关于辅助角公式

合集下载

辅助角公式的解说

辅助角公式的解说

关于辅助角公式的解说 对于辅助角公式,大家都很熟悉。

公式如下:)sin(cos sin 22ϕααα++=+b a b a 其中:ab =ϕtan 。

但是在实际运用中,最让大家感到头疼的是关于辅助角ϕ的大小确定。

下面就此公式的实际运用作如下解说。

一、辅助角使用的准备(1) 顺序:要使正弦在前,余弦在后;(2) 系数:分析好a 、b ,正弦系数为a 、余弦系数为b 。

二、象限的确定(1) 当a 、b 都是正数时,ϕ在第一象限!(2) 当a 、b 都是负数时,ϕ在第三象限!(3) 当a 是正数,b 是负数时,ϕ在第四象限!(4) 当a 是负数,b 是正数时,ϕ在第二象限!(5) 规律:x y a b ==ϕtan ,利用x 、y 的正负确定象限。

三、b a 22+的确定(系数,相当于辅助直角三角形中的斜边长) (1)b a 22+的大小不管a 、b 符号如何,b a 22+始终是正数。

(2) b a 22+的大小与a 、b 顺序无关。

(3) 1||||==b a 时,222=+b a (4) 2||||==b a 时,2222=+b a (5) 2||1||==b a ,时,522=+b a (6) 23||21||==b a ,时,122=+b a (7) 36||33||==b a ,时,122=+b a(8) 3||1||==b a ,时,222=+b a 三、ϕ角的大小确定(1)1=a b ,4πϕ=或45πϕ=(4ππ+k )(2)1-=a b ,43πϕ=或4πϕ-=(4ππ-k ) (3)33=a b ,6πϕ=或67πϕ=(6ππ+k ) (4)33-=a b ,65πϕ=或6πϕ-=(6ππ-k ) (5)3=a b ,3πϕ=或34πϕ=(3ππ+k ) (6)3-=a b ,32πϕ=或3πϕ-=(3ππ-k ) 四、例说辅助角的运用(一)︒+︒75sin 15sin (2015年四川高考题)来分析:分析:先由诱导公式化为:︒+︒=︒+︒cos15sin1575sin 15sin ,然后直接利用辅助角公式得: 26232sin602)45sin(152cos15sin1575sin 15sin =⋅=︒⋅=︒+︒=︒+︒=︒+︒ (二)公式的灵活运用(1)直接运用辅助角公式 ︒=︒+︒=︒+︒sin502)45sin(52cos5sin5(2)化系数,利用两角和的三角函数变换︒=︒+︒=︒︒+︒︒=︒+︒=︒+︒sin502)45sin(525cos 45sin sin5(cos452)cos522sin522(2cos5sin5)(3)化系数,利用两角和的三角函数变换︒=︒-︒=︒︒+︒︒=︒+︒=︒+︒cos402)5cos(4525sin 45sin cos5(cos452)sin522cos522(2cos5sin5)(三)拓展分析︒-︒5sin cos5的思考:(1)利用辅助角公式︒=︒--=︒-︒-=︒-︒-=︒-︒sin40240sin(2)455sin(2)5cos 5(sin 5sin cos5)(2)利用辅助角公式︒=︒=︒+︒=︒+︒-=︒-︒sin402140sin(2)1355sin(25cos 5sin 5sin cos5)(3)利用两角和计算︒=︒=︒︒-︒︒=︒-︒=︒-︒sin40250cos 2)5sin 45sin 5cos 45(cos 2)5sin 225cos 22(25sin cos5(4)利用两角和计算 ︒=︒︒-︒︒=︒-︒=︒-︒40sin 2)5sin 45cos 5cos sin452)5sin 225cos 22(25sin cos5(。

