第二章 一元一次不等式与一元一次不等式组
第二章 一元一次不等式和一元一次不等式组复习题---填空题(含解析)
北师大版数学八下第二章一元一次不等式与不等式组---填空题一.填空题1.(2018•锡山区校级四模)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是.2.(2018春•开封期末)若不等式(a﹣2)x<1,两边除以a﹣2后变成x<,则a的取值范围是.3.(2018•龙岩二模)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.4.(2018春•岳麓区校级期末)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b的解集是.5.(2018春•新野县期中)使不等式x2<|x|成立的x的取值范国是6.(2018春•徽县期末)若不等式组无解,则a b(用“<,>,≤,≥和=”填)7.(2018春•海港区期末)已知不等式组的解集是x≤1,则m的取值范围是.8.(2018春•襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于.9.(2018春•阜平县期末)若不等式组无解,则a的取值范围是.10.(2018秋•沙坪坝区校级月考)已知关于x的不等式﹣1≥的解集为x≤1,则a的值是.11.(2018秋•沙坪坝区校级月考)已知x=3是关于x的不等式3x﹣的解,则a的取值范围是.12.(2018秋•沙坪坝区校级月考)已知关于x的方程的解为非负数,则m的取值范围是.13.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.14.(2018秋•沙坪坝区校级月考)不等式3x﹣2≤5x+6的最大负整数解为.15.(2018春•南岗区校级期中)关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是.16.(2018春•微山县期末)不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是17.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.(2018春•南岗区校级期中)甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过元时,在甲商场购物花费少.19.(2018春•信丰县期末)商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.20.(2018春•咸安区期末)某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为元/千克.21.(2018春•东城区期末)小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买支冰激凌.22.(2018春•开江县期末)一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.23.(2018春•新野县期中)小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买支钢笔.24.(2018春•天心区校级期末)步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打折.25.(2018春•岚山区期末)在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是场.26.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.27.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为.28.(2018•兰州)不等式组的解集为29.(2018•盘锦)不等式组的解集是.30.(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是.31.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是.32.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.33.(2018•黑龙江)不等式组有3个整数解,则a的取值范围是.34.(2018•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是.35.(2018•包头)不等式组的非负整数解有个.36.(2018•黑龙江)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.37.(2018•安顺)不等式组的所有整数解的积为.38.(2018春•东明县期中)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有件玩具.39.(2018春•江岸区校级月考)安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为.40.(2018春•武城县期末)学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有间宿舍,名女生.41.(2018春•滦南县期末)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费元.42.(2018春•如皋市期末)运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是.43.(2018春•安庆期末)下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是.44.(2018春•三亚期末)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有棵.45.(2018春•南山区期末)如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个.根据以上信息可以判定一共有个儿童.46.(2018春•郾城区期末)把m个练习本分给n个学生,如果每人分3本,那么余8本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为.47.(2018春•滕州市期中)初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.48.(2018春•章丘区期末)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.北师大版数学八下第二章一元一次不等式与不等式组---填空题参考答案与试题解析一.填空题1.(2018•锡山区校级四模)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是x≤.【分析】通过找到临界值解决问题.【解答】解:由题意知,令3x﹣1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.2.(2018春•开封期末)若不等式(a﹣2)x<1,两边除以a﹣2后变成x<,则a的取值范围是a>2.【分析】根据不等式的性质得出不等式,求出不等式的解集即可.【解答】解:∵不等式(a﹣2)x<1,两边除以a﹣2后变成x<,∴a﹣2>0,∴a>2,故答案为:a>2.3.(2018•龙岩二模)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=9.【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a=3推出c的最小值与a的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;∴c=3时y最小,即y最小=12,即n=12;∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;∴a=9时y最大,即y最大=21,即m=21;∴m﹣n=21﹣12=9,故答案为:94.(2018春•岳麓区校级期末)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b的解集是x<.【分析】根据不等式的解集,先确定5a﹣2b与0、a与b的关系,代入不等式并求出不等式的解集.【解答】解:∵(5a﹣2b)x>3b﹣a的解集是x<,∴5a﹣2b<0∴x<∴=即24b﹣8a=5a﹣2b∴a=2b当a=2b时,∵5a﹣2b<0即8b<0,∴b<0当a=2b时,不等式6ax>7b可变形为:12bx>7b∴x<故答案为:x<.5.(2018春•新野县期中)使不等式x2<|x|成立的x的取值范国是﹣1<x<0或0<x<1【分析】由已知x2<|x|可以判断出|x|与1的大小关系,从而确定x的范围.【解答】解:∵不等式x2<|x|成立,而x2和|x|都是正数,∴|x2|<|x|,∴|x|×|x|<|x|,∴|x|<1且x≠0,∴﹣1<x<0或0<x<1.故答案是:﹣1<x<0或0<x<1.6.(2018春•徽县期末)若不等式组无解,则a≤b(用“<,>,≤,≥和=”填)【分析】根据“大大小小无解了”求解可得.【解答】解:∵不等式组无解,∴a≤b,故答案为:≤.7.(2018春•海港区期末)已知不等式组的解集是x≤1,则m的取值范围是m≥1.【分析】根据“同小取小”求解可得.【解答】解:∵不等式组的解集是x≤1,∴m≥1,故答案为:m≥1.8.(2018春•襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于2或3.【分析】根据已知不等式组和不等式组的解集得出关于a的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集是3<x<a+2,∴,解得:1<a≤3,∵a为整数,∴a=2或3,故答案为:2或3.9.(2018春•阜平县期末)若不等式组无解,则a的取值范围是a≤﹣3.【分析】不等式组中两不等式整理求出解集,根据不等式组无解,确定出a的范围即可.【解答】解:因为不等式组无解,所以a≤﹣3,故答案为:a≤﹣310.