机械振动基础 第四章 多自由度系统共68页文档

合集下载

机械振动第四章

机械振动第四章

第四章两自由度系统的振动当振动系统需要两个独立坐标描述其运动时,称为两自由度振动系统。

两自由度系统是最简单的多自由度系统,因此研究两自由度系统是分析和掌握多自由度系统的基础。

两自由度系统具有两个固有频率,两自由度系统以固有频率进行的振动与单自由度系统不同,它以固有频率进行的振动是指整个系统在运动过程中莫一位移形状,称为固有振型,因此两自由度具有两个与固有频率对应的两个固有振型。

在任意初始条件下的自由振动响应一般由两个固有振型的叠加得到。

受迫简谐振动的频率与激励频率相同。

两自由度系统的振动微分方程一般由两个联立的微分方程组成。

如果恰当地选取坐标,可使两个微分方程解除耦合,这种坐标称为主坐标或固有坐标。

用固有坐标建立的系统振动微分方程为两个独立的单自由度系统的微分方程。

4.1系统的自由振动如图4.1-1a所示的无阻尼两质量-弹簧系统,可沿光滑水平面滑动的两个质量与分别用弹簧与连至定点,并用弹簧相互连接。

三个弹簧的轴线沿同一水平线,质量与只限于沿着该直线进行往复运动。

这样与的任一瞬时的位置只需用坐标与就可以完全确定,因此该系统具有两个自由度。

图4.1-1 两自由度系统的振动取与的静平衡位置为坐标原点。

在振动过程中任一瞬时t,与的位置分别为与,作用于与的重力于光滑水平面的法向反力相平衡,在质量的水平方向作用有弹性恢复力和,质量的水平方向则受到和作用,方向如图4.1-1b所示。

取加速度和力的正方向与坐标正方向一致,根据牛顿运动定律有移项得(4.1-1)方程(4.1-1)就是图4.1-1所示的两自由度系统自由振动的微分方程,为二阶常系数线性齐次常微分方程组。

方程(4.1-1)可以使用矩阵形式来表示,写成(4.1-2)由系数矩阵组成的常数矩阵m和k分别称为质量矩阵和刚度矩阵,向量x称为位移向量。

因此设(4.1-3)分别为刚度矩阵k中的元素,因而方程(4.1-1)可以写成(4.1-4)方程(4.1-4)为系统自由振动的微分方程。

第4章:多自由度系统的振动

第4章:多自由度系统的振动
k3 x2
F2 (t)
c3 x2
平衡条件: F1(t) k2 (x2 x1) c2 (x2 x1) k1x1 c1x1 m1x1
F2 (t) k2 (x2 x1) c2 (x2 x1) k3x2 c3x2 m2x2 (4.1.1)
矩阵形式:
m1
0
0 m2
x1 x2
k12
k21
k22 p2m2
m1m2
2 1
p2
2 2
p2
解出:
X1
(k22
m1m2
(
2 1
p2m2 )F1
p2
)
(
2 2
p2)
X2
k21F1
m1m2
(
2 1
p2
)
(
2 2
p2)
(4.1.31)
频响函数:
H11( p)
X1 F1
(k22 p2m2 )
m1m2
(
2 1
p2
)
(
2 2
p2)
(4.1.32)
齐次方程:
k11 2m11 k21 2m21
k12 k22
2m12 2m22
A1 A2
0 0
(4.1.9)
非零解条件 :
k11 2m11 k21 2m21
k12 2m12 k22 2m22
0
频率方程:
第4章 多自由度系统的振动
a4 b2 c 0
(4.1.10)
a m11m22 m122 , b k11m22 k22m11 2k12m12 , c k11k22 k122
A11 A21
sin(1t sin(1t
1) 1)

汽车振动基础第4章-多自由度

汽车振动基础第4章-多自由度

直接法
所谓直接法,就是直接应用动力学的基本定律或定理(列如牛 顿第二定律或达朗贝尔原理)建立系统运动微分方程的方法。以前建 立单自由度和二自由度振动系统的微分方程就是采用了这种方法。这 种方法的特点是:分析比较直观,简便,适用于比较简单的系统。
利用直受力分析
(2) 根据牛顿第二定律建立微分方程

运动方程推导
1 c2 x 2 (k1 k2 ) x1 k2 x2 P1 (t ) m1 x1 (c1 c2 ) x 2 c2 x 1 c3 x 3 (k2 k3 ) x2 k2 x1 k3 x3 P2 (t ) m2 x2 (c2 c3 ) x 3 c3 x 2 k3 x3 k3 x2 P3 (t ) m3 x3 c3 x
1 k
FK
②刚度矩阵的影响系数法 K kij

