高中数学必修4两角和与差的三角函数

合集下载

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
明目标、知重点
(3)sin
1π2-
3cos
π 12.

方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β

.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

高中数学 第3章 三角恒等变换 3.1 两角和与差的三角函数知识导航 苏教版必修4(2021年整理)

高中数学 第3章 三角恒等变换 3.1 两角和与差的三角函数知识导航 苏教版必修4(2021年整理)

高中数学第3章三角恒等变换3.1 两角和与差的三角函数知识导航苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第3章三角恒等变换3.1 两角和与差的三角函数知识导航苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第3章三角恒等变换3.1 两角和与差的三角函数知识导航苏教版必修4的全部内容。

3.1 两角和与差的三角函数知识梳理一、两角和与差的正弦、余弦和正切公式11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用—β代替β、2 ±β代替β、α=β等换元法可以推导出其它公式。

二、关于asinx+bcosx 形式的化简教材上仅以一个例题的方式给出了这种变形,要求我们对此类变形要熟练地化成Asin(ωx+φ)或Acoss (ωx+φ)的形式,理解此种变形的方法与依据。

它的实质是逆用了两角和与差的正余弦公式将数值看成了特殊角的三角函数值得来的。

在三角函数的化简、求周期、最值、单调区间等方面起着重要的作用.知识导学要学好本节内容,可先复习已学过的其它知识,充分利用单位圆,分析其中有关几何元素(角的终边及其夹角)的关系,为向量方法的运用做好准备。

有意识的地联想向量知识:向量的数量积是解决距离与夹角问题的工具,在两角差的余弦公式的推导中应如何能够体现它的作用?探索过程的安排,应当先把握整体,然后逐步追求细节,在补充完善细节的过程中,需要运用分类讨论思想,突破两角差的余弦公式的推导这一难点后,其他所有公式都可以通过自己的独立探索而得出.疑难突破1。

对于两角和与差的公式的异同要进行对比与分析,应如何便于理解记忆和应用? 剖析:(1)明确角、函数名和排列顺序以及公式中每一项的符号;(2)要牢记公式,并能熟练地进行左右互相转化;(3)和、差角公式可以看成是诱导公式的推广,诱导公式可以看成和、差角公式的特例。

北师大版必修4高中数学第三章两角和与差的三角函数课件

北师大版必修4高中数学第三章两角和与差的三角函数课件

想一想:公式有何特点?你如何记忆?
应用
1:已知四个单角函数值求差角的余弦。 例1,利用差角余弦公式求cos15°的值.
分析:怎样把15°表示成两个特殊角的差?
解: cos15 cos(45 30)
cos 45 cos 30 sin 45 sin 30
2 3 2 1 2 2 2 2 6 4 2
cos(α-β)=cosαcosβ+sinαsinβ
探究2 对任意α,β,如何证明它的正确性? 议一议:
结合向量的数量积的定义和向量的工具性,
看能否用向量的知识进行证明?
问题3:
①结合图形,思考应选用哪几个向量? y
A
OA=(cosα,sinα), OB=(cosβ,sinβ)
αβ
O
B
x
②怎样用向量(α-β)=cosαcosβ+sinαsinβ
当α-β为任意角时,由诱导公式,总可以找到一个 角∈[0,2),使cos=cos(α -β)
①若∈[0,], 则OA· OB=cos=cos(α -β) ②若∈(,2),则2-∈(0,) 则OA· OB=cos(2-)=cos(α -β)
例 3: 1.求cos57°cos12° +sin57° sin12°的值
2.求cosxcos(x+45 ° ) +sinx sin(x+45° )的值 3.求cosxcos(x+y)+sinxsin(x+y)的值
应用4
3 4 已知 sin sin , sin sin ,求 cos( )的值 5 5
求 cos( )的值. 1 11 (4) 已知cos , cos , 且, 0, 7 14 2