(2018秋•沙坪坝区校级月考)已知关于x的不等式﹣1≥的解集为x≤1,则a的值是2.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据不等式的解集得方程,求出a的值.【解答】解:不等式的两边都乘2,得x+5﹣2≥ax+2即(1﹣a)x≥﹣1,当1﹣a>0,即a<1时,x≥,∵原不等式的解集为x≤1,∴1﹣a<0,即a>1时,∴x≤∴=1,解得a=2故答案为:2.11.(2018秋•沙坪坝区校级月考)已知x=3是关于x的不等式3x﹣的解,则a的取值范围是a<4.【分析】将x=3代入不等式,再求a的取值范围.【解答】解:∵x=3是关于x的不等式3x﹣的解,∴9﹣>2,解得a<4.故a的取值范围是a<4.故答案为:a<4.12.(2018秋•沙坪坝区校级月考)已知关于x的方程的解为非负数,则m的取值范围是m≥.【分析】先求出方程的解,根据题意得出不等式,求出不等式的解集即可.【解答】解:解方程得:x=,∵方程的解为非负数,∴≥0,则4m﹣5≥0,∴4m≥5,∴m≥,故答案为:m≥.13.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.14.(2018秋•沙坪坝区校级月考)不等式3x﹣2≤5x+6的最大负整数解为x=﹣1.【分析】解不等式求出x的范围即可得.【解答】解:∵3x﹣2≤5x+6,∴3x﹣5x≤6+2,﹣2x≤8,则x≥﹣4,∴不等式的最大负整数解为x=﹣1,故答案为:x=﹣1.15.(2018春•南岗区校级期中)关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是6<m≤8.【分析】先表示出不等式3x﹣2m<x﹣m的解集,再由正整数解为1、2、3,可得出3<≤4,解出即可.【解答】解:解不等式得:x<,∵不等式的正整数解为1、2、3,∴3<≤4解得:6<m≤8,故答案为6<m≤8.16.(2018春•微山县期末)不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是4≤m<6【分析】首先确定不等式组的解集,先利用含m的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:解不等式2x﹣m≤0,得:x≤,∵不等式2x﹣m≤0的非负整数解只有3个,∴不等式得非负整数解为0、1、2,则2≤<3,解得:4≤m<6,故答案为:4≤m<6.17.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5518.(2018春•南岗区校级期中)甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过150元时,在甲商场购物花费少.【分析】设李红的累积购物金额为x元,根据“在甲商场购物实际花费<在乙商场购物实际花费”列不等式求解可得.【解答】解:设李红的累积购物金额为x元,根据题意得,100+0.8(x﹣100)<50+0.9(x﹣50),解得:x>150,答:当李红的累计购物金额超过150元时,在甲商场购物花费少.故答案为:150.19.(2018春•信丰县期末)商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为20元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.20.(2018春•咸安区期末)某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为5元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣0%)≥4.5,解得,x≥5,故为避免亏本,商家把售价应该至少定为每千克5元.故答案为:5.21.(2018春•东城区期末)小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买5支冰激凌.【分析】设他买了x支冰激凌,根据“矿泉水的总钱数+冰激凌的总钱数≤30”列不等式求解可得.【解答】解:设他买了x支冰激凌,根据题意,得:6×2+3.5x≤30,解得:x≤,∵x为整数,∴他最多能买5支冰激凌,故答案为:5.22.(2018春•开江县期末)一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.23.(2018春•新野县期中)小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买12支钢笔.【分析】首先设小聪买了x支钢笔,则买了(15﹣x)本笔记本,根据题意可得不等关系:购买钢笔的花费+购买笔记本的花费≤100元,根据不等关系列出不等式即可求解.【解答】解:设小聪买了x支钢笔,由题意得:7x+5(15﹣x)≤100,解得:x≤12.5,∵x为整数,∴x的最大值为12,故答案为:12.24.(2018春•天心区校级期末)步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打7折.【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x折,则售价是1200x元.根据利润率不低于5%就可以列出不等式,求出x的范围.【解答】解:设至多可打x折,则1200×﹣800≥800×5%,解得x≥7,即至多可打7折.故答案为:7.25.(2018春•岚山区期末)在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是7场.【分析】设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据总积分=3×获胜场数+1×平局场数结合总积分不少于21分,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论.【解答】解:设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据题意得:3x+(9﹣1﹣x)≥21,解得:x≥.∵x为整数,∴x的最小值为7.故答案为:7.26.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为﹣3<x<0.【分析】先把不等式x(kx+b)<0化为或,然后利用函数图象分别解两个不等式组.【解答】解:不等式x(kx+b)<0化为或,利用函数图象得为无解,的解集为﹣3<x<0,所以不等式x(kx+b)<0的解集为﹣3<x<0.故答案为﹣3<x<0.27.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.28.(2018•兰州)不等式组的解集为﹣1<x<3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.29.(2018•盘锦)不等式组的解集是0<x≤8.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0.8,∴不等式组的解集为0.8<x≤8,故答案为:0.8<x≤8.30.(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是a≥2.【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【解答】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.31.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是a≤﹣6.【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集,再判断即可.【解答】解:∵解不等式①得:x>﹣,解不等式②得:x>﹣a+2,∴不等式组的解集为x>﹣a+2,∵不等式x﹣5>0的解集是x>5,又∵不等式组的解集中的任意x,都能使不等式x﹣5>0成立,∴﹣a+2≥5,解得:a≤﹣6,故答案为:a≤﹣6.32.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.33.(2018•黑龙江)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.34.(2018•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是3≤a<4.【分析】根据不等式的正整数解为1,2,3,即可确定出正整数a的取值范围.【解答】解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1、2、3,则3≤a<4,故答案为:3≤a<4.35.(2018•包头)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.36.(2018•黑龙江)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是﹣3≤a<﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.37.(2018•安顺)不等式组的所有整数解的积为0.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.38.(2018春•东明县期中)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有25件玩具.【分析】设小朋友的人数为x人,玩具数为n件,则n=3x+4,0<n﹣4(x﹣1)<3,且n,x都是正整数,将n=3x+4代入0<n﹣4(x﹣1)<3求出x、n的值,当求出x的值后,求n的值时,根据实数的运算法则求值.【解答】解:设小朋友的人数为x人,玩具数为n件,由题意可得:n=3x+4,0<n﹣4(x﹣1)<3,即:0<3x+4﹣4(x﹣1)<3,解得5<x<8,由于x的是正整数,所以x的取值为6人或7人,当x=6时,n=3x+4=22件;当x=7时,n=3x+4=25件.故最多有25件玩具.故答案为:25.39.(2018春•江岸区校级月考)安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为8或9或10.