象过原点,排除A ,D ;B ,C 中指数函数单调递减,因此()01a b∈,,因此二次函数图象的对称轴02ax b=−<.故选C . 9.【答案】AD【解析】由题意当()1x y a b =+−)不过第二象限时,其为增函数,1a ∴>且110b +−≤,即1a >且0b ≤,故选AD . 10.【答案】AC【解析】()()113333xx xx f x f x −−⎡⎤⎛⎫⎛⎫−=−=−−=−⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()f x 是奇函数,A 正确;又3x y =为增函数,13xg ⎛⎫= ⎪⎝⎭为减函数,所以()133xx f x ⎛⎫=− ⎪⎝⎭为增函数,C 正确,故选A 、C .11.【答案】ABC【解析】因为()()()x y x y x y f x y a f x f y a a a +++===,,所以A 正确;()()()x y f x f x y a f y −−==,所以B 正确;()()()nnnx xf nx a a f x ===⎡⎤⎣⎦,所以C 正确;()()()()()()n nn nxy xyn x yf xy a a a a f x f y ====⎡⎤⎡⎤⎣⎦⎣⎦,所以D 错误,故选ABC . 12.【答案】ABC【解析】由3515a b ==,得()()315515315515351515baab b a ab b ab a ab ab b a =====,,∴,,∴,即1515ab a b a b ab +=+=,∴,又a b ,为不相等的正数,a b ab +∴>>,即4ab >,故A ,B 正确;()()22112a b −+−>等价于()222a b a b ++>,又a b ab +=,则222a b ab +>,故C 正确;因为2222248a b ab ab a b ++>,>,∴>,故D 错误.故选A 、B 、C .13.【答案】5x【解析】设()xf x a =(0a >,且1a ≠),由32f ⎛⎫−= ⎪⎝⎭得()31322225555x a a f x −−−====,∴,∴.14.【答案】[)1+∞,302⎛⎤⎥⎝⎦, 【解析】令22u x x =−,其单调递增区间为[)1+∞,,根据函数23uy ⎛⎫= ⎪⎝⎭是定义域上的减函数知,函数()f x 的单调递减区间就是[)1+∞,.由1u ≥,得23032u⎛⎫⎪⎝⎭<≤,所以()f x 的值域为302⎛⎤ ⎥⎝⎦,. 15.【答案】(]1−∞,【解析】令t x a =−,则t x a =−在区间[)a +∞,上单调递增,而t y e =在R 上为增函数,所以要使函数()x af x e−=在[)1+∞,上单调递增,则有1a ≤,所以a 的取值范围是(]1−∞,. 16.【答案】23⎡⎫+∞⎪⎢⎣⎭, 【解析】因2x y =与31y x =−在()1−∞,上没有公共点,故由()()2f a f f a =⎡⎤⎣⎦可得()1f a ≥,故有1311a a ⎧⎨−⎩<≥或121a a ⎧⎨⎩≥≥,解得a 的取值范围是23⎡⎫+∞⎪⎢⎣⎭,. 17.【答案】(1)原式221133e e =−++−=+. (2)设346a b c m ===,则0m >.346log log log a m b m c m ===∴,,.1111log 3log 4log 622m m m a b c +−=+−∴ log 3log 2log 6m m m =+−32log log 106mm ⨯===. 18.【答案】(1)依题意得11421142b a ⎧=⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得11612a b ⎧=⎪⎪⎨⎪=⎪⎩,所以()111641124x x F x x x ⎧⎛⎫⎪ ⎪⎪⎝⎭=⎨⎪⎪⎩,≤,>. (2)因为1122161111622b a a b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,指数函数12xy ⎛⎫= ⎪⎝⎭单调递减,所以12161122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即b a a b <.(3)由()()1122432m m −−+−<,得40320432m m m m +⎧⎪−⎨⎪+−⎩>>>,解得1332m −<<,所以m 的取值范围是1332⎛⎫− ⎪⎝⎭,.19.【答案】(1)因为()x xe af x a e =+是R 上的偶函数,所以()()f x f x =−,即x x x x e a e aa e a e −−+=+, 故()10x x a e e a −⎛⎫−−= ⎪⎝⎭,又x x e e −−不可能恒为0, 所以当10a a−=时,()()f x f x =−恒成立,故1a =. (2)证明:在()0+∞,上任取12x x <, 因为()()12121211f x f x ex ex ex ex −=+−− ()()()()()12121212211212121111ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex −−⎛⎫=−+−=−+−= ⎪⎝⎭, 又12100e x x >,>,>,所以121ex ex <<,所以1212010ex ex ex ex −−<,>,故()()120f x f x −<,即()()12f x f x <,所以()f x 在()0+∞,上是增函数.20.【答案】(1)1年后该城市人口总数为()100100 1.2%1001 1.2%y =+⨯=⨯+; 2年后该城市人口总数为()()()21001 1.2%1001 1.2% 1.2%1001 1.2%y =⨯++⨯+⨯=⨯+; 3年后该城市人口总数为()31001 1.2%y =⨯+;……;x 年后该城市人口总数为()1001 1.2%xy x +=⨯+∈N ,.(2)10年后该城市人口总数为()()10101001 1.2%100 1.012112.7y =⨯+=⨯≈万. (3)令120y =,则有()1001 1.2%120x⨯+=, 解方程可得1516x <<.故大约16年后该城市人口总数将达到120万.21.【答案】(1)因为()x f x b a =的图象过点()()16324A B ,,,,所以3624b a b a =⎧⎨=⎩,①,②÷②①得24a =,又0a >且1a ≠,所以23a b ==,,所以()32x f x =.(2)由(1)知110x x m a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]1x ∈−∞,时恒成立可化为1123x xm ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤在(]1x ∈−∞,时恒成立. 令()1123xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 在(]1−∞,上单调递减, 所以()()min 1151236m g x g ==+=≤, 即实数m 的取值范围是56⎛⎤−∞ ⎥⎝⎦,.22.【答案】(1)当()10x ∈−,时,()01x −∈,. ∵函数()f x 为奇函数,()()224114x xx xf x f x −−=−−=−=−++∴. 又()()()()()00020000f f f f f =−=−==,∴,.故当()11x ∈−,时,()f x 的解析式为()()()201410021041xx xx x f x x x ⎧∈⎪+⎪==⎨⎪⎪−∈−+⎩,,,,,. (2)因为()214xxf x =+在()01,上单调递减,从而由奇函数的对称性知()f x 在()10−,上单调递减. ∴当01x <<时,()1010224141f x ⎛⎫∈ ⎪++⎝⎭,,即()2152f x ⎛⎫∈ ⎪⎝⎭,;当10x −<<时,()010*******f x −−⎛⎫∈−− ⎪++⎝⎭,,必修第一册 6 / 6 即()1225f x ⎛⎫∈−− ⎪⎝⎭,. 而()00f =,故函数()f x 在()11−,上的值域为{}211205225⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭,,.。