(苏教版必修4)两角和与差的三角函数总复习

(苏教版必修4)两角和与差的三角函数总复习

两角和与差的三角函数总复习一、公式的正用、逆用、变形用1.求值:2sin()2sin()cos()333x x x πππ++--- 2.△ABC 中,若2cos sin sin B A C =,则△ABC 的形状是 3.△ABC 中,(1)已知412cos ,cos ,cos 513A B C ===则 (2)已知412sin ,sin ,cos 513A B C ===则 (3)已知412sin ,cos ,cos 513A B C ===则 (4)已知45sin ,cos ,cos 513A B C ===则4.1tan 151tan 15-︒=+︒5.tan 72tan 4272tan 423︒-︒-︒︒=6.在△ABC 中,若tan tan tan 0A B C ++<,则△ABC 的形状是 7.(1tan 1)(1tan 2)(1tan 44)(1tan 45)+︒+︒⋅⋅⋅+︒+︒=二、辅助角公式sin cos )a x b x x ϕ+=+1.已知sin 1m αα-=-,求m 的取值范围三、在求值、求角时,配角思想的应用1.设12cos(),sin(),,0,cos 2923222βαππαβαβαπβ+-=--=<<<<且求的值2.已知2tan ,tan 40x αβ++=是方程的两根,且,(,)22ππαβ∈-,求αβ+3.已知tan()2tan αββ+=,求证:3sin sin(2)ααβ=+4.已知sin(2)5sin αββ+=,求证:2tan()3tan αβα+=5.sin 15cos 5sin 20cos 15cos 5cos 20︒︒-︒=︒︒-︒6.sin 85=︒四、已知tan sin(),sin(),tan =m n ααβαββ+=-=则已知cos(),cos(),tan tan =m n αβαβαβ+=-=则1. 已知23tan sin(),sin(),34tan ααβαββ+=-==则 2. 已知23cos(),cos(),tan tan 34αβαβαβ+=-==则五、已知sin sin ,cos cos ,cos()m n αβαβαβ+=+=-=则已知sin sin ,cos cos ,cos()m n αβαβαβ-=-=-=则已知sin sin ,cos cos ,cos()m n αβαβαβ+=-=+=则已知sin sin ,cos cos ,cos()m n αβαβαβ-=+=+=则1.已知11sin sin ,cos cos ,cos()23αβαβαβ+=-=+=则 2.已知11cos cos ,sin sin ,cos()23αβαβαβ+=-=+=则 (说明)另一种典型变形:移项后再平方如:22sin sin sin sin 112(sin cos )cos cos cos cos m m m n m n n n αβαβββαβαβ-==+⎧⎧⇒⇒=++++⎨⎨-==+⎩⎩22)sin()m n βϕβϕ⇒+++⇒+=-特别地,当00m n ==或时,则可以分别求出sin ,sin ,cos ,cos αβαβ,sin 2sin 0,cos 2cos 2.(1)cos ,cos()αβαβαβααβ-=+=+1.锐角满足:求的值;αβ(2)求2+的值. 六、sin 1cos 1sin cos tan 1cos sin 1sin cos ααααααααα-+-===+++ 1.83sin ,,tan 1722πααπα=-<<=已知则2.43cos ,2,tan 522παααπ=<<=已知则3.1sin cos tan 1,21sin cos ααααα+-=-=++已知则。