【分析】设宿舍有x间,则学生有(4x+15)人,根据题意条件建立不等式组求出x的值即可.【解答】解:设宿舍有x间,则学生人数为(4x+15)人根据题意得:0<(4x+15)﹣6(x﹣1)<6解得:<x<且x为正整数∴x=8或9或10故答案为8或9或1040.(2018春•武城县期末)学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有5间宿舍,30名女生.【分析】根据题意可得:女生人数=5+所有宿舍人数,可列方程.根据有一间房有人住但不满可列不等式.【解答】解:设有x间宿舍,有y名女生根据题意得:∴<x<7且x为正整数∴x=5或6∴y=30或35且该班女生少于35人∴x=5,y=30故答案为:5,3041.(2018春•滦南县期末)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费6元.【分析】根据题意可知,早上9:00到当天11:30一共是2.5个小时,则收费为1+2+3=6元.【解答】解:由题意得:11:30﹣9:00=2.5小时,故第一个小时为1元,第二个小时为2元,第三个不足1小时按1小时计算应该交3元,故小明应付租车费为:1+2+3=6元,故答案为:6.42.(2018春•如皋市期末)运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是<x≤8.【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【解答】解:由题意得,解不等式①得x≤8,解不等式②得,x>,则x的取值范围是<x≤8.故答案为:<x≤8.43.(2018春•安庆期末)下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是4≤x<11.【分析】输入x,经过第一次运算,结果为3x﹣1<32,经过第二次运算,结果为3(3x﹣1)﹣1≥32,两个不等式联立,形成一元一次不等式组求解,即可得到答案.【解答】解:根据题意得:,解得:4≤x<11,即输入的x的取值范围为:4≤x<11,故答案为:4≤x<11.44.(2018春•三亚期末)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有121棵.【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【解答】解:设共有x人,则有4x+37棵树,由题意得:,解之得:20<x<,∴x=21,∴4x+37=121 (棵),答:这批树苗共有121棵,故答案为:12145.(2018春•南山区期末)如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个.根据以上信息可以判定一共有7个儿童.【分析】根据题意,儿童和橘子都为整数,列出不等式,从而求解出多少儿童.【解答】解:设共有x个儿童,则共有(4x+9)个橘子,则0<4x+9﹣6(x﹣1)<3∴6<x<7.5所以共有7个儿童,故答案为:746.(2018春•郾城区期末)把m个练习本分给n个学生,如果每人分3本,那么余8本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为5或6.【分析】由每人分3本、余8本知练习本的总数为3n+8,再利用“0<练习本总数﹣每人5本时前(n ﹣1)人练习本总数<5”列出关于n的不等式组,解之可得.【解答】解:如果每人分3本、余8本,那么练习本的总数为3n+8,根据题意,得:,解得:4<n<6.5,∵n为整数,∴n=5或6,故答案为:5或6.47.(2018春•滕州市期中)初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为至少6人.【分析】首先依据题意得出不等关系即平均每人分摊的钱不足1.5元,由此列出不等式,进而解决问题.【解答】解:设参加合影的同学人数为x人,则有5+0.5x<1.5x,解得x>5,。
第2章 一元一次不等式与一元一次不等式组 单元检测(学生版)
第2章一元一次不等式与一元一次不等式组单元检测一、单选题1.在平面直角坐标系中,点M(1+m,2m﹣3)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.−a>−b C.a+2>b+2D.2a>2b 3.将不等式组x>−2x≤3的解集在数轴上表示出来,正确的是()A.B.C.D.4.已知a<b,下列式子不成立...的是()A.a+2021<b+2021B.a-2021<b-2021C.-2021a<-2021b D.a2021<b20215.点P(-1,2)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A.6人B.5人C.6人或5人D.4人7.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<08.若数m使关于x的不等式组−1≤3≤−2有解且至多有3个整数解,且使关于y的分式方程3y2y−4= m−2y−2+12的解满足-3≤y≤4,则满足条件的所有整数m的个数是()A.6B.5C.4D.39.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t(℃)的变化范围是()A.t>21B.t<32C.21<t<32D.21≤t≤3210.下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b二、填空题11.在函数y=3x−2中,自变量x的取值范围是.12.根据图象,不等式kx>﹣x+3的解集是.13.若a<b,则a-b0;若a-b>a,则b0.14.已知x=3是方程x−a2−2=x−1的解,那么不等式(2-a5)x<13的解集是. 15.若代数式3x−15的值不小于代数式1−5x6的值,则x的取值范围是. 16.已知3x+2y=5k4x+y=2k+1且y﹣x<2,则k的取值范围是.17.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是元.三、计算题18.(1)解方程组:3x−2y=49x−5y=13;(2)解不等式2x+14≤x−13+1,并把解集在数轴上表示出来,并写出它的最大整数解.四、解答题19.解不等式组:2(x−1)≤3x+1x3<x+14,并把解集在数轴上表示出来.五、综合题21.振华书店准备购进甲、乙两种图书进行销售,若购进40本甲种图书和30本乙种图书共需1700元:若购进60本甲种图书和20本乙种图书共需1800元,(1)求甲、乙两种图书每本进价各多少元;(2)该书店购进甲、乙两种图书共120本进行销售,且每本甲种图书的售价为25元,每本乙种图书的售价为40元,如果使本次购进图书全部售出后所得利润不低于950元,那么该书店至少需要购进乙种图书多少本?22.为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如下表:产品展板宣传册横幅制作一件产品所需时间(小时)11512制作一件产品所获利润(元)20310(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作.求制作三种产品总量的最小值.23.一次函数CD:y=−kx+b与一次函数AB:y=2kx+2b,都经过点B(-1,4).(1)求两条直线的解析式;(2)求四边形ABDO的面积.24.如图,直线AB与x轴交于点B(−3,0),与y轴交于点C,点A的坐标为(1,4),过点A作AD⊥x轴,垂足为点D.点E与点B关于y轴对称,直线CE交AD于点F,连接CD.(1)求直线AB的解析式:(2)点Q为直线AB上一点,当△OBQ与△CDE的面积相等时,求点Q的坐标;(3)若点P是坐标平面内一点,请直接写出△CDF与△PAC全等时点P的坐标.25.对x,y定义一种新运算F(x,y)=(ax+by)(x+3y)(中a,b均为非零常数).例如:F(1,1)= 4a+4b;已知F(3,1)=0,F(0,1)=−9.(1)求a,b的值;(2)若关于F的不等式组F(3t+1,t)≥kF(6t,1−2t)<27恰好只有1个整数解,求k的取值范围.。
第二章一元一次不等式与一元一次不等式组综合测试题含答案
第二章 一元一次不等式与一元一次不等式组 综合测试题 一、选择题(每小题3分,共30分)1.若关于x 的不等式组的解集表示在数轴上如图1所示,则这个不等式组的解集是( )A. x ≤2B. x >1C. 1≤x <2D. 1<x ≤22.已知实数a ,b ,若a >b ,则下列结论正确的是( )A. a -5<b -5B. 2<2C. 3a <3bD. 3a >3b 3.不等式4-3x ≥2x -6的非负整数解有( )A. 1个B. 2个C. 3个D. 4个4.关于x 的不等式-≥1的解集如图2所示,则a 的值为( )A. -1B. 0C. 1D. 25.若不等式-2>0的解集为x <-2,则关于y 的方程2=0的解为( )A. y =-1B. y =1C. y =-2D. y =2图1 0 图-3 32 1 -2 -1 06.若>0,且b<0,则a,b,-a,-b的大小关系为()A. -a<-b<b<aB. -a<b<-b<aC. -a<b<a<-bD. b<-a<-b<a7.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在8.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 ,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 30B. 160C. 26D. 789.图3是测量一颗玻璃球体积的过程:①将300 3的水倒进一个容量为500 3的杯子中;②将四颗相同的玻璃球放入水中,结果水没有满;③再将一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20 3以上,30 3以下B. 30 3以上,40 3以下C. 40 3以上,50 3以下D. 50 3以上,60 3以下图Oxy-2y=ny=-4图10.如图4,直线y =-与y =4n (n ≠0)的交点的横坐标为-2,则关于x 的不等式->4n >0的整数解为( )A. -1B. -5C. -4D. -3二、填空题(每小题4分,共32分)11.