(人教版B版)高中数学必修第一册 第二章综合测试试卷01及答案

(人教版B版)高中数学必修第一册 第二章综合测试试卷01及答案

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23A a ab =+,24B ab b =-,则A ,B 的大小关系是( )A .AB …B .A B …C .A B <或A B >D .A B>2.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b>C .若a b >,0c <,则a c b c++<D .若a b<3.下列变形是根据等式的性质的是( )A .由213x -=得24x =B .由2x x =得1x =C .由29x =得x=3D .由213x x -=得51x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <5.已知||a b a <<,则( )A .11a b >B .1ab <C .1ab D .22a b >6.若41x -<<,则222()1x x f x x -+=-( )A .有最小值2B .有最大值2C .有最小值2-D .有最大值2-7.已知0a >,0b >,2a b +=,则14y a b =+的最小值是( )A .72B .4C .92D .58.已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121234x x x x +-=,那么b 的值为()A .5B .5-C .4D .4-9.不等式22120x ax a --<(其中0a <)的解集为( )A .(3,4)a a -B .(4,3)a a -C .(3,4)-D .(2,6)a a 10.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数()*x x ÎN 为二次函数的关系(如图),则每辆客车营运_____年,营运的年平均利润最大( )A .3B .4C .5D .611.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .245B .285C .5D .612.已知a b >,二次三项式220ax x b ++…对于一切实数x 恒成立,又0x $ÎR ,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.当1x >时,不等式11x a x +-≥恒成立,则实数a 的取值范围为__________.14.若0a b <<,则1a b -与1a 的大小关系为__________.15.若正数a ,b 满足3ab a b =++,则ab 的取值范围是__________.16.已知关于x 的一元二次方程2320x x m -+=有两个不相等的实数根1x 、2x .若1226x x -=,则实数m 的值为__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式(组):(1)2(2)01x x x +ìíî>,<;(2)262318x x x --<….18.(本小题满分12分)已知a ,b ,c 为不全相等的正实数,且1abc =.111a b c++<.19.(本小题满分12分)已知21()1f x x a x a æö=-++ç÷èø.(1)当12a =时,解不等式()0f x …;(2)若0a >,解关于x 的不等式()0f x ….20.(本小题满分12分)某镇计划建造一个室内面积为2800 m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?21.(未小题满分12分)设函数2()3(0)f x ax bx a =++¹.(1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值;(2)若(1)4f =,0a >,0b >,求14a b+的最小值.22.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)()(2)0a x a x -->.第二章综合测试答案解析一、1.【答案】B【解析】()2222334240b A B a ab ab b a b æö-=+--=-+ç÷èø∵…,A B ∴….2.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.3.【答案】A【解析】A .根据等式的性质1,在等式213x -=的左右两边同时加上1,可得24x =,故本选项正确;B .在等式2x x =的左右两边同时除以x ,可得1x =,但是当0x =时,不成立,故本选项错误;C .将等式29x =的左右两边开平方,可得3x =±,故本选项错误;D .根据等式的性质1,在等式213x x -=的左右两边同时加上(31)x +,可得561x x =+,故本选项错误.4.【答案】D【解析】根据题图可知,21a --<<,01b <<,所以||||b a <.5.【答案】D【解析】由||a b a <<,可知0||||b a <…,由不等式的性质可知22||||b a <,所以22a b >.6.【答案】D 【解析】2221()(1)11x x f x x x x -+==-+--.又41x -∴<<,10x -∴<,(1)0x --∴>1()(1)2(1)f x x x éù=---+-êú--ëû∴…当且仅当111x x -=-,即0x =时等号成立.7.【答案】C【解析】2a b +=∵,12a b +=∴∴14142a b a b a b +æö+=+×ç÷èø52592222a b b a æö=+++=ç÷èø…(当且仅当22a b b a =,即423b a ==时,等号成立)故14y a b =+的最小值为92.8.【答案】A【解析】12,x x ∵是关于x 的方程230x bx +-=的两根,12x x b +=-∴,123x x =-,121234x x x x +-=∵,94b -+=∴,解得5b =.9.【答案】B【解析】方程22120x ax a --=的两根为4a ,3a -,且43a a -<,43a x a <<-∴.10.【答案】C【解析】求得函数式为2(6)11y x =--+,则营运的年平均利润2512122y x x x æö=-+-=ç÷èø…,当且仅当25x x=时,取“=”号,解得5x =.11.【答案】C【解析】35x y xy +=∵,13155y x+=∴1334(34)1(34)55x y x y x y y x æö+=+´=++ç÷èø∴3941213555555x y y x =++++=…当且仅当31255x y y x =,即1x =,12y =时等号成立.12.【答案】D【解析】a b ∵>,二次三项式220ax x b ++≥对于一切实数x 恒成立,0a ∴>,且440ab D =-…,1ab ³∴.再由0x $ÎR ,使20020ax x b ++=成立,可得0D …,1ab ∴…,又a b >,1a >.2224231101a a b a a a b a a a a +++==---∴2242484243624222211211211222a a a a a a a a a a a a a a a a æö+++ç÷æö+++èø===ç÷-+-æöèø+-+-ç÷èø22222221124412a a a a a a æöæö+-++-ç÷ç÷èøèø=æö+-ç÷èø令22112a a +=>,则24231(2)4(2)44(2)444822a t t t a a t t æö+-+-+==-+++=ç÷---èø…,当且仅当4t =,即a =时取等.故2431a a a æö+ç÷-èø的最小值为8,故22a b a b +-=.二、13.【答案】(,3]-¥【解析】1x ∵>,11(1)11311x x x x +=-+++=--∴….3a ∴….14.【答案】11a b a -<【解析】110()()a ab b a b a a a b a a b -+-==---∵<.11a b a-∴15.【答案】[9,)+¥【解析】33ab a b =+++…,所以1)0-+…,3,所以9ab ….16.【答案】2-【解析】由题意知123x x +=,1226x x -=∵,即12236x x x +-=,2336x -=∴,解得21x =-,代入到方程中,得1320m ++=,解得2m =-.三、17.【答案】(1)原不等式组可化为 2 0,11,x x x -ìí-î<或><<即01x <<,所以原不等式组的解集为{|01}x x <<.(2)原不等式等价于22623,318,x x x x x ì--í-î≤<即2260,3180,x x x x ì--í--î<…因式分解,得(3)(2)0,(6)(3)0,x x x x -+ìí-+î<…所以 2 3,36,x x -ìí-î或<<……所以132x --<≤或36x <….所以不等式的解集为{|3236}x x x --<≤或≤<.18.【答案】证明:因为a ,b ,c 都是正实数,且1abc =,所以112a b +=…11b c +=…11a c +=…以上三个不等式相加,得1112a b c æö++++ç÷èø…,即111a b c+++.因为a ,b ,c 不全相等,所以上述三个不等式中的“=”不同时成立.111a b c++++<.19.【答案】(1)当12a =时,有不等式25()102f x x x =-+≤,1(2)02x x æö--ç÷èø∴…,122x ∴……,即所求不等式的解集为1,22éùêúëû.(2)1()()0f x x x a a æö=--ç÷èø∵…,0a >且方程1()0x x a a æö--=ç÷èø的两根为1x a =,21x a =,∴当1a a ,即011a <<,不等式的解集为1,a a éùêúëû;当1a a <,即1a >,不等式的解集为1,a a éùêúëû;当1a a=,即1a =,不等式的解集为{1}.20.【答案】设矩形温室的左侧边长为 m a ,后侧边长为 m b ,蔬菜的种植面积为2 m S ,则800ab =.所以(4)(2)4288082(2)808648S a b ab b a a b =--=--+=-+-=…当且仅当2a b =,即40a =,20b =时等号成立,则648S =最大值.故当矩形温室的左侧边长为40 m ,后侧边长为20 m 时,蔬菜的种植面积最大,最大种植面积为2648 m .21.【答案】(1)因为不等式()0f x >的解集为(1,3)-,所以1-和3是方程()0f x =的两个实根,从而有(1)30,(3)9330,f a b f a b -=-+=ìí=++=î解得1,2,a b =-ìí=î(2)由(1)4f =,得1a b +=,又0a >,0b >,所以1414()a b a b a b æö+=++ç÷èø4559b a a b =+++=…当且仅当4b a a b =即1,32,3a b ì=ïïíï=ïî时等号成立,所以14a b+的最小值为9.22.【答案】(1)2560x x --+<∵,2560x x +->∴,(1)(6)0x x -+∴>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{| 6 1}x x x -<或>.(2)当0a <时,()(2)y a x a x =--的图象开口向下,与x 轴交点的横坐标为x a =,2x =,且2a <,()(2)0a x a a --∴>的解集为{|2}x a x <<.当0a =时,()(2)0a x a x --=,()(2)0a x a x --∴>无解.当0a >时,抛物线()(2)y a x a x =--的图像开口向上,与x 轴交点的横坐标为x a =,2x =.当2a =时,不等式可化为22(2)0x ->,解得2x ¹.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.综上,当0a <时,不等式的解集是{|2}x a x <<;当0a =时,不等式的解集是Æ;当02a <<时,不等式的解集是{| 2}x x a x <或>;当2a =时,不等式的解集是{|2}x x ¹;当2a >时,不等式的解集是{|2}x x x a <或>.。

2024-2025年北师大版数学必修第二册全书综合测评卷(带答案)

2024-2025年北师大版数学必修第二册全书综合测评卷(带答案)