三角辅助角公式

三角辅助角公式

三角辅助角公式
asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。

1.辅助角公式是一种高等三角函数公式,其主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。

该公式已被写入中学课本,表达式为asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。

在使用该公式时,无论用正弦还是余弦来表示asinx+bcosx,分母的位置永远是用来表示函数名称的系数。

2.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数的辅助角计算方法

三角函数的辅助角计算方法

三角函数的辅助角计算方法三角函数是数学中一个重要且广泛应用的概念。

它们的求值在解决各种几何和物理问题中起着关键作用。

然而,有时候我们遇到的角度不在常用角度范围内,这就需要用到辅助角计算方法。

辅助角计算方法可以帮助我们将任意角度转化为一个介于0到90度之间的角度,从而方便我们使用常见的三角函数公式进行计算。

以下是几种常用的辅助角计算方法。

一、补角法补角法是利用补角的性质,将大于90度的角转化为小于90度的角。

具体操作如下:1. 角A是大于90度的角,记为A=α+β,其中α是与角A的补角,α+β=90度。

2. 利用三角函数的定义:sin(A) = sin(α+β) = sinα * cosβ + cosα * sinβ。

通过补角法,我们可以将大于90度的角转换成小于90度的角,并以此计算出对应的三角函数值。

二、合成角法合成角法是将一个角度分解成两个较小角度的和,以便利用已知的较小角度的三角函数值求得未知角度的三角函数值。

具体操作如下:1. 角A是一个未知角,我们将其分解为两个已知的角α和β,即A = α - β。

2. 根据角度和差公式:sin(A) = sin(α - β) = sinα * cosβ - cosα * sinβ。

通过合成角法,我们可以利用已知的角度的三角函数值来计算未知角度的三角函数值,从而实现对三角函数的辅助计算。

三、角度相等法角度相等法是通过将两个角度相等的三角函数公式进行转换,使求解目标角度变得容易。

具体操作如下:1. 假设角A与角B相等,即A = B。

2. 利用三角函数的定义:sin(A) = sin(B)、cos(A) = cos(B)、tan(A) = tan(B)。

通过角度相等法,我们可以通过已知的角度来计算与之相等的目标角度的三角函数值。

以上是三角函数的几种常用辅助角计算方法。

它们能够帮助我们将任意角度转化为标准的0到90度范围内的角度,从而方便我们进行三角函数的求解。

辅助角公式定义

辅助角公式定义

辅助角公式定义辅助角公式是高中数学三角函数中的一个重要公式。

它就像是一把神奇的钥匙,能帮助我们打开解决很多三角函数难题的大门。

先来说说辅助角公式到底长啥样儿。

辅助角公式是:$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$,其中$\tan\varphi = \frac{b}{a}$。