写出一个解集为x ≥1的一元一次不等式___.12.如图5,已知函数y =2与函数y =-3的图象交于点P ,则不等式-3>2的解集是___.图4 O x y P -6 y =-3y =213.如果a<b ,那么3-23-2b.14.不等式13(x -m )>3-m 的解集为x >1,则m 的值为___.15.某市组织开展“吸烟有害健康”的知识竞赛,共25道题,答对一题得4分,不答或答错扣2分,得分不低于60分获奖,那么获奖至少需要答对道题.16.若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩,无解,则a 的取值范围是__.17.定义新运算:对于任意实数a ,b 都有a △b =-a -1,例如:2△4=24-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x 的值大于5而小于9,那么x 的取值范围是___. 18.按下列程序进行运算(如图6):规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行___次才停止;若运算进行了5次才停止,则x 的取值范围是___.三、解答题(共58分)19.(6分)解不等式213x --926x +≤1,并把解集表示在数轴上. 图是 否 输入 x 乘以3 减去2停止 大于24420.(8分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥,>,并写出不等式组的整数解. 21.(10分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每只22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少只球拍?22.(10分)已知实数a 为常数且a ≠3,解不等式组()233112022x x a x -+≥-⎧⎪⎨-+<⎪⎩,①,②并根据a 的取值情况写出其解集.23.(12分)已知某工厂计划用库存的302 m 2木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x 套,生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)求总费用y 最小时的值.24.(12分)阅读下面的材料,回答问题:已知(x -2)(6+2x )>0,求x 的取值范围.解:根据题意,得20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<. 分别解这两个不等式组,得x >2或x <-3.故当x >2或x <-3时,(x -2)(6+2x )>0.(1)由(x -2)(6+2x )>0,得出不等式组20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<,体现了 思想.(2)试利用上述方法,求不等式(x -3)(1-x )<0的解集.附加题(15分,不计入总分)25.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:(1)[-4.5]=___,<3.5>=___;(2)若[x ]=2,则x 的取值范围是___;若<y >=-1,则y 的取值范围是___.(3)已知x ,y 满足方程组[][]3233 6.x y x y ⎧+=⎪⎨-=-⎪⎩,求x ,y 的取值范围.参考答案一、1. D 2. D 3. C 4. D 5. D 6. B 7. A 8. D 9. C 10. D二、11. 答案不唯一,如2≥3 12. x <4 13. > 14. 4 15. 19 16. a ≥1 17. 72<x <11218. 4 2<x ≤4 提示:通过计算知,经过4次运算后结果大于244. 若运算进行了5次才停止,则有第一次结果为3x -2,第二次结果为3(3x -2)-2=9x -8,第三次结果为3(9x -8)-2=27x -26,第四次结果为3(27x -26)-2=81x -80,第五次结果为3(81x -80)-2=243x -242.由题意,得8180244243242244.x x -≤⎧⎨->⎩,解得2<x ≤4.三、19. 不等式的解集为x ≥-2,在数轴上表示如图所示:20. 不等式组的解集是-1≤x <2,不等式组的整数解是-1,0,1.21. 解:设购买球拍x 只.根据题意,得1.5×20+22x ≤200,解得x ≤8711. 由于x 取整数,故x 的最大值为7.----0 1 2答:孔明应该买7只球拍.22. 解:解不等式①,得x ≤3;解不等式②,得x <a .因为a 是不等于3的常数,所以当a >3时,不等式组的解集为x ≤3;当a <3时,不等式组的解集为x <a .23. 解:(1)由题意,得生产B 型桌椅(500-x )套,则y =(100+2)(120+4)(500-x )=-2262 000.又()()2350012500.50.7500302x x x x +-≥⎧⎪⎨+-≤⎪⎩,,解得240≤x ≤250,所以y =-2262 000(240≤x ≤250).(2)因为-22<0,所以y 随x 的增大而减小.所以当x =250时,总费用y 最小,最小值为56 500元.24. 解:(1)转化(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x>3或x<1.所以不等式(x-3)(1-x)<0的解集是x>3或x<1.25. 解:(1)-5 4(2)2≤x <3 -2≤y <-1提示:因为 [x ]=2表示不大于x 的最大整数是2,所以[2]=2,[3]=3.所以x 可以等于2,不可以等于3,即2≤x <3;因为<y >=-1表示大于y 的最小整数是-1,所以<-2>=-1,<-1>=0.所以y 可以等于-2,不可以等于-1,即-2≤y <-1.(3)解方程组[][]32336x y x y ⎧+=⎪⎨-=-⎪⎩,,得[]13x y ⎧=-⎪⎨=⎪⎩,.因为[x]=-1表示不大于x的最大整数是-1,所以[-1]=-1,[0]=0.所以x可以等于-1,不可以等于0,即-1≤x<0;因为<y>=3表示大于y的最小整数是3,所以<2>=3,<3>=4.所以y可以等于2,不可以等于3,即2≤y<3.。
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习
第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)
巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,
甲
乙
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号
≤
不大于, 小于或 不超过 等于
大于或等于 号
≥
不小于, 大于或
至少
等于
不等号
≠
不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象
八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
第二章 一元一次不等式与一元一次不等式组测试题(含答案)
第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。
第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册
基于标准的教学设计北师大版八年级(下册)第二章一元一次不等式与一元一次不等式组《回顾与思考》第二章一元一次不等式与一元一次不等式组回顾与思考一、课标描述(摘要)及其解读2011版新课程标准要求:1.结合具体问题,了解不等式的意义,探索不等式的基本性质.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个元一次不等式组成的不等式组的解集.3.能根据具体问题中的数量关系,列出一元一次不等式,解决具体问题.课标对于“了解”的要求是:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.课标对于“理解,会”的要求是:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.课标对于“能”的要求是:在理解的基础之,把对象用于新的情境.课标对于“体会”的要求是:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验.二、教材分析在小学数学教材中,已经呈现了一些关于不等关系的相关知识,学生知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达;学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.三、学情分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.四、学习目标学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力. 本节课的具体学习目标是:1.通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.2.通过基础过关题组的训练,进一步夯实基础,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式函数、方程之间的联系.3.通过深度研讨环节,能够举一反三,灵活应用.4.通过实际应用,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.五、学习重难点重点:梳理本章内容,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.难点:进一步体会数形结合思想及类比的思想方法,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.六、评价设计根据课标要求:评价的主要目的的为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学. 所以,本节课的教学评价主要通过以下环节进行:1.