全书综合测评卷时间:120分钟 满分:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于向量a ,b ,下列命题中,正确的是( ) A .若|a |=|b |,则a =b B .若a =-b ,则a ∥bC .若a ∥b ,b ∥c ,则a ∥cD .若|a |>|b |,则a >b2.已知i 为虚数单位,复数z 1=1+2i ,z 2=2-i ,则( ) A .z 1的共轭复数为-1+2i B .z 1的虚部是2i C .z 1+z 2为实数 D .z 1z 2=4+3i3.三个数sin 1.5·sin 2·sin 3.1,cos 4.1·cos 5·cos 6,tan 7·tan 8·tan 9中,值为负数的个数有( )A .0个B .1个C .2个D .3个4.已知函数f (x )=cos (ωx +2π3 )(ω>0)的最小正周期为4π,则下面结论正确的是( )A .函数f (x )在区间(0,π)上单调递增B .函数f (x )在区间(0,π)上单调递减C .函数f (x )的图象关于直线x =2π3 对称D .函数f (x )的图象关于点(2π3 ,0)对称5.宜昌奥林匹克体育中心为了迎接湖北省第十六届运动会开幕式,将中心内一块平面四边形ABCD 区域设计灯带.已知灯带AB =CD =10米,BC =20米,AD =102 米,且∠A +∠C =3π4,则cos ∠BCD =( ) A .35 B .0 C .45 D .2106.已知△ABC 中,3AB → +AC → -6AD →=0,延长BD 交AC 于E ,则AE AC=( )A .23B .12C .13D .14 7.如图,已知三棱柱ABC ­ A 1B 1C 1的各条棱长都相等,且CC 1⊥底面ABC ,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角为( )A .90° B.45° C .30° D.60°8.当函数y =sin ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x 取得最大值时,tan x 的值为( ) A .1 B .±1 C.3 D .-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.设z 1,z 2为复数,则下列命题中一定成立的是( ) A .如果z 1-z 2>0,那么z 1>z 2B .如果|z 1|=|z 2|,那么z 1z - 1=z 2z -2 C .如果⎪⎪⎪⎪⎪⎪z 1z 2 >1,那么|z 1|>|z 2|D .如果z 21 +z 22 =0,那么z 1=z 2=010.已知函数f (x )=cos (sin x ),g (x )=sin (cos x ),则下列说法不正确的是( ) A .f (x )与g (x )的定义域都是[-1,1] B .f (x )为奇函数,g (x )为偶函数C .f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1]D .f (x )与g (x )都不是周期函数11.已知f (x )=sin ⎝ ⎛⎭⎪⎫x -π4 cos ⎝⎛⎭⎪⎫x -π4 +3.给出下列结论,其中不正确的是( )A .最小正周期为πB .对称轴为直线x =k π(k ∈Z )C .对称中心为⎝ ⎛⎭⎪⎫k2π+π4,0D .最大值为312.如图,已知四棱台ABCD ­ A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22 ,A 1B 1=2 ,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A.该四棱台的高为3 B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.复数z =(m 2+4m +3)+(m +3)i ,m ∈R 为纯虚数,则m =________.14.已知tan α,tan β是方程2x 2+3x -5=0的两个实数根,则tan (α+β)=________.15.已知函数f (x )=2sin (ωx +φ)(ω>0)满足f ⎝ ⎛⎭⎪⎫π4 =2,f (π)=0,且f (x )在区间⎝⎛⎭⎪⎫π4,π3 上单调,则ω的最大值为________.16.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a -3 c )sin A =b sin B -c sin C ,若△ABC 外接圆面积为π,则△ABC 面积的最大值为________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)(1)已知复数z =m 2-5m +6+(2m 2-3m -2)i ,m ∈R .若z 为纯虚数,求m 的值;(2)已知复数z =a +b i(a ,b ∈R ),若z 满足z ·z -+i z =15+3i ,求a ,b 的值. 18.(本小题满分12分)函数f (x )=A cos (ωx +φ)(A >0,ω>0,|φ|<π2 )的部分图象如图所示.(1)求函数f (x )的解析式;(2)若函数f (x )在区间[0,m ]有5个零点,求m 的取值范围.19.(本小题满分12分)如图,在长方体ABCD­ A1B1C1D1中,AD=AA1=1,AB=2,点E 是AB的中点.(1)证明:D1E⊥A1D;(2)在棱DD1上是否存在一点P,使得AP∥平面D1EC,若存在,求DPDD1,若不存在,说明理由;(3)求D到平面D1EC的距离.20.(本小题满分12分)在①2cos2B+cos2B=0,②b cos A+a cos B=3+1这两个条件中任选一个,补充在下面问题的横线中,并解决相应问题.