我记得有一次给学生们讲这个公式的时候,发生了一件特别有意思的事儿。

当时我在黑板上写下这个公式,然后问大家:“同学们,你们看这个公式像不像一个神秘的密码?”结果有个调皮的学生喊了一句:“老师,这密码太难破解啦!”全班哄堂大笑。

其实啊,辅助角公式的作用可大着呢!比如说,当我们遇到像$3\sin x + 4\cos x$这样的式子,如果要求它的最大值、最小值或者周期,直接看可不好弄。

但是用辅助角公式一转化,就变成了$5\sin(x +\varphi)$,其中$\tan\varphi = \frac{4}{3}$。

这样一来,问题是不是一下子就简单多啦?咱们再深入一点,为啥这个公式能这么神奇呢?这就得从三角函数的基本性质说起啦。

大家都知道正弦函数和余弦函数的值域都是$[-1,1]$,但是通过辅助角公式的整合,就能够把两个不同的三角函数合并成一个,从而更方便地进行分析和计算。

那在解题的时候,怎么能准确地运用辅助角公式呢?这就需要我们先观察式子中的系数$a$和$b$,然后求出$\varphi$的值。

这里要特别注意正负号哦,可别搞错了。

我曾经遇到过这样一道题:已知函数$f(x) = \sin x + \sqrt{3}\cos x$,求它的最小正周期和最大值。

这时候,我们就可以用辅助角公式把$f(x)$转化为$2\sin(x + \frac{\pi}{3})$。

因为正弦函数的最小正周期是$2\pi$,所以$f(x)$的最小正周期就是$2\pi$。

而正弦函数的最大值是$1$,所以$f(x)$的最大值就是$2$。

辅助角公式的注意事项

辅助角公式的注意事项

公式:asinx+bcosx=根号(a^2+b^2)*sin(x+arctan b/a)有错误.正确公式是:asinx+bcosx=根号(a^2+b^2)*sin(x+辅助角t),其中“辅助角t”满足条件“tan(辅助角t)=b/a”,而辅助角t的象限位置由点(a,b)的象限位置决定.你的错误在于:(1)认为“辅助角t=arctan b/a”.因为“辅助角t”可能在四个象限,而arctan b/a的取值范围是(-π/2,π/2);它们显然不一定相等;(2)sinx-cosx的辅助角在第四象限,可用arctan-1/1表示,但cosx-sinx的辅助角在第二象限,不能用arctan(1/-1)表示,可取成3π/4.西格玛希腊字母读法:序号大写小写英文注音国际音标注音中文注音意义1 Αα alpha a:lf 阿尔法角度;系数2 Ββ beta bet 贝塔磁通系数;角度;系数3 Γγ gamma ga:m 伽马电导系数(小写)4 Δδ delta delt 德尔塔变动;密度;屈光度5 Εε epsilon ep`silon 伊普西龙对数之基数6 Ζζ zeta zat 截塔系数;方位角;阻抗;相对粘度;原子序数7 Ηη eta eit 艾塔磁滞系数;效率(小写)8 Θθ thet θit 西塔温度;相位角9 Ιι iot aiot 约塔微小,一点儿10 Κκ kappa kap 卡帕介质常数11 ∧λ lambda lambd 兰布达波长(小写);体积12 Μμ mu mju 缪磁导系数;微(千分之一);放大因数(小写)13 Νν nu nju 纽磁阻系数14 Ξξ xi ksi 克西15 Οο omicron omik`ron 奥密克戎16 ∏π pi pai 派圆周率=圆周÷直径=3.141617 Ρρ rho rou 肉电阻系数(小写)18 ∑σ sigma `sigma 西格马总和(大写),表面密度;跨导(小写)19 Ττ tau tau 套时间常数20 Υυ upsilon jup`silon 宇普西龙位移21 Φφ phi fai 佛爱磁通;角22 Χχ chi phai 西23 Ψψ psi psai 普西角速;介质电通量(静电力线);角24 Ωω omega o`miga 欧米伽欧姆(大写);角速(小写);角。

辅助角公式

辅助角公式

辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

辅助角公式

辅助角公式

辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

3关于辅助角公式的一个定理及其应用

3关于辅助角公式的一个定理及其应用

3关于辅助角公式的一个定理及其应用定理:辅助角公式在三角形ABC中,设∠A=α,∠B=β,∠C=γ,辅助角公式指出:sin α = sin(β+γ)sin β = sin(α+γ)sin γ = sin(α+β)证明:由三角形的内角和可知:α+β+γ=180°根据三角函数的定义:sin α = BC / AC,sin β = AC / BC,sin γ = BC / AC而辅助角公式又可以写作:sin α = sin(β+γ),sin β =sin(α+γ),sin γ = sin(α+β)因此,我们只需要证明两个三角形的对边与邻边比值相等即可。

以辅助角公式的第一个式子sin α = sin(β+γ)为例:根据三角函数的定义,我们有:BC / AC = sin α = sin(β+γ)进一步展开,sin(β+γ) = sin β cos γ + cos β sin γ代入三角形 ABC 中的对应边长关系,得到:BC/AC = AC/BC * cos γ + BC/AC * sin γ得出两边通分,化简得:(BC^2 - AC^2) / AC * BC = 2 * BC * AC * sin γ进一步变换为:AC^2 - BC^2 = 2 * AC * BC * sin γ再将γ角所对的边记为a,则有:AC^2 - BC^2 = 2 * AC * BC * sin a我们知道在三角形ABC中,AC和BC是确定的,而辅助角公式表明,只要两个角度α、β或γ中的一个改变,那么第三个角度的值也会发生相应改变。

而当γ角度改变时,我们可以由辅助角公式推导得到较为简洁的表达式:AC^2 - BC^2 = 2 * AC * BC * sin γ应用:辅助角公式在解决三角形问题时有广泛的应用。

以下是三个辅助角公式的一些具体应用。

应用1:角度相同的三角形当两个三角形的一个角度相等时,可以利用辅助角公式求解对应的边长。

辅助角公式讲解

辅助角公式讲解

辅助角公式讲解辅助角公式是在解决三角函数运算的过程中常用的一种方法,可以帮助我们简化一些复杂的三角函数式子,使其更易于计算。

本文将对辅助角公式进行详细的讲解,包括其定义、性质、应用等方面的内容。

一、辅助角公式的定义辅助角公式是指在三角函数运算过程中,通过引入一个新的角度来简化三角函数式子的方法。

这个角度通常是由原来的角度加上或减去一个固定的值,使得三角函数式子变得更容易计算。

具体来说,辅助角公式有以下几种形式:① sin(a+b) = sin(a)cos(b) + cos(a)sin(b)② cos(a+b) = cos(a)cos(b) - sin(a)sin(b)③ tan(a+b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))④ cot(a+b) = (cot(a)cot(b) - 1) / (cot(a) + cot(b))其中,a和b均为任意角度。