通过小组讨论交流展示本章思维导图的过程,引领学生进行对话交流,在鼓励的基础上纠正偏差,并对其进行定性的评价;2.通过“基础过关”、“当堂检测”来检验教学效果,并在讲评中,肯定优点,指出不足;3.通过深度研讨环节,使学生能够在交流中,思想相互碰撞,思维得到提升;4.通过自我评价表和组长评价表,对本节课学习过程进行过程性评价;通过作业,反馈信息,再次对本节课做出评价,以便查缺补漏.七、学习过程依据“目标导引教学”的理念和“教、学、评一致性”的原则,具体流程如下:学习目标学习评价学习过程一、课前准备、交流复习目标1:通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.1.通过小组分享,制作思考评价学生思路是否清楚,结构是否合理;2.通过提问,检测学生是否能快速的回答这些问题.1.学生通过课前准备,以小组为单位制作思维导图,并且分享制作思路,对本章内容进行梳理并且再一次画出本章的结构图.2.教师引导,总结本章的核心数学思想以及做题方法,并提出如下问题(1)不等式有哪些基本性质?它与等式的基本性质有什么异同?(2)接一元一次不等式与解一元一次方程有什么异同?(3)举例说明在数轴上如何表示一元一次不等式(组)的解集?(4)举例说明不等式、函数、方程之间的关系.设计意图学生通过对本章的知识进行整理,建构本章的知识体系. 通过画本章知识联系图培养学生归纳整理、对比分析的能力,学生可以互相进行比较、补充,养成交流与合作的习惯.二、基础过关、大展身手目标2:通过基础过关题组的训练,进一步夯实基础,掌握不等式的基通过独立完成、教师提问、自我评价的方式检测学生的基础过关题1.给出下面6个式子:①3>0;②x<-2;③4x+3y≠0;④x=3;⑤x-1;⑥x+2≤3. 其中不等式有()A.2个B.3个C.4个D.5个2.有下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;本性质,理解不等式(组)的解及解集的含义,会解简单的一元次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.组,进一步查漏补缺.④若a>b,则ma<mb. 其中正确的有()A.1个B.2个C.3个D.4个3.若x>y,且(a-3)x<(a-3)y,则a的值可能是()A.0B.3C.4D.5归纳总结:不等式的性质.4.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④x+1<7.A.1个B.2个C.3个D.4个5.解不等式113xx+-<.归纳总结:解一元一次不等式的步骤.6.解不等式组3(2)42113x xxx--≥-⎧⎪⎨+-<⎪⎩,并在数轴上表示不等式的解集.总结归纳:解一元一次不等式组的步骤以及在数轴上表示其解集.7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.若关于x的不等式mx-1>0(m≠0)的解集是x>1,则直线y=mx-1与x轴的交点坐标是 .9.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x>kx+2的解集为 .总结归纳:一次函数与一元一次不等式的关系.设计意图要建高楼大夏必须先打好基础,通过这个环节的设计,对于不等式的基本性质、元一次不等式的解法以及用数轴表示其解集起到了很好的检测目的,然后让学生先独自完成上述各小题的解答,然后教师提问,让学生自己来作评判,找出存在的问题. 对于做得比较好的同学,教师给予鼓励,使学生对本章知识内容有进一步的理解和掌握.三、深度研讨、再度提高目标3:通过深度研讨环节,能够举反三,灵活应用.通过独立思考、小组探讨、小组分享的方式评价学生对较复杂的一元一次不等式(组)——含参的不等式的问题解决.问题四:含参数的不等式相关问题.10.已知不等式组+21x m nx m+⎧⎨-<⎩>的解集为-1<x<3,求(m+n)2018的值.11.若不等式x-2≤m的正整数解只有3个,则m的取值围为 .12.已知不等式组2xx a⎧⎨<⎩>.(1)如果此不等式组无解,则a的取值范围;(2)如果此不等式组有解,则a的取值范围.数学思想:.设计意图通过小组讨论,学生自己总结做题方法,更利于学生理解和掌握一元一次不等式(组)的与应用,同时也培养和提高了学生的总结归纳能力和抽象思维能力.也再次感受到数形结合的数学思想.四、建构模型、实际应用目标4:通过实际应用,能够建立不等模型,能够用一元次不等式解决一些简单的实际问题.通过独立思考,同学分享评价学生是否能够从实际问题中建立不等模型,模型建立后,能否找到符合实13.小丽去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小丽带了2元钱,可以买几支铅笔几块橡皮?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元时,超出部分按原价的8折付款;在乙超市累计购买商品超过250元时,超出部分按原价的85际情况的解. 折付款,设一顾客预计购物x(x>300)元. (1)分别写出该顾客在甲、乙两家超市购物所付的费用y甲(元),y乙(元)与x之间的函数关系式;(2)该顾客到哪家超市购物更优惠?设计意图本环节通过实际问题的设置,进一步体会不等式是来源于生活,又服务于生活,能够用不等式解决实际问题,并进一步渗透数学建模的思想. 让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望.五、归纳总结、反馈评价培养归纳能力,养成反思习惯.并检测目标1、2、3、4的学习效果.通过学生能否完整清晰地说出本节课学习的收获和困惑,了解学生理解知识和情感态度方面的情况.通过“当堂检测”,评价学生的知识技能达标情况.总结归纳说说本节课又学习到了哪些数学知识?体会到了哪些数学思想与方法?还有什么困惑吗?当堂检测:1.下列各式是一元一次不等式的是()A.2x-4>5y+1B.3>-5C.4x+1>0D.4y+3<1y2.若a>b,则下列式子正确的是()A. 1122a b< B.-5a>-5bC. a-3>b-3D.4-a>4-b3.已知关于x的不等式组x ax⎧⎨⎩>>b,其中a、b在数轴上对应点如图所示,则这个不等式组的解集为()A.x>bB.x>aC.b<x<aD.无解4.不等式3x+12≥0的所有正整数解的和为 .5.如图,直线y=ax+b经过A(-2,-5)、B(3,0)两点,那么,不等式ax+b<0的解集是.6.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能购买多少支钢笔?通过归纳和总结,让学生学会提炼和阐述自己的认知,养成善于反思的习惯. 并通过反馈检测样题,评价知识技能的达成度,确保课堂实效性.在学习指导书的最后附一份个人评价表,对本节课学习过程进行过程性评价.1.必做:完成课本61页复习题第2、4、7、9、12题(AB组全做)2.选做:完成课本63页复习题第13、15题(B组做)八、板书设计第二章一元一次不等式与一元一次不等式组知识结构多媒体核心思想:类比思想数形结合数学建模1.本节课的重点在让每个学生建构本章知识体系. 教师让学生充分思考、练习和交流,同时充分暴露出存在的问题,达到有效复习的目的.2.华罗庚教授说:读书要从薄到厚,又从厚到薄. 复习重在从厚到薄.每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用思维导图、知识结构图、习题组等措施复习是有效的,本节课在这方面做了一些尝试.3.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率.4.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的.。
第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?
初中数学第二章一元一次不等式与一元一次不等式组复习
第二章一元一次不等式与一元一次不等式组一、知识结构脉络1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。
6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、知识点梳理1、不等式的基本性质(如下表)2.运算性质(1)若a>b,c>d,则a 十c>b 十d(同向不等式相加)(2)若a>b,c<d,则a 一c>b 一d(异向不等式相减)(3)若a>b>0,c>d>0,ac>bd(4)若a>b>0,0<c<d,则db c a >(5)(5)若a>b>0,则ba 11<性质文字叙述数学语言(I)不等式的两边加(或减)同一个数或(式子),不等号的方向不变若a>b 则a 土c>b 土c (II)不等式的两边乘以(或除以)同一个正数,不等号的方向不变若a>b 且c>0则ac>bc 或c b c a >(III)不等式的两边乘以(或除以)同一个负数,不等号的方向改变若a>b 且c<0则ac<bc 或cb c a <(6)若a>b>0,n 为正整数,则nn b a >(7)(7)若a>b>0,n 为不小于2的整数则n n ba >3、解不等式的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)未知数的系数化为1。
要注意把系数化为1时,如果不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;如果不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变;解不等式要根据题目的要求和特点合理灵活地选择解题步骤。
第2章《一元一次不等式与一元一次不等式组》知识复习2021年八年级北师大版下册数学作业题(含答案)