必修四数学 第3讲教师版 两角和与差的三角函数公式

必修四数学 第3讲教师版     两角和与差的三角函数公式

课题:两角和与差的三角函数公式个性化教学辅导教案第3讲两角和与差的三角函数公式1.两角和与差的正弦、余弦和正切公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α∓β)=cos_αcos_β±sin αsin_β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin_αcos__α.(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(2)cos2α=1+cos 2α2,sin2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),=a 2+b 2sin(α+φ) ⎝ ⎛⎭⎪⎫其中tan φ=b a=a 2+b 2·cos(α-φ) ⎝ ⎛⎭⎪⎫其中tan φ=a b .三个变化1.变角:通过对角的拆分尽可能化为同角、特殊角、已知角的和与差,其手法通常是“配凑”.2.变名:通过变换尽可能减少函数种类,降低次数,减少项数,其手法通常有“切化弦”“升幂与降幂”等. 3.变式:根据式子的结构特征进行变形,使其更简化、更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”“逆用变形用公式”“通分与约分”“分解与组合”“配方与平方”等.1.(必修4 P 127练习T 2改编)已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α为( ) A.210B .-210C.7210 D .-7210解析:选A.∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45,∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.(必修4 P 130例4(1)改编)化简cos 18°cos 42°-cos 72°·sin 42°的值为( ) A.32B .12C .-12D .-32解析:选B.法一:原式=cos 18°cos 42°-sin 18°·sin 42° =cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42° =sin(72°-42°)=sin 30°=12.3.(必修4 P 135练习T 2改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A.725B .-725C.1625D .-1625解析:选A.由sin(α-k π)=35(k ∈Z )得sin α=±35.∴cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫±352=1-1825=725.故选A.4.(必修4 P 138A 组T 19(4)改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33. 答案:335.(必修4 P 137A 组T 10改编)tan α,tan β是方程6x 2-5x +1=0的两个实数根.α,β均为锐角,则α+β=________. 解析:由题意知tan α+tan β=56,tan αtan β=16,∴tan(α+β )=tan α+tan β1-tan αtan β=561-16=1.∵α,β∈⎝⎛⎭⎫0,π2.∴α+β∈(0,π),∴α+β=π4. 答案:π4两角和与差公式的应用(2015·高考四川卷)sin 15°+sin 75°的值是________. [解析] 法一:sin 15°+sin 75°=sin 15°+cos 15° =2(22sin 15°+22cos 15°) =2(sin 15°cos 45°+cos 15°sin 45°) =2sin 60°=2×32=62. 法二:sin 15°+sin 75° =sin(45°-30°)+sin(45°+30°) =2sin 45°cos 30°=2×22×32=62. [答案]62用两角和与差的三角函数公式直接求三角函数值时,只需在α±β中知道α,β的三角函数值,用公式展开后直接代入求值即可.两角和与差的正弦、余弦、正切公式 扫一扫 进入 精品微课1.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A .7 B .17C .-17D .-7解析:选B.因α∈⎝⎛⎭⎫π,32π,且cos α=-45, 所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17.2.已知α∈⎝⎛⎭⎫0,π2,tan α=12,则sin ⎝⎛⎭⎫2α+π3=________. 解析:tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43. ∵α∈⎝⎛⎭⎫0,π2,2α∈(0,π),tan 2α=43>0, ∴2α∈⎝⎛⎭⎫0,π2,∴sin 2α=45,cos 2α=35, ∴sin ⎝⎛⎭⎫2α+π3=sin 2α·cos π3+cos 2α·sin π3=45×12+35×32=4+3310. 答案:4+3310两角和与差公式的逆向应用(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°·sin 10°=( ) A .-32B .32C .-12D .12[解析] sin 20°cos 10°-cos 160°sin 10° =sin 20°cos 10°+cos 20°sin 10° =sin(20°+10°)=sin 30°=12,故选D.[答案] D两角和与差的三角函数的公式的逆向应用,注意两点:①角的统一;②三角函数名称的对应.1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22B .22C .32D .1解析:选B.原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 2.cos 15°+sin 15°cos 15°-sin 15°的值为( )A.33B . 3C .-33D .- 3解析:选B.原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.3.sin(65°-x )cos(x -20°)+cos(65°-x )cos(110°-x )的值为( ) A.2 B .22 C .12D .32解析:选 B.原式=sin(65°-x )cos(x -20°)+cos(65°-x )·cos[90°-(x -20°)]=sin(65°-x )·cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)]=sin 45°=22.利用两角和与差公式求角度设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2[解析] 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α. ∵α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2, ∴α-β∈⎝⎛⎭⎫-π2,π2,π2-α∈⎝⎛⎭⎫0,π2, ∴由sin(α-β)=sin ⎝⎛⎭⎫π2-α,得α-β=π2-α, ∴2α-β=π2.[答案] B利用两角和与差的三角函数公式求角度,需要注意:①根据基本关系和公式求出需要求的角的三角函数值;②确定所求角的范围,求出对应的角度.1.已知α,β均为锐角,(1+tan α)(1+tan β)=2,则α+β为( ) A.π6B .π4C .π3D .3π4解析:选B.由(1+tan α)(1+tan β)=2得 tan α+tan β=1-tan αtan β,∴tan(α+β)=tan α+tan β1-tan αtan β=1-tan αtan β1-tan αtan β=1.∵0<α,β<π2,∴0<α+β<π,∴α+β=π4.2.设α,β均为锐角,且cos(α+β)=sin(α-β),则α的值为( ) A.π6B .π3C .π4D .5π12解析:选C.由cos(α+β)=sin(α-β),得cos αcos β-sin αsin β=sin αcos β-cos αsin β, 即cos α(cos β+sin β)=sin α(cos β+sin β), 因为β为锐角,所以cos β+sin β≠0,所以cos α=sin α, 所以tan α=1.∴α=π4,故选C.3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B .π3C .π4D .π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. ∴β=π4.故选C.二倍角公式及其应用(2015·高考广东卷)已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4 =2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.利用二倍角公式求三角函数值时,应注意:①cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α的选择应用; ②高次化简求值时,用cos 2α=1+cos 2α2,sin 2α=1-cos2α2降次; ③注意用恒等式(sin α±cos α)2=1±sin 2α等价转化.1.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16B .13C .12D .23=45×22+35×22=7210. 答案:7210一、选择题1.(必修4 P 69A 组T 8(3)改编)已知tan α=3,则(sin α-cos α)2等于( )A.35B .25C .75D .85解析:选B.∵tan α=3,∴(sin α-cos α)2=1-2sin αcos α=1-2sin α cos αsin 2α+cos 2α=1-2tan αtan 2 α+1=1-610=25. 2.(必修4 P 146A 组T 8(3)改编)化简sin 3αsin α-2cos 2α等于( ) A .sin αB .cos αC .1D .0 解析:选C.sin 3αsin α-2cos 2α =sin 2αcos α+cos 2αsin αsin α-2cos 2α =2cos 2α+cos 2α-2cos 2α=2cos 2α-(2cos 2α-1)=1.3.(必修4 P 143A 组T 2(2)改编)已知sin(α+β)=12,sin(α-β)=13,若tan α=m tan β,则m 的值为( ) A .3B .4C .5D .6解析:选C.由sin(α+β)=12,sin(α-β)=13, ∴sin αcos β=512,cos αsin β=112, ∴tan α=5tan β,∴m =5,故选C.二、填空题4.(必修4 P 137A 组T 5改编)已知sin(30°+α)=35,60°<α<150°,则cos(2α+150°)=________. 解析:设30°+α=t ,∴90°<t <180°,∵sin t =35, ∴cos t =-45, ∴cos(2α+150°)=cos[2(t -30°)+150°]=cos(2t +90°)=-sin 2t =-2sin t cos t =2425. 答案:2425三、解答题5.(必修4 P 125~126内文改编)用向量法证明cos(α-β)=cos αcos β+sin αsin β.证明:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B .则OA →=(cos α,sin α),OB →=(cos β,sin β).由向量数量积的坐标表示,有OA →·OB →=(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β.设OA →与OB →的夹角为θ,则OA →·OB →=|OA →|·|OB →|cos θ=cos θ=cos αcos β+sin αsin β.另一方面,由图(1)可知,α=2k π+β+θ;由图(2)可知,α=2k π+β-θ.于是α-β=2k π±θ,k ∈Z .所以cos(α-β)=cos θ.则cos(α-β)=cos αcos β+sin αsin β.一、选择题1.计算1-2sin 222.5°的结果等于( )。