二、辅助角公式的性质1. 余角公式:若a+b=90°,则sin(a+b)=cos(a),cos(a+b)=sin(a),tan(a+b)=cot(a),cot(a+b)=tan(a)。

2. 差角公式:sin(a-b)=sin(a)cos(b)-cos(a)sin(b),cos(a-b)=cos(a)cos(b)+sin(a)sin(b),tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b)),cot(a-b)=(cot(a)cot(b)+1)/(cot(b)-cot(a))。

3. 和差角公式:sin(a+b)+sin(a-b)=2sin(a)cos(b),cos(a+b)+cos(a-b)=2cos(a)cos(b),tan(a+b)-(tan(a-b))=2tan(a)tan(b),cot(a+b)+cot(a-b)=2cot(a)cot(b)。

4. 二倍角公式:sin2a=2sinacos(a),cos2a=cosa-sina,tan2a=(2tana)/(1-tana),cot2a=(cota-1)/(2cot(a))。

辅助角公式

辅助角公式

推导对于fx=asinx+bcosxa>0型函数;我们可以如此变形;设点a;b为某一角φ-π/2<φ<π/2终边上的点;则;因此就是所求辅助角公式..又因为;且-π/2<φ<π/2;所以;于是上述公式还可以写成该公式也可以用余弦来表示针对b>0的情况;设点b;a为某一角θ-π/2<θ<π/2终边上的点;则;因此同理;;上式化成若正弦和余弦的系数都是负数;不妨写成fx=-asinx-bcosx;则再根据得记忆很多人在利用辅助角公式时;经常忘记反正切到底是b/a还是a/b;导致做题出错..其实有一个很方便的记忆技巧;就是不管用正弦还是余弦来表示asinx+bcosx;的位置永远是你用来表示函数名称的系数..例如用正弦来表示asinx+bcosx;则反正切就是b/a即正弦的系数a 在分母..如果用余弦来表示;那反正切就要变成a/b余弦的系数b在分母..疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为-π/2;π/2 其实是在分类讨论a>0或b>0的时候;已经把辅助角的终边限定在一、四象限内了;此时辅助角的范围是2kπ-π/2;2kπ+π/2k是整数..而根据三角函数的周期性可知加上2kπ后函数值不变;况且在-π/2;π/2内辅助角可以利用反正切表示;使得公式更加简洁明了..提出者;原名李心兰;字竟芳;号秋纫;别号壬叔..出身于读书世家;其先祖可上溯至南宋末年汴梁今人李伯翼..生于1811年 1月22日;逝世于1882年12月9日;人;是中国近代着名的数学家、天文学家、力学家和;创立了二次的幂级数展开式..1就是现在的他研究各种;和对数函数的幂级数展开式;这是李善兰也是19 世纪中国数学界最重大的成就..1在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献..他的译书也为中国近代物理学的发展起了启蒙作用..同治七年;李善兰到北京担任同文馆天文﹑算学部长﹐执教达13年之久﹐为造就中国近代第一代科学人才作出了贡献.. 李善兰为近代科学在中国的传播和发展作出了开创性的贡献..继之后;李善兰成为清代数学史上的又一杰出代表..他一生翻译西方科技书籍甚多;将近代科学最主要的几门知识从天文学到植物细胞学的最新成果介绍传入中国;对促进近代科学的发展作出卓越贡献..1公式应用例1求sinθ/2cosθ+√5的最大值解:设sinθ/2cosθ+√5=k 则sinθ-2kcosθ=√5k∴√1+-2k2sinθ+α=√5k平方得k2=sin2θ+α/5-4sin2θ+α令t=sin2θ+α t∈0;1则k2=t/5-4t=1/5/t-4当t=1时有kmax=1辅助角公式可以解决一些sin与cos角之间的转化例2化简5sina-12cosa解:5sina-12cosa=135/13sina-12/13cosa=13cosbsina-sinbcosa=13sina-b其中;cosb=5/13;sinb=12/13例3π/6≤a≤π/4 ;求sin2a+2sinacosa+3cos2a的最小值解:令fa=sin2a+2sinacosa+3cos2a=1+sin2a+2cos2a=1+sin2a+1+cos2a公式=2+sin2a+cos2a=2+√2sin2a+π/4辅助角公式因为7π/12≤2a+π/4≤3π/4所以famin=f3π/4=2+√2sin3π/4=3。