2021年北师大版八年级数学作业题第2章《一元一次不等式与一元一次不等式组》知识复习一.选择题1.不等式x>5的解集在数轴上表示正确的是()A.B.C.D.2.已知a>b,c≠0,则下列关系一定成立的是()A.c+a>c+b B.C.c﹣a>c﹣b D.ac<bc3.在平面直角坐标系中,若点A(x+3,﹣4)在第四象限,则x的取值范围是()A.﹣3<x<6B.x<﹣3C.x>6D.3<x<64.如果不等式组有解,则m的范围()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣15.不等式组的最小整数解为()A.2B.1C.﹣1D.﹣26.若不等式(m+2)x>m+2的解集为x<1,则m满足的条件是()A.m>0B.m>﹣2C.m<﹣2D.m<27.现用甲、乙两种运输汽车共10辆,将46吨抗旱物资一次性运往某地区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排()A.7辆B.6辆C.5辆D.4辆8.某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125二.填空题9.用不等式表示“x的5倍与2的差为负数”.10.若x<y,试比较大小2x﹣62y﹣6(用“>”、“<”、“=”填空).11.关于x的不等式x﹣1>的解集是.12.不等式4(x﹣1)<3x﹣2的正整数解为.13.已知关于x,y的二元一次方程组满足x﹣y>0,则a的取值范围是.14.在平面直角坐标系中,一次函数y=kx和y=﹣x+b的图象如图所示,则不等式kx>﹣x+b的解集为.15.陈老师购了一批笔记本,用于奖励期中考试成绩优异和进步快的同学,同学们想知道笔记本的本数,陈老师让他们猜.陈茜说:“至少13本.”江涵说:“至多11本.”江月说:“至多8本.”陈老师说:“你们三个人都说错了”.则这批笔记本有本.16.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第四象限;③不等式ax﹣d ≥cx﹣b的解集是x≥4;④4(a﹣c)=d﹣b.其中正确的是.三.解答题17.解下列不等式或不等式组,并把解集在数轴上表示出来:(1)≥1﹣.(2).18.解不等式组,请按下列步骤完成解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.19.求不等式组的非负整数解.20.关于x,y的二元一次方程组的解满足不等式x+2y>5,求a的取值范围.21.若关于x,y的二元一次方程组.(1)当y=k时,求k的值;(2)若方程组的解x与y满足条件0≤x+y≤2,求整数k的值.22.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,其单价分别为24元,18元,学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张.23.已知关于x,y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;(3)在(2)的条件下化简|m﹣2|+|3﹣m|.24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出在①的条件下网店哪种方案获利最多?是多少?参考答案一.选择题1.解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.2.解:A、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确;B、当c>0时,不等式a>b的两边同时除以正数c,则不等号的方向不发生改变,>,故本选项错误;C、在不等式a>b的两边同时乘以负数﹣1,则不等号的方向发生改变,即﹣a<﹣b;然后再在不等式的两边同时加上c,不等号的方向不变,即c﹣a<c﹣b,故本选项错误;D、当c>0时,不等式a>b的两边同时乘以正数c,则不等号的方向不发生改变,即ac>bc.故本选项错误;故选:A.3.解:∵点A(x+3,﹣4)在第四象限,∴,解得﹣3<x<6.故选:A.4.解:如图,∵不等式组有解,∴m>﹣1,故选:B.5.解:,解不等式①,得x>﹣解不等式②,得x≤4,所以不等式组的解集是﹣<x≤4,所以不等式组的最小整数解是﹣2,故选:D.6.解:∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:C.7.解:设甲种运输车安排x辆,乙种运输车安排(10﹣x)辆,根据题意得5x+4(10﹣x),解得:x≥6,∴甲种运输车至少安排6辆车,故选:B.8.解:由题意可得,10x﹣5(20﹣x)>125,故选:D.二.填空题9.解:x的5倍与2的差小于0,即:5x﹣2<0.故答案为:5x﹣2<0.10.解:∵x<y,∴2x<2y,∴2x﹣6<2y﹣6.故答案为:<.11.解:移项,得:x>1+,合并同类项,得:x>,系数化为1,得:x>,故答案为:x>.12.解:不等式4(x﹣1)<3x﹣2的解集为x<2,故不等式4(x﹣1)<3x﹣2的正整数解为1.故答案为1.13.解:,①﹣②,得x﹣y=3a﹣3,∵x﹣y>0,∴3a﹣3>0,解得a>1,故答案为:a>1.14.解:如图所示:∵一次函数y=kx和y=﹣x+b的图象交点为(1,2),∴关于x的一元一次不等式kx>﹣x+b的解集是:x>1.故答案为:x>1.15.解:设这批笔记本有x本,依题意得:,解得:11<x<13.又∵x为正整数,∴x=12.故答案为:12.16.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax+b来说,y随x的增大而减小,故①错误;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到4(a﹣c)=d﹣b,故④正确;故答案为②③④.三.解答题17.解:(1)去分母,得:2(x+8)≥4﹣x,去括号,得:2x+16≥4﹣x,移项,得:2x+x≥4﹣16,合并同类项,得:3x≥﹣12,系数化为1,得:x≥﹣4,将不等式组的解集表示在数轴上如下:(2)解不等式2x﹣1<x+1,得:x<2,解不等式x+8<4x﹣1,得:x>3,所以不等式组无解,将不等式组的解集表示在数轴上如下:18.解:,(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为x>3,故答案为x≥﹣1,x>3,x>3.19.解:解不等式2x﹣6≤0,得:x≤3,解不等式(x﹣4)+3>0,得:x>﹣2,则不等式组的解集为﹣2<x≤3,所以不等式组的非负整数解为0、1、2、3.20.解:,②﹣①得:x+2y=4a﹣3,∵x+2y>5,∴4a﹣3>5,解得a>2.故a的取值范围为a>2.21.解:(1),①×2﹣②,得:3x=6k,解得x=2k,将x=2k代入①,得:4k+y=3k﹣1,解得y=﹣k﹣1,∵y=k,∴﹣k﹣1=k,解得k=﹣;(2)①+②,得:3x+3y=3k﹣3,∴x+y=k﹣1,∵0≤x+y≤2,∴0≤k﹣1≤2,解得1≤k≤3,所以整数k的值为1、2、3.22.解:设购买甲种票x张,则购买乙种票(36﹣x)张,依题意得:24x+18(36﹣x)≤750,解得:x≤17.答:甲种票最多买17张.23.解:(1),由①+②,得2x=4m﹣8,解得x=2m﹣4,由①﹣②,得2y=﹣2m﹣4,解得y=﹣m﹣2,所以原方程组的解是;(2)∵x为非正数,y为负数,∴x≤0,y<0,即,解得﹣2<m≤2;(3)∵﹣2<m≤2,∴|m﹣2|+|3﹣m|=2﹣m+3﹣m=5﹣2m.24.解:(1)设该网店甲种羽毛球每筒的售价是x元,乙种种羽毛球每筒的售价是y元,依题意得:,解得:.答:该网店甲种羽毛球每筒的售价是60元,乙种种羽毛球每筒的售价是45元.(2)①设购进甲种羽毛球m筒,则购进乙种羽毛球(200﹣m)筒,依题意得:,解得:75<m≤78.又∵m为正整数,∴m可以为76,77,78,∴该网店有3种进货方案,方案1:购进76筒甲种羽毛球,124筒乙种羽毛球;方案2:购进77筒甲种羽毛球,123筒乙种羽毛球;方案3:购进78筒甲种羽毛球,122筒乙种羽毛球.②选择进货方案1可获得的利润为(60﹣50)×76+(45﹣40)×124=1380(元);选择进货方案2可获得的利润为(60﹣50)×77+(45﹣40)×123=1385(元);选择进货方案3可获得的利润为(60﹣50)×78+(45﹣40)×122=1390(元).∵1380<1385<1390,∴在①的条件下网店选择方案3获利最多,最多利润是1390元.。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)
(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
八年级数学下册第二章一元一次不等式与一元一次不等式组一元一次不等式北师大版
2.4.1一元一次不等式学习目标1.理解并掌握一元一次不等式的定义;2.会解简单的一元一次不等式,并能在数轴上表示其解集.自主导学温故知新1、解一元一次方程:2、将下列不等式的解集分别表示在数轴上:(1)(2)知识点一:一元一次不等式1、观察下列不等式:(1) 6+3x>30 (2) x+17<5x (3) x≥5 (4)这些不等式有哪些共同点?一元一次不等式的定义:尝试练习1.下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-<4 C.D.4x-3<2y-7知识点二:解一元一次不等式(仔细研读课本P46-47完成下列题目)解不等式,并把它的解集表示在数轴上.解:去分母,得去括号,得移项,得合并同类项,得系数化为1,得这个不等式的解集在数轴上的表示如图所示:尝试练习:解下列不等式,并把它们的解集表示在数轴上(1) (2)合作探究1.若是关于x的一元一次不等式,则该不等式的解集为.2、求不等式4(4x+1)24的正整数解。
巩固作业1.下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-24<4 C.D.4x-3<2y-7 2.与不等式有相同解集的是()A.3x-3<(4x+1)-1 B.3(x-3)<2(4x+1)-1 C.2(x-3)<3(2x+1)-6 D.3x-9<4x-43.不等式的解集是()A.x可取任何数 B.全体正数 C.全体负数 D.无解4.不等式2x-1≥3x一5的正整数解的个数为 ( )A.1 B.2 C.3 D.45.不等式与的解集相同,则.6、解下列不等式,并把它们的解集分别表示在数轴上;(1) 5x<20 (2) <1(3) x-22(x+1) (4) <学习目标1.进一步熟练掌握解一元一次不等式;2.会利用一元一次不等式解决简单的应用题.自主导学温故知新解下列不等式,并把它们的解集分别表示在数轴上。
(1)(2)利用一元一次不等式解决简单的实际问题1、某种商品进价为200元,标价300元出售,商场规定可以打折销售,但其利润不能少于5﹪。
第二章 一元一次不等式和一元一次不等式组(解析版)