已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若4S=b2+c2-a2,b=6,________,求△ABC的面积S的大小.注:如果选择多个条件分别解答,按第一个解答计分.21.(本小题满分12分)矩形ABCD 中,AB =2AD =2,P 为线段DC 的中点,将△ADP 沿AP 折起,使得平面ADP ⊥平面ABCP .(1)在DC 上是否存在点E 使得AD ∥平面PBE ?若存在,求出点E 的位置;若不存在,请说明理由;(2)求二面角P ­ AD ­ B 的余弦值. 22.(本小题满分12分)已知向量m =(1,cos ωx ),n =(sin ωx ,3 )(ω>0),函数f (x )=m ·n ,且f (x )图象上的一个最高点为P ⎝ ⎛⎭⎪⎫π12,2 ,与P 最近的一个最低点的坐标为⎝⎛⎭⎪⎫7π12,-2 .(1)求函数f (x )的解析式;(2)设a 为常数,判断方程f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上的解的个数;(3)在锐角△ABC 中,若cos ⎝ ⎛⎭⎪⎫π3-B =1,求f (A )的取值范围.全书综合测评卷1.答案:B解析:向量是既有大小又有方向的量,大小相等,但方向不一定相同,故A 错误;若a =-b ,得a ,b 方向相反,则a ∥b ,故B 正确;当b =0,a 与c 不一定平行,故C 错误;尽管两个向量的模有大小之分,但两个向量是不能比较大小的,故D 错误.故选B.2.答案:D解析:z 1=1+2i ,z -1=1-2i ,故A 错误;z 1的虚部是2,故B 错误;z 1+z 2=3+i为虚数,故C 错误;z 1·z 2=(1+2i)(2-i)=2-i +4i -2i 2=4+3i ,故D 正确.故选D.3.答案:B解析:0<1.5<π,0<2<π,0<3.1<π,∴sin 1.5·sin 2·sin 3.1>0;π<4.1<3π2,cos 4.1<0,3π2 <5<2π,3π2 <6<2π,cos 5>0,cos 6>0,∴cos 4.1·cos 5·cos 6<0;2π<7<5π2 ,5π2 <8<3π,5π2<9<3π,∴tan 7>0,tan 8<0,tan 9<0,tan 7·tan 8·tan9>0;只有一个负数.故选B.4.答案:C解析:由题意知:2πω =4π⇒ω=12 ,∴f (x )=cos (12 x +2π3)A ,B 选项,当x ∈(0,π)时,12 x +2π3 ∈(2π3 ,7π6 ),当12 x +2π3 ∈(2π3,π)时,f (x )单调递减,12 x +2π3 ∈(π,7π6 )时,f (x )单调递增.因此,A 和B 都错误;C 选项,x =2π3 时,12 x +2π3 =π;x =π是cos x 的对称轴,则x =2π3是f (x )的对称轴.因此,C 正确;D 选项,由C 可知,x =2π3是对称轴的位置,则必不是对称中心,D 错误.故选C.5.答案:A 解析:如图,连接BD .在△ABD 中,由余弦定理有:BD 2=BA 2+AD 2-2BA ×AD ×cos A =300-2002 cos A ①, 在△CBD 中,由余弦定理有:BD 2=BC 2+CD 2-2BC ×CD ×cos C =500-400cos C ②, 由①②得:-2 cos A =1-2cos C ,又∠A +∠C =3π4 ,∴-2 cos (3π4-C )=1-2cos C ,∴-sin C =1-3cos C ,又∵sin 2C +cos 2C =1.∴(3cos C -1)2+cos 2C =1,∴cos C =0或cos C =35,∵C ∈(0,3π4),∴sin C >0,若cos C =0,则sin C =-1(舍),∴cos C =35.故选A.6.答案:C解析:依题意,设AE → =λAC → ,BE → =μBD → ,则AE → =λAC → =λ(-3AB → +6AD →)=-3λAB → +6λAD → .又AE → =AB → +BE → =AB → +μBD → =AB → +μ·(AD → -AB → )=(1-μ)AB → +μAD → ,所以⎩⎪⎨⎪⎧-3λ=1-μ,6λ=μ, 两式相加得λ=13 ,即AE →=13 AC → ,所以AE AC =|AE →||AC →|=13 .故选C.7.答案:A 解析:设棱长为a ,将三棱柱ABC ­ A 1B 1C 1补成正三棱柱A 1B 1C 1 ­ A 2B 2C 2(如图),使AA 1=AA 2.平移AB 1至A 2B ,连接A 2M ,∠MBA 2(或其补角)即为AB 1与BM 所成的角,在△A 2BM 中,A 2B =2a ,BM =a 2+⎝ ⎛⎭⎪⎫a 22 =52 a ,A 2M =a 2+⎝ ⎛⎭⎪⎫3a 22 =132 a ,∴A 2B 2+BM 2=A 2M 2,∴∠MBA 2=90°.故选A.8.答案:A解析:y =⎝ ⎛⎭⎪⎫32cos x +12sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x =34 (sin 2x +cos 2x )+14 sin x cosx +34sin x cos x =34 +12 sin 2x .当sin 2x =1时,y max =3+24 ,此时2x =2k π+π2 (k ∈Z ),即x =k π+π4(k ∈Z ),∴tan x =1.故选A.9.答案:BC解析:取z 1=3+i ,z 2=1+i 时,z 1-z 2=2>0,但虚数不能比较大小,故A 项错误;由|z 1|=|z 2|,得|z 1|2=|z 2|2.又z 1z - 1=|z 1|2,z 2z - 2=|z 2|2,所以z 1z - 1=z 2z - 2,故B 项正确;因为⎪⎪⎪⎪⎪⎪z 1z 2 =|z 1||z 2|>1,所以|z 1|>|z 2|,故C 项正确;取z 1=1,z 2=i ,满足z 21 +z 22=0,但是z 1≠z 2≠0,故D 项错误.故选BC.10.