常用的辅助角公式6个

常用的辅助角公式6个

常用的辅助角公式6个
1、正弦定理:a/sinA=b/sinB=c/sinC,它指出在任一三角形中,每条边长除以它对应的内角的正弦值,所得结果相等。

2、余弦定理:a^2=b^2+c^2-2bc·cosA,它表明在任一三角形中,每条边的平方和减去它们的两倍乘以夹角的余弦值,所得结果相等。

3、勾股定理:a^2+b^2=c^2,它指的是在直角三角形中,两条直角边的平方和等于斜边的平方。

4、比例定理:a/b=c/d,它指出在三角形内,四边按照比例分割,前两边之比等于后两边之比。

5、正多边形内角和定理:多边形内角和=(n-2)·180°,其中n表示多边形的边数。

6、垂直平分线定理:三角形的内角一定可以被其对应的垂直平分线切分为两个相等的角。

辅助角公式

辅助角公式

推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ〈π/2)终边上得点,则,因此就就是所求辅助角公式。

又因为,且-π/2〈φ<π/2,所以,于就是上述公式还可以写成该公式也可以用余弦来表示(针对b>0得情况),设点(b,a)为某一角θ(-π/2〈θ<π/2)终边上得点,则,因此同理,,上式化成若正弦与余弦得系数都就是负数,不妨写成f(x)=—asinx-bcosx,则再根据诱导公式得记忆很多人在利用辅助角公式时,经常忘记反正切到底就是b/a还就是a/b,导致做题出错、其实有一个很方便得记忆技巧,就就是不管用正弦还就是余弦来表示asinx+bcosx,分母得位置永远就是您用来表示函数名称得系数、例如用正弦来表示asinx+bcosx,则反正切就就是b/a(即正弦得系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦得系数b在分母)。

疑问为什么在推导辅助角公式得时候要令辅助角得取值范围为(-π/2,π/2)?其实就是在分类讨论a>0或b>0得时候,已经把辅助角得终边限定在一、四象限内了,此时辅助角得范围就是(2kπ—π/2,2kπ+π/2)(k就是整数)。

而根据三角函数得周期性可知加上2kπ后函数值不变,况且在(—π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了、提出者李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年京都汴梁(今河南开封)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,就是中国近代著名得数学家、天文学家、力学家与植物学家,创立了二次平方根得幂级数展开式、[1] (就就是现在得自然数幂求与公式)她研究各种三角函数,反三角函数与对数函数得幂级数展开式,这就是李善兰也就是19世纪中国数学界最重大得成就、[1]在19世纪把西方近代物理学知识翻译为中文得传播工作中﹐李善兰作出了重大贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于辅助角公式
一、什么是辅助角公式,为什么有辅助角公式。

先给出辅助角公式的内容:,
也可以根据需要化为。

而我认为辅助角公式的作用是
的函数的性质,如周期,奇偶,单调等等。

注1:为了叙述简便,下面的辅助角公式只用
一种形式,其余的形式可以同理。

注2:辅助角中的
二、辅助角公式怎么来的
我给辅助角公式的定位是两角正弦值公式的逆用,两角和的正弦公式做的是这个:
而辅助角公式做的是这个:
来看一个例子
例1:将化为的形式.
用公式可以知道:
而且可以知道.
的式子化成的形式,即我们只需要
找一个角使它的就行了。

但是这个无法满足将所有的
化为的形式,,所以我们要一个更普适的方法。

例2:将的形式.
就可以用
上面的方法了,看它的,也就是,这样
我们就有了平方和等于1
就行了,.
而上述方法写成公式就是,而,就是
结语:对于辅助角公式我更倾向于上述提到的那种方法,因为从这个方法可以体现辅助角公式的原理,也会让你用的更舒服,每个量是什么,为什么是都很清楚,同时我也希望同学们看到一些现成的公式可以自己去想一想为什么是这样的,在能力范围内试着刨一刨根,也许会有一些惊奇的发现。

相关文档
最新文档