两角和与差的正弦、余弦、正切公式 课件-高一下学期数学人教A版必修4

两角和与差的正弦、余弦、正切公式 课件-高一下学期数学人教A版必修4

OA ⋅ OB=|OA||OB| cos<a,b>=cosα⋅cosβ+sinα⋅sinβ
即:cos(α−β)=cosα⋅cosβ+sinα⋅sinβ
LOGO
(2)cos(α+β)= cos(α-(-β))
=cosα⋅cos(-β)+sinα⋅sin(-β)
又因为cos(-β)=cosβ,sin(-β)=-sinβ
A B
3
3
1
,则
3
1
,则tanacot
3
-
3
4
β=
3. 1
4. 5
5.A
,则tana=
C
tan( a+β )=
D
3
4
LOGO
6.已知cosa=
3
- ,且0<a<π,则sina=
5
1
3
7.已知tan( a+β )= ,,tan β=-2,则tana的值为()
1
7
A
B
1
7
C 7
A
B
1
4
C
3
4
7. C
D -7
求证:tan(A+B)=
1−tanA+tanB
证明:tan(A+B)
将B换成-B会得到什么?
tan(-a)=-tana
sin A+B
=
cos A+B
sin A cos B+cos A sin B
=
cos A cos B−sin AB
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)得:
11.在三角形ABC中,已知cosA=

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)高中三角函数公式(一): 高中数学必修4三角函数公式大全诱导公式sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanαsin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanαsin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]高中三角函数公式(二): 数学三角函数的公式把高中数学所有数学三角函数公式列出来高中数学必修1和必修4的公式总结最佳答案乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h高中三角函数公式(三): 高中阶段比较重要的三角函数公式有哪些最好能一一列举下来【高中三角函数公式】倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱...高中三角函数公式(四): 求高中数学三角函数公式推导所有的三角函数公式的推导全部过程诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .sin(π/2+α)=cosα .cos(π/2+α)=-sinα.sin(π/2-α)=cosα .cos(π/2-α)=sinα .sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα 基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) sin2A=2sinAcosA cos2A=cos^2(A)-sin^2(A)tan2A=(2tanA)/(1-tan^2(A))弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC余弦定理:如上所设,则a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosC【高中三角函数公式】高中三角函数公式(五): 高中常用的三角函数公式有哪些在什么地方应用如题1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) =cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = -...高中三角函数公式(六): 高中三角函数公式表已知直角三角形三边长度求另外两角角度高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)诱导公式(口诀:奇变偶不变,符号看象限.)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=ta nαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2高中三角函数公式(七): 2023年江苏省高中数学公式特别是三角函数公式三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系.而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y.深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点.角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A"OD.A(cosα,sinα),B(cosβ,sinβ),A"(cos(α-β),sin(α-β))OA"=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)Sin2A=2SinA CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα高中三角函数公式(八): 高中三角函数的公式在非直角三角形ABC中设∠A邻边a,对边b,斜边c,那么sin∠A=cos∠A=tan∠A=(用含a、b、c的代数式表示)由于csc、sec、cot在直角三角形中分别为以上三种三角函数的倒数,在非直角三角形中是否仍然适用老师跟我讲过三角函数不在直角三角形中也是有的.如果答案是网上大段大段的Ctrl+C和Ctrl+V搞来的何必回答我的问题很清楚.前后答案最多100字.当然适用,三角函数抽象出来它就是一种不依赖于几何图形的函数.当然在高中会以圆为依托来深入研究它.事实上,如果你感兴趣,可以自己查询‘正弦定理‘、’余弦定理‘以及’正切定理‘.相信这个会给你提供你想要的,它就是在任意三角形中的.高中三角函数公式(九): 高中三角函数公式记忆RT老师说有N个公式一百多个呢咋记呢最好有口诀啥的追分ing...其实不用记忆那么多的啊!我就是有多年高三经验的老师。