答案:ABD解析:f (x )与g (x )的定义域是R ,故A 错误;f (-x )=cos (sin (-x ))=cos (sin x )=f (x ),则f (x )是偶函数,故B 错误;∵-1≤sin x ≤1,-1≤cos x ≤1,∴f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1],故C 正确;f (x +2π)=cos (sin (x +2π))=cos (sin x )=f (x ),则f (x )是周期函数,故D 错误.故选ABD.11.答案:BCD解析:因为f (x )=sin ⎝ ⎛⎭⎪⎫x -π4 cos ⎝ ⎛⎭⎪⎫x -π4 +3=12 sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4 +3=12 sin⎝⎛⎭⎪⎫2x -π2 +3=-12 cos2x +3,所以f (x )的最小正周期T =π,图象的对称轴为直线x =k 2 π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π4+k 2π,3 ,k ∈Z ,最大值为3+12 =72 ,故只有A 正确.故选BCD.12.答案:AD 解析:给四棱台ABCD ­ A 1B 1C 1D 1补上一个小四棱锥S ­ A 1B 1C 1D 1即可得到四棱锥S ­ ABCD ,如图.连接A 1C 1,B 1D 1交于点O 1,连接AC ,BD 交于点O ,连接SO .由AB =22 ,A 1B 1=2 ,可知△SA 1B 1与△SAB 的相似比为1∶2,则SA =2AA 1=4.由题意可得AO =2,则SO =23 ,则OO 1=3 ,故该四棱台的高为3 ,A 正确;因为SA =SC =AC =4,所以AA 1与CC 1的夹角为60°,B 错误;由题意可得该四棱台侧面的高为22-⎝ ⎛⎭⎪⎫22-222=142 ,则四棱台的表面积S =S上底+S下底+S 侧=2+8+4×2+222 ×142=10+67 ,C 错误;因为四棱台ABCD ­ A 1B 1C 1D 1的上、下底面都是正方形,所以其外接球的球心在OO 1上.连接OB 1,在平面B 1BOO 1中,由OO 1=3 ,B 1O 1=1,得OB 1=2=OB ,即点O 到点B 与到点B 1的距离相等,则外接球半径r =OB =2,所以该四棱台外接球的表面积为4πr 2=16π,D 正确.故选AD.13.答案:-1解析:因为复数z =(m 2+4m +3)+(m +3)i ,m ∈R 为纯虚数,所以⎩⎪⎨⎪⎧m 2+4m +3=0,m +3≠0, 所以m =-1.14.答案:-37解析:∵tan α,tan β是方程2x 2+3x -5=0的两个实数根,∴tan α+tan β=-32 ,tan αtan β=-52 ,由tan (α+β)=tan α+tan β1-tan αtan β =-321-⎝ ⎛⎭⎪⎫-52 =-37 . 15.答案:343解析:因为f (x )在区间⎝ ⎛⎭⎪⎫π4,π3 上单调,所以T 2 ≥π3 -π4 =π12 ,解得T ≥π6 ,所以2πω ≥π6 ,解得0<ω≤12.因为f ⎝ ⎛⎭⎪⎫π4 =2,f (π)=0,所以2k +14 T =π-π4 =3π4 ,k ∈N *,所以T =3π2k +1 ,所以2πω =3π2k +1 ,所以ω=4k +23 ,k ∈N *,当ω=4k +23 ≤12时,解得k ≤172 ,k ∈N ,所以ωmax =4×8+23 =343.16.答案:2+34解析:由已知及正弦定理得a 2-3 ac =b 2-c 2,所以a 2+c 2-b 2=3 ac ,所以cos B =a 2+c 2-b 22ac =32 ,又B ∈(0,π),所以B =π6.由△ABC 的外接圆面积为π,得外接圆的半径R =1. 由正弦定理得b =2R sin B =1,所以a 2+c 2-1=3 ac ,所以a 2+c 2=3 ac +1≥2ac ,解得ac ≤2+3 ,所以△ABC 的面积S =12 ac sin B =14 ac ≤2+34,当且仅当a =c 时等号成立.17.解析:(1)因为z 是纯虚数,所以⎩⎪⎨⎪⎧m 2-5m +6=0,2m 2-3m -2≠0, 解得m =3.(2)设z =a +b i ,所以z -=a -b i , z ·z -+i z =(a +b i)(a -b i)+i(a +b i)=a 2+b 2-b +a i =15+3i.所以⎩⎪⎨⎪⎧a =3,a 2+b 2-b =15, 解得⎩⎪⎨⎪⎧a =3b =3 或⎩⎪⎨⎪⎧a =3,b =-2. 18.解析:(1)因为A >0,由图象可知A =2,且有T 2 =πω =2π3 -π6 =π2,所以ω=2,因为图象过点(π6 ,2),所以2cos (2·π6+φ)=2,即φ+π3 =2k π,解得φ=2k π-π3 ,k ∈Z ,因为|φ|<π2 ,所以φ=-π3 ,故f (x )=2cos (2x -π3).(2)由(1)知f (x )=2cos (2x -π3 ),因为x ∈[0,m ],所以2x -π3 ∈[-π3 ,2m -π3],由函数f (x )在区间[0,m ]上有5个零点,令2x -π3=t ,即y =2cos t 在区间[-π3 ,2m -π3]有5个零点,由y =cos t 的图象知,只需9π2 ≤2m -π3 <11π2即可,解得29π12 ≤m <35π12 ,故m ∈[29π12 ,35π12).19.解析:(1)如图所示,连接AD 1交A 1D 于点O ,则O 为AD 1的中点,由题意可知,四边形ADD 1A 1是正方形,∴A 1D ⊥AD 1. ∵AB ⊥平面ADD 1A 1,A 1D ⊂平面ADD 1A 1,∴AB ⊥AD 1. 又∵AB ⊂平面AD 1E ,AD 1⊂平面AD 1E ,AB ∩AD 1=A , ∴A 1D ⊥平面AD 1E ,又D 1E ⊂平面AD 1E ,∴A 1D ⊥D 1E ,即D 1E ⊥A 1D .