2020-2021学年八年级数学下册高分数拔尖提优单元密卷(北师大版)参考答案与试题解析考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共40分)1.(本题4分)不等式x <-2的解集在数轴上表示为( )A .B .C .D .【答案】D【解析】A 选项中,数轴上表达的解集是:2x ≥-,所以不能选A ;B 选项中,数轴上表达的解集是:2x >-,所以不能选B ;C 选项中,数轴上表达的解集是:2x -≤,所以不能选C ;D 选项中,数轴上表达的解集是:2x <-,所以可以选D.故选D.2.(本题4分)已知a <3,则不等式(a ﹣3)x <a ﹣3的解集是() A .x >1 B .x <1 C .x >﹣1D .x <﹣1【答案】A【分析】因为a <3,所以a ﹣3<0.两边同时除以a ﹣3得:x >1.故选A.3.(本题4分)x 与3的和的一半是负数,用不等式表示为( )A .12x +3>0 B .12x +3<0 C .12(x +3)<0 D .12(x +3)>0 【答案】C【解析】 “x 与3的和的一半是负数”用不等式表示为:1(3)02x +<. 故选C.4.(本题4分)如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( )A .x <3B .x >3C .x <1D .x >1【答案】A【解析】 由图可知一次函数过点(2,0)和点(0,-4),将两点坐标分别代入y =kx +b ,得02,4,k b b =+⎧⎨-=⎩解得2,4,k b =⎧⎨=-⎩ 故一次函数解析式为y=2x -4,当y<2时,2x -4<2,解得x<3.故选A.5.(本题4分)如图,直线y x b =+与直线6y kx =+交于点(3,5)P ,则关于x 的不等式6x b kx +>+的解集是( ).A .35x <<B .3x <C .3x >D .3x <或5x >【答案】C【解析】 由图像可得,当x >3时,x +b >kx +6.故选C.6.(本题4分)下列变形中不正确的是( )A .由a b >得b a <B .由a b ->-得b a >C .若a>b,则ac 2>bc 2(c 为有理数)D .由12x y -<得2x y >- 【答案】C【解析】A 选项:由前面的式子可判断a 是较大的数,那么b 是较小的数,正确,不符合题意;B 选项:不等式两边同除以-1,不等号的方向改变,正确,不符合题意;C 选项:当c=0时,左右两边相等,错误,符合题意;D 选项:不等式两边都乘以-2,不等号的方向改变,正确,不符合题意;故选C .7.(本题4分)如图,直线y =kx +b 经过点A(-1,-2)和点B(-2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( )A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <0【答案】B【解析】解:不等式2x <kx+b <0体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点, 显然,这些点在点A 与点B 之间.故选B .8.(本题4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为( )A .6B .5C .6或5D .4【答案】A【详解】设共有学生x 人,0≤(3x +8)-5(x -1)<3,解得5<x ≤6.5,故共有学生6人,故选A. 9.(本题4分)对于不等式组1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤C .此不等式组有5个整数解D .此不等式组无解【答案】A【解析】 解:1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩①②,解①得x ≤72,解②得x >﹣1,所以不等式组的解集为﹣1<x ≤72,所以不等式组的整数解为1,2,3.故选A .10.(本题4分)不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-【答案】B【解析】详解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.第II卷(非选择题)二、填空题(共20分)11.(本题4分)写出一个解集为x≥1的一元一次不等式:_____________.【答案】x-1≥0(答案不唯一)【详解】解:移项,得x-1≥0,故答案为:x-1≥0(答案不唯一).12.(本题4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.【答案】x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.13.(本题4分)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190”为一次操作.如果操作只进行一次就停止,则x的取值范围是_________.【答案】x >64.【详解】解:第一次的结果为:3x −2,没有输出,则3x −2>190,解得:x >64.故x 的取值范围是x >64.故答案为x >64.14.(本题4分)要使关于x 的方程5x -2m =3x -6m +1的解满足-3<x <4,则m 的取值范围是_______.【答案】-74<m<74. 【解析】解方程5x -2m =3x -6m +1,5x -3x=2m -6m+1,解得x=142m -, 将x 代入-3<x <4,得-3<142m -<4, 解得-74<m<74. 故答案为-74<m<74. 15.(本题4分)如果一次函数(0)y kx b k =+≠的图象与x 轴交点坐标为(2,0)-,如图所示.则下列说法:①y 随x 的增大而减小;②关于x 的方程0kx b +=的解为2x =-;③0kx b +>的解是2x >-;④0b <.其中正确的说法有_____.(只填你认为正确说法的序号)【答案】①②④【解析】解:由图可知k <0,①当k <0时,y 随x 的增大而减小,故本小题正确;②图象与x 轴交于点(-2,0),故关于x 的方程kx+b=0的解为x=-2,故本小题正确;③不等式kx+b >0的解集图像0y >的部分对应的自变量x 的取值范围,所以x <-2,故本小题错误; ④直线与y 轴负半轴相交,b <0,故本小题正确;综上所述,说法正确的是①②④.故答案为①②④.三、解答题(共90分)16.(本题8分)解不等式组:2322112.323x x x x ①②>-⎧⎪⎨-≥-⎪⎩【答案】-2≤x <2.【解析】解:解不等式①,得x <2.解不等式②,得x≥-2.∴原不等式组的解集为-2≤x <2.17.(本题8分)解不等式组()21511325131x xx x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.【答案】-1≤x <2【解析】()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得,x≥-1,解不等式②得,x<2,在数轴上表示如下:所以不等式组的解集是−1≤x<2. 不等式组的整数解为-1,0,1,2.18.(本题8分)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.【答案】(1)y=x+3;(2)x≤3.【解析】(1)∴一次函数y=kx+3的图象经过点(1,4),∴ 4=k+3,∴ k=1,∴ 这个一次函数的解析式是:y=x+3.(2)∴ k=1,∴ x+3≤6,∴ x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.19.(本题9分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【答案】A型42元,B型56元;30台.【解析】试题解析:(1)设A型号计算器售价为x元,B型号计算器售价为y元由题意可得:()() ()() 5304076 {630340120x yx y-+-=-+-=解得:42 {56 xy==答:A型号计算器售价为42元,B型号计算器售价为56元.(2)设购进A型号计算器a台,则B型号计算器(70-a)台由题意可得:30a+40(70-a)≤2500解得:a≥30答:最少需要购进A型号计算器30台.20.(本题10分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?【答案】(1)200元和100元(2)至少6件【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.21.(本题10分)已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.【答案】(1)-2<a≤3.(2)5;(3)a=-1.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∴①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∴方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∴-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∴不等式的解为x<1∴2a+1<0,∴a<-12,∴-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.22.(本题11分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元试题解析:(1)设饮用水有x 件,则蔬菜有(x ﹣80)件.x+(x ﹣80)=320,解这个方程,得x=200.∴x ﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m 辆,则租用乙种货车(8﹣m )辆.得:4020(8)200{1020(8)120m m m m +-≥+-≥, 解这个不等式组,得2≤m≤4.∴m 为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.23.