高中数学必修4三角函数优质课件:两角和与差的正弦、余弦公式

高中数学必修4三角函数优质课件:两角和与差的正弦、余弦公式
s_i_n_α_c_o_s_β_-__co_s_α_s_in__β_____ S(α-β) __
第二页,编辑于星期日:二十三点 三十八分。
给角求值问题
[例 1]
cos (1)sin
2200°°【·c常os考1题0°+型】3sin
10°tan
70°-2cos
40°=________.
(2)求值:(tan 10°-
=-2.
第六页,编辑于星期日:二十三点 三十八分。
[类题通法] 解决给角求值问题的策略
对非特殊角的三角函数式求值问题,一定要本着先整 体后局部的基本原则,如果整体符合三角公式的形式,则 整体变形,否则进行各局部的变形.一般途径有将非特殊 角化为特殊角的和或差的形式,化为正负相消的项并消项 求值,化分子、分母形式进行约分式值;要善于逆用或变 用公式.
(2)原式 =cos(70°+α)sin(10°+α)-sin(70°+α)cos(10°+α)
=sin[(10°+α)-(70°+α)] =sin(-60°)
=- 23.
第二十六页,编辑于星期日:二十三点 三十八 分。
(3)原式=cos 21°cos 24°+sin(180°-21°)sin(180°+24°) =cos 21°cos 24°-sin 21°sin 24° =cos(21°+24°)
20°cos 10°+ sin 20°
3sin
10°-2cos
40°
=2cos
20°cos
10°sin 30°+sin sin 20°
10°cos
30°-2cos
40°
=2cos 20°ssinin2300°°+10°-2cos 40°
=2cos
20°sin