(2)存在一点P 满足DP DD 1 =12时,使得AP ∥平面ED 1C ,当点P 满足DP DD 1 =12,即P 为DD 1的中点,取CD 1的中点Q ,连接PQ ,EQ , 在△DD 1C 中,P ,Q 为中点,∴PQ ∥DC ,PQ =12DC ,∵在长方体AC 1中,E 是AB 的中点,∴AE ∥DC 且AE =12DC ,∴AE ∥PQ 且AE =PQ ,∴四边形AEQP 为▱AEQP ,∴AP ∥EQ , 又EQ ⊂平面D 1EC ,AP ⊄平面D 1EC ,∴AP ∥平面D 1EC . (3)连接DE ,设D 到平面D 1EC 的距离为h , ∵在长方体AC 1中,DD 1⊥平面ABCD , ∵矩形ABCD ,点E 是AB 的中点,∴S △DCE =12 S 矩形ABCD =12×1×2=1,∴VD 1-DCE =13 S △DCE ·DD 1=13 ×1×1=13,在Rt△D 1DC 中,D 1C =DD 21+DC 2=5 , 在Rt△ADE 中,DE =AD 2+AE 2=2 ,∵DD 1⊥平面ABCD ,DE ⊂平面ABCD ,∴DD 1⊥DE , 在Rt△D 1DE 中,D 1E =DD 21 +DE 2=3 , 在Rt△BCE 中,EC =BC 2+BE 2=2 ,∴D 1E 2+EC 2=CD 21 ,∴ED 1⊥CE ,∴S △D 1CE =12 D 1E ×EC =12 ×3 ×2 =62 ,又VD ­D 1CE =VD 1­DCE ,∴13 S △D 1EC ×h =13 ,h =63 ,∴D 到平面D 1EC 的距离为63. 20.解析:因为4S =b 2+c 2-a 2,cos A =b 2+c 2-a 22bc,S =12bc sin A ,所以2bc sin A =2bc cos A , 显然cos A ≠0,所以tan A =1,又A ∈⎝⎛⎭⎪⎫0,π2 ,所以A =π4 . 若选择①,由2cos 2B +cos2B =0得, cos 2B =14. 又B ∈⎝⎛⎭⎪⎫0,π2 ,∴B =π3 , 由a sin A =b sin B 得,a =b sin A sin B =6×2232=2. 又sin C =sin [π-(A +B )]=sin (A +B )=sin A cos B +cos A sin B =22 ×12 +22 ×32 =6+24 , 所以S =12 ab sin C =3+32. 若选择②,b cos A +a cos B =3 +1,则b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =b 2+c 2-a 22c +a 2+c 2-b 22c =c =3 +1,所以S =12 bc sin A =12 ×6 ×(3 +1)×22 =3+32. 21.解析:(1)存在.如图所示:连接AC ,BP ,设AC 交BP 于点F ,∵CP ∥AB ,且CP =12AB , ∴CF CA =PF PB =13. 取DC 的三等分点E ,使CE CD =13,连接EF ,PE ,BE ,则EF ∥AD , 又EF ⊂平面PBE ,AD ⊄平面PBE ,∴AD ∥平面PBE .故存在满足条件的点E ,且E 是线段CD 上靠近点C 的三等分点.(2)在矩形ABCD 中,AP =BP =2 ,AB =2,∴AP 2+BP 2=AB 2,∴AP ⊥BP ,又平面ADP ⊥平面ABCP ,BP ⊂平面ABCP ,平面ADP ∩平面ABCP =AP ,∴BP ⊥平面ADP ,∴BP ⊥DP ,∴BD 2=DP 2+BP 2=1+2=3.在△ADB 中,AB 2=AD 2+BD 2,∴AD ⊥DB ,又PD ⊥AD ,PD ⊂平面ADP ,BD ⊂平面ADB ,平面ADP ∩平面ADB =AD ,∴∠PDB 为二面角P ­ AD ­ B 的平面角,在Rt△PDB 中,cos ∠PDB =DP BD =13=33 ,∴二面角P ­ AD ­ B 的余弦值为33. 22.解析:(1)f (x )=m ·n =sin ωx +3 cos ωx =2(12 sin ωx +32cos ωx )=2sin ⎝⎛⎭⎪⎫ωx +π3 . ∵f (x )图象上的一个最高点为P ⎝ ⎛⎭⎪⎫π12,2 ,与P 最近的一个最低点的坐标为⎝ ⎛⎭⎪⎫7π12,-2 , ∴T 2 =7π12 -π12 =π2,∴T =π, 又ω>0,∴ω=2πT=2. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 . (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2 时,π3 ≤2x +π3 ≤4π3 , 由f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 的图象(图略)可知, 当a ∈[3 ,2)时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上有两解; 当a ∈[-3 ,3 )或a =2时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上有一解; 当a <-3 或a >2时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上无解. (3)在锐角△ABC 中,0<B <π2 ,-π6 <π3 -B <π3, 又cos ⎝ ⎛⎭⎪⎫π3-B =1,∴π3 -B =0,∴B =π3 . 在锐角△ABC 中,0<A <π2 ,A +B >π2, ∴π6 <A <π2 ,∴2π3 <2A +π3 <4π3, ∴sin ⎝ ⎛⎭⎪⎫2A +π3 ∈⎝ ⎛⎭⎪⎫-32,32 , ∴f (A )=2sin ⎝ ⎛⎭⎪⎫2A +π3 ∈(-3 ,3 ). ∴f (A )的取值范围是(-3 ,3 ).GS -2。