(本题12分)对x ,y 定义一种新运算T ,规定(,)2ax by x y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ . 已知(1,1)2T -=-,(4,2)1T =.(1)求a ,b 的值; (2)若关于m 的不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围. 【答案】(1)a ,b 的值分别为1,3;(2)123p -≤<-.【解析】(1)由,()4,21T =,得()112211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+, 即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3. (2)由(1)得()3,2x y x y x y +T =+,则不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩可化为105,539,m m p -≤⎧⎨->-⎩ 解得19325p m --≤<. ∴不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩恰好有3个整数解, ∴93235p -<≤,解得123p -≤<-. 24.(本题14分)已知直线y =kx +b 经过点B (1,4),且与直线y =-x -11平行.(1)求直线AB 的解析式并求出点C 的坐标;(2)根据图象,写出关于x 的不等式0<2x ﹣4<kx +b 的解集;(3)现有一点P 在直线AB 上,过点P 做PQ ∥y 轴交直线y =2x -4于点Q ,若C 点到线段PQ 的距离为1,求点P 的坐标并直接写出线段PQ 的长.【答案】(1)y =-x +5,C (3,2); (2)2<x <3 ; (3)P (2,3)或者(4,1),线段PQ 的长为3.【解析】解:(1)∴直线y=kx+b 经过点B (1,4),函数与直线y =-x -11,∴14k k b =-⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩, ∴直线AB 的解析式为:y =﹣x +5;∴若直线y =2x ﹣4与直线AB 相交于点C ,∴524y x y x =-+⎧⎨=-⎩解得32x y =⎧⎨=⎩, ∴点C (3,2).(2)由题意知所求是如图位置,24y x =-,令y =0,x =2,C(3,2),所以图像中的部分对应的2<x <3.(3) 若C 点到线段PQ 的距离为1,所以P 点横坐标是2,或者4,代入直线解析式y =﹣x +5有P (2,3)或者(4,1),代入24y x =-,Q (2,0),(4,4),所以PQ =3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章一元一次不等式与一元一次不等式组
5.一元一次不等式与一次函数(一)
一、教学内容解析
不等式是现实世界中不等关系的一种数学表示形式,是解决实际问题的一种数学模型,它是学生学习了一元一次方程、二元一次方程组和一次函数的基础上形如研究的后续内容。
学生已初步经历了建立方程模型和函数关系解决一些简单的实际问题的“数学化”过程,为分析量与量之间的关系积累了一定的经验,为后续学习的重要基础。
本课是八下第二章第五节《一元一次不等式与一次函数》第一课时内容,使学生体会知识间的内在联系,整体上把握知识,发展学生辩证思维。
教学重点:使用一次函数图象求解一元一次不等式。
二、教学目标设置:
1、理解一次函数图象、方程的解和一元一次不等式内在联系。
2、能够通过具体观察一次函数的图像解一元一次不等式。
3、理解两种方法的关系,会选择适当的方法解一元一次不等式
三、学生学情分析
学生的知识技能基础:学生已经学习了一次函数和一元一次不等式的相关知识,为本节探究一元一次不等式与一次函数的关系奠定了必要的知识基础。
学生活动经验基础:通过前面相关知识的学习,学生已经会利用一次函数和一元一次不等式解决一些简单的实际问题,已初步经历了建立方程模型和函数关系解决实际问题的必要性和作用;同时在以前的学习中,通过经历合作探索学习的过程,积累了一定的合作学习的经验,为本节课的学习奠定了基础。
教学难点:体会方程、不等式、函数之间的内在联系,并能使用它们之间的联系解决实际问题。
四、教学策略分析
通过一次函数图象求解一元一次不等式难点是体会方程、不等式、函数之间的内在联系,教学时鼓励学生自主探索与合作交流,引导学生大胆尝试求解,并逐步养成验证与反思的习惯,同时鼓励解法的多样性,促动
学生一般数学观的建立,从中进一步体会模型思想。
五、教学过程分析
本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:使用巩固、练习提升;第四环节:课堂小结;第五环节:当堂作业。
活动一:情境引入
活动内容:
上节课我们类比一元一次方程的解法,根据不等式的基本性质,学习了一元一次不等式的解法,本节课我们来学习一元一次不等式其它解法。
—利用图象“看”不等式的解集。
板书课题:一元一次不等式与一次函数(1)
设计意图:以“旧”引“新”,由原有的知识为基础,利用初中生的好奇心理,激发学生探究新知的兴趣。
活动效果:学生在回忆中探索本课时的内容,从而降低了学生们“入室”的门槛。
活动二:活动探究、合作学习
活动内容:
首先,我们来利用一次函数的图象求出相对应的一元一次方程的解、一元一次不等式的解集。
1.引导探究
作出函数y=2x-5的图象,观察图象回答下列问题。
(1)x取哪些值时,2x-5=0? (3)x取哪些值时,2x-5>0?
(2)x取哪些值时,2x-5<0? (4)x取哪些值时,2x-5>3?
学生活动:先独立思考5分钟,再小组交流2分钟,展示、评价和补充3分钟。
设计意图:让学生通过观察函数图象找到相对应的一元一次方程的解、一元一次不等式的解集,进一步理解一次函数的相关知识,让学生从整体上感受利用一次函数图像能够协助解决一元一次方程、一元一次不等式的问题。
(1)当y =0时,2x -5=0。
∴x =25, ∴当x =2
5时,2x -5=0。
(2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图象上可知,y >0时,图象在x 轴上方,图象上任一点所对应的x 值都满足条件,当y =0时,则
有2x -5=0,解得x =
25.当x >25时,由y =2x -5可知 y >0。
所以当x >2
5时,2x -5>0; (3)同理可知,当x <25时,有2x -5<0; (4)要使2x -5>3,也就是y =2x -5中的y 大于3,那么过纵坐标为3的点作一条直线平行于x 轴,这条直线与y =2x -5相交于一点B (4,3),则当x >4时,有2x -5>3。
活动效果:通过小组交流学生能够发现,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于某个实数时即为不等式。
2.想一想
活动内容:
如果y =-2x -5,那么当x 取何值时,y >0?
学生活动:学生先独立思考3分钟,再小组内交流不同的方法2分钟,展示、评价和补充2分钟。
设计意图:通过具体问题让学生初步感受不等式问题能够转化为函数问题,函数中
的问题可转化为不等式问题来解决,让学生体会解决问题方法与策略的多样性,并尝试从不同角度思考解决问题的方法。
首先要画出函数y=-2x-5的图象,如图:
从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个的值所对应的x的值都在A点的左侧,即为小于-2.5的数,由-2x-5=0,得x=-2.5,所以当x取小于-2.5的值时,y>0。
也可:因为y=-2x-5,y>0也就是-2x-5>0,解不等式即得:x<-2.5
活动效果:通过完成这题进一步培养了学生的数形结合意识,掌握用图像法解一元一次不等式和构造不等式解决函数问题
3.实际应用
活动内容:先独立思考5分钟,再小组交流方法2分钟,最后全班展示4分钟。
兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20 m?谁先跑过100 m?
设计意图:感知不等式、函数、方程的不同作用与内在联系。
[解]设兄弟俩赛跑的时间为x秒.哥哥跑过的路程为y1,弟弟跑过的路程为y2,根据题意,得
y1=4x y2=3x+9
函数图象如图:
从图象上来看:
(1)9s时哥哥追上弟弟
(2)当0<x<9时,弟弟跑在哥哥前面;
(3)当x>9时,哥哥跑在弟弟前面;
(4)弟弟先跑过20m,哥哥先跑过100m;
从图象上直接能够观察出(1)、(2)小题,在回答第(3)题时,过y轴上20这个点作x轴的平行线,它与y1=4x,y2=3x+9分别有两个交点,每一交点都对应一个x值,哪个x 的值小,说明用的时间就短.同理可知谁先跑过100 m.
活动效果:绝绝大部分学生都能画出函数图象,并能借助函数图象完成上述问题。
也可用列方程找到哥哥追上弟弟的时间,也可直接解不等式解决问题。
活动三:使用巩固、练习提升
1.已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
活动内容:学生独立解答4分钟,展示及评价2分钟。
设计意图:一方面对上环节中解决此类问题的方法实行巩固,另一方面,让学生在自主学习的过程中进一步体验一元一次不等式与一次函数的图象之间的结合是解决此类问题核心所在.
解:如图所示:
当x 取小于4
7的值时,有y 1>y 2. 活动效果:学生在解答上述问题时,表现出极大的兴趣, 90%的学生能够顺利完成.
活动四:课时小结
活动内容:自由发言2分钟
通过本节课的学习,你有哪些收获?
设计意图:让学生通过自我反思性活动增强对相关知识和方法的理解水平。
感受到数学的作用。
活动五:布置作业
活动内容:学生独立完成8分钟
习题2.6 1、2
四、教学反思
1、 本节课的教学过程中应注意引导学生初步体会从整体中把握部分的思维方法,渗透函数、方程、不等式思想和数形结合等重要的数学思想。
2、 教学过程中要为学生提供展示自己的平台,教师要善于发现学生分析问题解决问题的独到见解和策略的多样性,以及思维的误区,即时给予激励性评价,以及组织小组合作学习,协助学生形成积极主动的求知态度。
3、注意改进的方面:
在小组学习过程中,应给学生充分的独立思考的时间,交流时注意每个学生都要发言。
教师参与小组讨论,适时指导,使小组合作学习更具实效性。