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

高考数学 两角和与差的正弦、余弦与正切公式

高考数学 两角和与差的正弦、余弦与正切公式

两角和与差的正弦、余弦与正切公式[知识梳理]1.两角和与差的正弦、余弦、正切公式(1)C (α∓β):cos(α∓β)=cos αcos β±sin αsin β.(2)S (α±β):sin(α±β)=sin αcos β±cos αsin β.(3)T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎪⎫α,β,α±β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式(1)S 2α:sin2α=2sin αcos α.(2)C 2α:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)T 2α:tan2α=2tan α1-tan 2α⎝ ⎛⎭⎪⎫α≠±π4+k π,且α≠k π+π2,k ∈Z . 3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(2)cos 2α=1+cos2α2,sin 2α=1-cos2α2. (3)1±sin2α=(sin α±cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (4)a sin α+b cos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b2,tan φ=b a (a ≠0). 特别提醒:(1)角:转化三角函数式中往往出现较多的差异角,注意观察角与角之间的和、差、倍、互补、互余等关系,运用角的变换,化多角为单角或减少未知角的数目,连接条件角与待求角,使问题顺利获解.对角变换时:①可以通过诱导公式、两角和与差的三角公式等;②注意倍角的相对性;③注意拆角、拼角技巧,例如,2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=α+β2-α-β2=(α+2β)-(α+β),α-β=(α-γ)+(γ-β),15°=45°-30°,π4+α=π2-⎝ ⎛⎭⎪⎫π4-α等.(2)将三角变换与代数变换密切结合:三角变换主要是灵活应用相应的三角公式,对于代数变换主要有因式分解、通分、提取公因式、利用相应的代数公式等,例如,sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 22x . [诊断自测]1.概念思辨(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小关系不确定.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )答案 (1)√ (2)√ (3)× (4)×2.教材衍化(1)(必修A4P 131T 5)sin20°cos10°-cos160°sin10°=( )A .-32 B.32 C .-12 D.12答案 D解析 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D.(2)(必修A4P 146A 组T 3)已知tan ⎝ ⎛⎭⎪⎫α+π6=12,tan ⎝ ⎛⎭⎪⎫β-π6=13,则tan(α+β)=________.答案 1解析 ∵α+β=⎝ ⎛⎭⎪⎫α+π6+⎝ ⎛⎭⎪⎫β-π6,∴tan(α+β)=tan ⎝ ⎛⎭⎪⎫α+π6+tan ⎝ ⎛⎭⎪⎫β-π61-tan ⎝ ⎛⎭⎪⎫α+π6tan ⎝ ⎛⎭⎪⎫β-π6=12+131-16=1.3.小题热身(1)sin7°+cos15°sin8°cos7-sin15°sin8°的值为( )A .2+ 3B .2- 3C .2 D.12答案 B解析 原式=sin (15°-8°)+cos15°sin8°cos (15°-8°)-sin15°sin8°=sin15°cos8°cos15°cos8°=tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30° =1-331+33=3-13+1=2- 3.故选B.(2)若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于( ) A .7 B .-7 C.17 D .-17答案 C解析 ∵sin(α-β)sin β-cos(α-β)cos β=45,∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34.∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.故选C.题型1 求值问题典例 已知cos ⎝ ⎛⎭⎪⎫π4+x =35,若17π12<x <7π4,求sin2x +2sin 2x 1-tan x的值. 本题采用“函数转化法”.解 由17π12<x <7π4,得5π3<x +π4<2π.又cos ⎝ ⎛⎭⎪⎫π4+x =35,所以sin ⎝ ⎛⎭⎪⎫π4+x =-45,所以cos x =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+x -π4=cos ⎝ ⎛⎭⎪⎫π4+x cos π4+sin ⎝ ⎛⎭⎪⎫π4+x sin π4=35×22-45×22=-210, 从而sin x =-7210,tan x =7.则sin2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x 1-tan x=2⎝ ⎛⎭⎪⎫-7210·⎝ ⎛⎭⎪⎫-210+2⎝ ⎛⎭⎪⎫-721021-7=-2875.方法技巧三角恒等变换的变“角”与变“名”问题的解题思路1.角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化.2.名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.冲关针对训练已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( )A.3π4B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.故选C.题型2 三角恒等变换的综合应用角度1 研究三角函数的性质 典例 (优质试题·临沂一模)已知函数f (x )=4sin ⎝⎛⎭⎪⎫x -π3cos x +3.(1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.本题采用转化法、数形结合思想.解 函数f (x )=4sin ⎝ ⎛⎭⎪⎫x -π3cos x +3, 化简可得f (x )=2sin x cos x -23cos 2x + 3=sin2x -23⎝ ⎛⎭⎪⎫12+12cos2x + 3 =sin2x -3cos2x=2sin ⎝⎛⎭⎪⎫2x -π3. (1)函数的最小正周期T =2π2=π,由2k π-π2≤2x -π3≤2k π+π2时单调递增,解得k π-π12≤x ≤k π+5π12(k ∈Z ),∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)函数g (x )=f (x )-m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点x 1,x 2,转化为函数f (x )与函数y =m 有两个交点.令u =2x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴u ∈⎣⎢⎡⎦⎥⎤-π3,2π3 可得f (x )=2sin u 的图象(如图).由图可知:m 在[3,2),函数f (x )与函数y =m 有两个交点,其横坐标分别为x 1,x 2.故得实数m 的取值范围是m ∈[3,2),由题意可知x 1,x 2是关于对称轴是对称的:那么函数在⎣⎢⎡⎦⎥⎤0,π2的对称轴为x =5π12, ∴x 1+x 2=5π12×2=5π6.那么tan(x 1+x 2)=tan 5π6=-33.方法技巧三角函数综合性试题涉及三角函数的性质研究.首先将三角函数化为f (x )=A sin(ωx +φ)的形式,在转化过程中需要三角恒等变换.如典例.这是高考的重点题型.冲关针对训练(优质试题·河北区二模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos x . (1)求函数f (x )的最小正周期;(2)若α是第一象限角,且f ⎝⎛⎭⎪⎫α+π3=45,求tan ⎝ ⎛⎭⎪⎫α-π4的值. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos x =32sin x -12cos x +cos x =32sin x +12cos x=sin ⎝ ⎛⎭⎪⎫x +π6, 所以函数f (x )的最小正周期为T =2π1=2π.(2)由于f (x )=sin ⎝⎛⎭⎪⎫x +π6, 则f ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α+π2=cos α=45, 由于α是第一象限角,所以sin α=35,则tan α=34,则tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-17. 角度2 三角恒等变换与向量的综合典例(优质试题·南京三模)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2,t 为实数. (1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值; (2)若t =1,且a ·b =1,求tan ⎝ ⎛⎭⎪⎫2α+π4的值. 本题采用向量法、平方法.解 (1)向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2,t 为实数.若a -b =⎝ ⎛⎭⎪⎫25,0,则(2cos α-2sin α,sin 2α-t )=⎝ ⎛⎭⎪⎫25,0, 可得cos α-sin α=15,平方可得sin 2α+cos 2α-2cos αsin α=125,即为2cos αsin α=1-125=2425(cos α>0,sin α>0),由sin 2α+cos 2α=1,解得cos α+sin α=(cos α-sin α)2+4sin αcos α =125+4825=75, 即有sin α=35,cos α=45,则t =sin 2α=925.(2)若t =1,且a ·b =1,即有4cos αsin α+sin 2α=1,即有4cos αsin α=1-sin 2α=cos 2α,由α为锐角,可得cos α∈(0,1),即有tan α=sin αcos α=14,则tan2α=2tan α1-tan 2α=121-116=815, tan ⎝ ⎛⎭⎪⎫2α+π4=tan2α+11-tan2α=1+8151-815=237. 方法技巧三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算进行化简.冲关针对训练(优质试题·南通模拟)已知向量m =⎝ ⎛⎭⎪⎫sin x 2,1,n =⎝ ⎛⎭⎪⎫1,3cos x 2,函数f (x )=m ·n .(1)求函数f (x )的最小正周期;(2)若f ⎝ ⎛⎭⎪⎫α-2π3=23,求f ⎝ ⎛⎭⎪⎫2α+π3的值. 解 (1)f (x )=sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3, ∴f (x )的最小正周期T =2π12=4π.(2)∵f ⎝ ⎛⎭⎪⎫α-2π3=2sin α2=23,∴sin α2=13,∴cos α=1-2sin 2α2=79,∴f ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π2=2cos α=149.1.(优质试题·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( ) A.725 B.15 C .-15 D .-725答案 D解析 cos ⎝ ⎛⎭⎪⎫π4-α=22(cos α+sin α)=35⇒cos α+sin α=325⇒1+sin2α=1825,∴sin2α=-725.故选D.2.(2014·全国卷Ⅰ)设α∈⎝⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2答案 C解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin ⎝ ⎛⎭⎪⎫π2-α,所以sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,又因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.3.(2014·全国卷Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.答案 1解析 f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ)=sin(x +φ)cos φ-sin φcos(x +φ)=sin(x +φ-φ)=sin x ,∴f (x )的最大值为1.4.(优质试题·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝ ⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1.[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( )A.12B.33C.22D.32答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( )A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(优质试题·云南一检)cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(优质试题·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4答案 D解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin (10°-30°)12sin20°=-2sin20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛ π4- ⎭⎪⎫β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ) A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2, 由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223.⎝⎭cos ⎝ ⎛⎭⎪⎫α+β2=539,故选C. 7.(优质试题·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3答案 A解析 sin2αsin2β=sin[(α+β)+(α-β)]sin[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)sin (α+β)cos (α-β)-cos (α+β)sin (α-β)=tan (α+β)+tan (α-β)tan (α+β)-tan (α-β)=13.故选A. 8.(优质试题·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( ) A .-12 B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin (2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z .∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6, ∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3, ∴cos ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1, 则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D. 9.(优质试题·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(优质试题·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74, ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝ ⎛⎭⎪⎫0,π4, ∴cos ⎝ ⎛⎭⎪⎫π4-θ=34, ∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D. 二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13. ∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13. ∴cos 2α-sin 2β=13. 12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β =12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(优质试题·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案 π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3。