高中数学必修综合测试卷三套+含答案

高中数学必修综合测试卷三套+含答案

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x ; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。

高中数学必修二综合测试题(含答案)

高中数学必修二综合测试题(含答案)

高中数学必修二综合测试题(含答案)高二数学必修二综合测试题一、选择题(本大题共12小题,每小题5分,共60分)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①② B.②④ C.①③ D.②③2.过点P(1,3)且垂直于直线x2y3的直线方程为()A.2x y1 B.2x y5 C.x2y5D.x2y73.圆(x-1)2+y2=1的圆心到直线y=3x的距离是()A.2 B.2 C.1 D.34.已知F1,F2是椭圆x2/16+y2/9=1的左右焦点,P为椭圆上一个点,且A.2 B. C. D.5.已知空间两条不同的直线m,n和两个不同的平面α,β,则下列命题中正确的是()A.若m//α,n⊥α,则m//n B.若α∩β=m,m⊥n,则n⊥αC.若m//α,n//α,则m//n D.若m//α,m⊥β,αβ=n,则m//n6.圆x2+y2-2x+4y-20=0截直线5x-12y+c=0所得的弦长为8,则c的值是()A.10 B.10或-68 C.5或-34 D.-687.已知ab0,则直线ax+by=c通过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限8.正方体ABCD—A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED与D1F所成角的大小是()A.1/5 B.113° C. D.232°9.在三棱柱ABC—A1B1C1中,各棱长相等,侧面BC1C 的中心为D,则AD与平面BC1C所成角的大小是()10.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD 成60°的角;④AB与CD所成的角是60°。