(完整版)高中必修四三角函数知识点总结

(完整版)高中必修四三角函数知识点总结

§04。

三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。

01745 1=57。

30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。

30°=57°18ˊ. 1°=180π≈0。

01745(rad )3、弧长公式:rl ⋅=||α。

扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。

yr=αcsc 。

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。

2014-2015高中数学必修四三角函数公式大全

2014-2015高中数学必修四三角函数公式大全

高中三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a -cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -co tα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

高中数学必修四第三章三角恒等变换

高中数学必修四第三章三角恒等变换

必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。

例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。

例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。

例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。

数学必修四312两角和与差的正弦余弦正切公式

数学必修四312两角和与差的正弦余弦正切公式
能 不 能 由 公 式 C ( - ) 推 出 c o s ( ) 的 值 吗 ?
二、基础知识讲解
由 于 c o s ( ) c o s [ ( )]
c o sc o s ( ) s ins in ( )
c o sc o s sin sin
所以,对于任意角,
有 cos()coscossinsin
c o s ( )( c o s c o s) 2 ( s in s in ) 2 2 2
c( o s) 2 [c (o c so )2 s (si n si)2 n ] 2
一、复习引入
两角差的余弦公式C(α-β)
c o ( s ) c o sc o s s i n s i n
4 4
①利用诱导公式
②利用和(差)角公式
P131练习2,3,4
变通公式
α =(α+β)-β 2β=(α+β)- (α-β) β=α- (α-β) 2 α =(α+β)+ (α-β) β=(α+β)- α
+=(-)+(-)
2
22
二教P74例1
三、例题分析 逆用公式
例4:利用和(差)角公式计算下列各式的值:
(2)公 式 中 右 边 有 两 项 ,中 间 符 号 与 左 边 两 角 间 的 符 号 相 同 ;
(3)右 边 三 角 函 数 的 排 列 的 顺 序 是:sincos、 cossin. sin15° sin75°
二、基础知识讲解
探究:你能根据正切函数与正弦、余弦函数 的关系,从C(), S()出发,推导出用任意
证明:∵tanA、tanB、tanC 都有意义, ∴△ABC中没有直角,∴tanAtanB≠1.
∵ tan(A+B)= tanAtanB , 1tanAtanB

北师大版高中高二数学必修4《两角和与差的三角函数》教案及教学反思

北师大版高中高二数学必修4《两角和与差的三角函数》教案及教学反思

北师大版高中高二数学必修4《两角和与差的三角函数》教案及教学反思一、教学目标1.理解两角和与差的三角函数概念2.掌握两角和与差的三角函数的计算公式3.能灵活运用两角和与差的三角函数求解题目二、教学重点1.两角和与差的三角函数概念2.计算公式3.绕过死点三、教学难点1.两角和与差的三角函数的绕过死点方法2.运用两角和与差的三角函数求解问题四、教学过程1. 教学内容的呈现本节课学习的主要内容为两角和与差的三角函数。

在这之前,我们先回顾一下基础的三角函数知识,然后引出两角和与差的概念。

同时,我们需要提出两角和与差公式的作用,以及绕过死点的方法。

2. 新知识的学习首先,我们来回顾一下基础的三角函数知识,包括正弦函数、余弦函数、正切函数和余切函数。

接下来,我们引入两个新的概念:两角和与两角差。

这两个概念是指两个角的函数相加或相减后得到的函数,比如:$$\\sin(a+b) = \\sin a \\cos b + \\cos a \\sin b$$$$\\cos(a+b) = \\cos a \\cos b - \\sin a \\sin b$$$$\\sin(a-b) = \\sin a \\cos b - \\cos a \\sin b$$$$\\cos(a-b) = \\cos a \\cos b + \\sin a \\sin b$$我们需要记住这些公式,因为在进一步的计算中会很常用。

接着,我们来讲一下如何避开死点。

在计算两角和与差的三角函数时,会遇到一些死点,导致计算不能进行下去。

所谓死点,就是使得分母为零的点,这个点被称为死点。

出现死点时,我们需要进行绕过,常用的方法有三种。

1.利用倒数公式:$\\tan(\\pi/2-a)=\\cot(a)$,$\\cot(\\pi/2-a)=\\tan(a)$来进行绕过。

2.利用奇偶性:sin(−x)=−sin(x),cos(−x)=cos(x),tan(−x)=−tan(x),来进行绕过。

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的三角函数
【知识要点回顾】
1. 两角和与差的正弦、余弦、正切
cos(βα+)= ; sin(βα+)= ; tan(βα+) cos(βα-)= ; sin(βα-)= ; tan(βα-)
2. 二倍角的正弦、余弦、正切 sin2α= ;
cos2α= = = ; tan2α= . 3. 公式的推导与联系.
【例题讲解】
例1 :求下列三角函数的值:
(1) 若θ为锐角,53sin =θ,求)6cos(π
θ+的值;
(2) 若α为锐角,5
3
)6sin(=-πα,求 cosα的值。

例2:利用已知角和特殊角表示下列角:
(1)已知角α+β、α-β,则2α= ,2β= ;
(2)已知角βπ
πα+-4
3,4,则α+β= ; (3)△ABC 的三内角A 、B 、C 成等差数列,已知2
C
A -=α,则A= ,
C= 。

例3:(1)已知的范围,求βαβαπβπ
α-+<<<<,2
0;
(2)已知)4
sin(,232,53)4cos(παπαππ
α+<≤=+求
例4:已知α、β为锐角,的值。

求ββααcos ,3
1
)tan(,54cos -=-=
例5:
的值。

求且设)sin(,13
5
)43sin(,53)4cos(),4,0(),43,4(βαβππαπβππα+=+=-∈∈
例6:的值。

求已知)4
2cos(,232,53)4cos(παπαππ
α+<≤=+
例7:利用向量的方法证明两角和的余弦公式:
cos(α+β)=cosαcosβ-sinαsinβ
【考点针对训练】
一.选择题
1.已知tan (βα+)==+=-
)4
tan(,41)4tan(,5
2
π
απ
β则( ) A .1813 B .22
13 C .183 D .223
2.若
5tan 1tan 1=+-A A ,则)4
(cot A +π
的值为
.A 5- .B 55-
.C 5 .D 5
5
3.已知2cot =α,5
2
)tan(-
=-βα,则)2tan(αβ-的值为:( ) A.61 B.61- C.121 D.121- 4.︒⋅︒⋅︒75sin 30sin 15sin 值为
.A
43 .B 81 .C 8
3
.D 41
5. 12
cos 12
sin
2
2
π
π
-的值为( )
A. 21-
B. 21
C. 23-
D. 2
3
6.

︒-︒︒
︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为( )
.A 32+ .
B 232+ .
C 32- .
D 2
3
2- 7. 若f(cosx)=cos2x ,则f(sin15°)的值等于 ( ) A .12
B .-1
2
C. 32
D .- 3
2
8.已知1352
sin
=
α
,13
122cos -=α,则角α所在的象限是:( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.已知3
sin(
)45x π
-=,则sin 2x = ( ) A .1925 B .1625 C .725 D .1425
10.8cos 228sin 12++-等于( ) A.2sin 4—4cos4 B.-2sin4-4cos4 C.-2sin4 D.4cos4-2sin4 11.已知锐角θ满足:x
x 21
2
sin
-=
θ
则tanθ等于( ) A. x B.
1
1-+x x C.
x
x 1
2- D. 12-x
12.若πα<<0,2
1
cos sin =
+αα,则α2cos 的值为( ) .
A 47 .
B 41- .
C 47± .
D 4
7
-
二.填空题
13.=+--+-)29sin()31sin()29cos()31cos(x x x x 14.已知15
sin 17
α=,(,)2παπ∈则cos()3πα-=
15.若3
sin(
)25
π
α+=
,则cos 2α=
16.计算:︒

+︒25cos 20sin 20cos 的值是___________.
17.若α,β均为锐角,且sinα-sinβ=-12 ,cosα-cosβ=1
2 则tan(α-β)的值为:
___________。

三.解答题
18.已知sin a =)tan(),sin(),2
3,(,1312cos ),,2
(,5
3βαβαπ
πββππ
α--∈-
=∈求
19.化简:
︒︒
+

+

5
cos
2
)
10 tan
3
1(
10
cos
50
sin
2
20.如图,有一块以点O为圆心的半圆形空地,要在这块
空地上划出一个内接矩形ABCD辟为花园绿地,使其一边AD落在半圆的直径上,另两点B、C落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D 的位置,可以使矩形ABCD的面积最大?
21.已知C B A ,,坐标分别为)2
3,2(),sin ,(cos ),3,0(),0,3(π
πααα∈C B A
(1=,求角α的值;
(2)若1-=∙BC AC ,求α
α
αtan 12sin sin 22++的值。

22. 已知
11
,0,tan ,tan 237
π
αππβαβ<<-<<=-=- (1)求2αβ+的范围; (2)求tan(2)αβ+的值; (3)求2αβ+的值。

相关文档
最新文档