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。

其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修1一、选择题1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()U M C N ⋂=( )A .{}5B .{}0,3C .{}0,2,3,5D .{}0,1,3,4,52、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)x y a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数12log y x =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( )A1x 3x 2y --=B 1x 1x 2y ---= C 1x 1x 2y ++= D1x 3x 2y ++-= 8、设x x e1e )x (g 1x 1x lg )x (f +=-+=,,则 ( )A f(x)与g(x)都是奇函数B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3)D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >> Db c a >>二、填空题11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫⎝⎛+3264=______13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______15.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是 .三、解答题16. 计算 5log 3333322log 2log log 859-+-18、已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。

(1)求)4(-f 、)3(f 、[(2)]f f -的值; (2)若10)(=a f ,求a 的值.19、已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设(1)求函数()h x 的定义域(2)判断函数()h x 的奇偶性,并说明理由.20、已知函数()f x =1515+-xx 。

(1)写出()f x 的定义域; (2)判断()f x 的奇偶性;21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。

当每辆车的月租金每增加50元时,未租出的车将会增加一辆。

租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?数学必修4一.选择题:1.3π的正弦值等于 ( ) (A )23 (B )21 (C )23- (D )21-2.215°是 ( )(A )第一象限角 (B )第二象限角 (C )第三象限角 (D )第四象限角3.角α的终边过点P (4,-3),则αcos 的值为 ( )(A )4 (B )-3 (C )54 (D )53-4.若sin α<0,则角α的终边在 ( )(A )第一、二象限 (B )第二、三象限 (C )第二、四象限 (D )第三、四象限5.函数y=cos2x 的最小正周期是 ( )(A )π (B )2π (C )4π (D )π26.给出下面四个命题:① 0=+BA AB ;②AC C =+B AB ;③BC AC =-AB ;④00=⋅AB 。

其中正确的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个 7.向量)2,1(-=a ,)1,2(=b ,则 ( )(A )a ∥b (B )a ⊥b(C )a 与b 的夹角为60° (D )a 与b 的夹角为30° 8.化简的结果是( )(A )cos160︒ (B )cos160-︒ (C )cos160±︒ (D )cos160±︒ 9.函数)cos[2()]y x x ππ=-+是( )(A ) 周期为4π的奇函数 (B ) 周期为4π的偶函数(C ) 周期为2π的奇函数 (D ) 周期为2π的偶函数10.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为( ) (A ))322sin(2π+=x y(B ))32sin(2π+=x y(C ))32sin(2π-=x y (D ))32sin(2π-=x y 二.填空题11.已知点A (2,-4),B (-6,2),则AB 的中点M 的坐标为 ;12.若)3,2(=a 与),4(y b -=共线,则y = ; 13.若21tan =α,则ααααcos 3sin 2cos sin -+= ;14.已知21==b a ,a与b的夹角为3π,那么ba b a -+= 。

15.函数x x y sin 2sin 2-=的值域是∈y ; 三.解答题 16.(1)已知4cos5,且为第三象限角,求sin 的值(2)已知3tan =α,计算 ααααsin 3cos 5cos 2sin 4+- 的值.17.已知向量a , b 的夹角为60, 且||2a =, ||1b =,(1) 求 a b ; (2) 求 ||a b +.18. 已知(1,2)a =,)2,3(-=b ,当k 为何值时,(1) ka b +与3a b -垂直?(2) ka b +与3a b -平行?平行时它们是同向还是反向?19.设)1,3(=OA ,)2,1(-=OB ,OB OC ⊥,BC ∥OA ,试求满足OCOA OD =+的OD 的坐标(O 为坐标原点)。

20.某港口的水深y (米)是时间t (024t ≤≤,单位:小时)的函数,下面是每天时间与水深的关系表:()y f t =sin y A t b ω=+(1)根据以上数据,求出()y f t =的解析式 (2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?21. 已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b =(1) 求函数()f x 的解析式;(2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.数学必修5一.选择题1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于 ( )A.99 B.100 C.96 D.101 2.ABC∆中,若︒===60,2,1B c a ,则ABC∆的面积为( ) A .21 B .23C.1D.3 3.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( )A .99B .49C .102D . 1014.已知0x >,函数4y x x =+的最小值是( )A .5B .4C .8D .6 5.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3 B. 4 C. 5 D. 6 6.不等式20(0)ax bx c a ++<≠的解集为R,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D.0,0a >∆>7.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( )A . 5 B. 3 C. 7 D. -88.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( )A.一解B.两解C.一解或两解D.无解9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( )2A.32B.-31C.-31D.-410.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )A 、63B 、108C 、75D 、83二、填空题 三、11.在ABC∆中,045,B c b ===,那么A =_____________;12.已知等差数列{}n a 的前三项为32,1,1++-a a a ,则此数列的通项公式为 ; 13.不等式21131x x ->+的解集是.14.已知数列{a n }的前n 项和2n S n n =+,那么它的通项公式为a n =_________ .三、解答题15. 已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.16.(1) 求不等式的解集:0542<++-x x(2)求函数的定义域:5y =17 .在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。

求:(1)角C 的度数; (2)AB 的长度。

18.若不等式0252>-+x ax 的解集是⎭⎬⎫⎩⎨⎧<<221x x ,(1) 求a 的值;(2) 求不等式01522>-+-a x ax 的解集.19.如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A后,货轮到达C 点处,观测到灯塔A 货轮与灯塔之间的距离.20.某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。

相关文档
最新文档