对于n 自由度的振动系统,刚度矩阵K为n*n矩阵,具有n*n 个元素 k ij,这些元素称为刚度影响系数。 刚度影响系数 k ij 的定义是使系统的第j个坐标产生单位位 移,而其它的坐标位移为零时,在第i个坐标上所施加的作用力 的大小。
2lm21 lm2 x
m2 m11 m1 4 m2 m21 m12 4
j2
x1 0
1 x 2
x2 1
2lm22 2lm3 x2 lm2 x
m2 m22 m3 4
m22
m3
m1
m2
m12
l
m2 x
l
2 m3 x

注意:1)总是假定 kij 的方向与坐标方向相同,通过静力
平衡方程求得其值的 符号即为 kij 的符号;

第四章(无限自由度系统的振动)ppt课件

第四章(无限自由度系统的振动)ppt课件



( a c o s x b s i n x ) q () t 2 2 2 2 2 c c
x
2


dU1(x1) EA 0 1 dx1 x 0
1
b1 0
u
2
E ,A ,L 2, 2
d Ux (1 ) d Ux (2 ) 1 2 E A E A 1 2 d x d x 1 x 2 x L 0
2 2
(直杆纵向受迫振动微分方程)
2 2 u (,) x t u (,) x t 1 2 c f(,) x t 2 2 A t x
c E
(均匀材料等截面直杆的纵向受迫振动方程)
(二) 杆的纵向固有振动
1.固有振动
uxt ( , ) 2 uxt (,) c 2 2 t x
0
0
自由端: M Ip t G
0 x
0
(二) 课堂练习
【课堂练习1】:求如图所示的上端固定,下端有一附加质量 M的等 直杆作纵向振动的频率方程。 O
u (,) x t U ()( x q t ) ( a c o s xa s i nx ) ( b c o s t b s i n) t 1 2 1 2 c c

(二) 固有振动
U ( x) ( )2U ( x) 0 c q(t ) 2 q(t ) 0

U (x) a o s xa 1c 2 sin x c c qt ( ) b o s t b t 1c 2 sin


u (,) x t U ()( x q t )
神六设计时便改动了氧气输送管道的
一个参数。结果虽然还存在耦合振动,但 航天员的痛苦大大减轻。 图 神州五号飞船

机械振动基础 第四章 多自由度系统

机械振动基础  第四章  多自由度系统

k1n 0 k 2n 0 k jn 1 0 knn
k1 j k2 j k jj knj
[K]的定义:外力{f}正好是刚度矩阵[K]的第 j 列。
1 T } [ M ]{x } ET {x 2 1 T } [C ]{x } D {x 2 1 T U {x} [ K ]{x} 2
2D 2 ET cij mij i x j x i x j x
2U kij xi x j
2) 求偏导
2 ET 2 ET mij m ji xi x j x j xi 2D 2D cij c ji xi x j x j xi 2U 2U kij k ji xi x j x j xi
第4章 多自由度系统
将具体的结构简化成:多个以各种方式相连接的离散 质量、弹性元件和阻尼元件组成的离散振动系统。 这种系统称为多自由度振动系统。描述它振动的运动 微分方程为常微分方程组。
1 F1 (t ) k1 x1 c1 x 1 k 2 ( x1 x2 ) c2 ( x 1 x 2 ) x m1 2 F2 (t ) k 2 ( x2 x1 ) c2 ( x 2 x 1 ) k3 x2 c3 x 2 x m2
2 ET mij i x j x
2 ET m44 m2 2 y2 2 ET M I m12 m21 Ay B y 4 L2 m13 m14 m23 m24 m34 0
由系统的质量矩阵、阻尼矩阵和刚度矩阵可以得到系统 的惯性力、阻尼力和弹性力:
得到,新坐标系{y}下的运动微分方程:

第四章多自由度系统

第四章多自由度系统

j 1
j 1
js
js
r 1, 2, , n
(4.2 15)
因而有
n (kij
j1

lr
mij
)
u jr usr

lr mis
kis
js
i 1, 2, , n; r 1, 2, , n
(4.2 16)
对于某个确定的r,方程(4.2-16)是一个以 ujr/usr(j=1,2,…,s-1,s+1,…,n)为变量的n个非 齐次方程,取其中的n-1个方程求解,就得 到ujr/usr(j=1,2,…,s-1,s+1,…,n)的值,是使第s 个比值为1得到的,这些值是确定的。从而 得到
对于线性系统,系统的动能可表示为
T

1 2
n i 1
n
mijqi q j
j 1
(4.1 6)

T 1 qT M q
2
(4.1 7)
式中mij是广义质量。质量矩阵[M]是实对 称矩阵,通常是正定矩阵,只有当系统中 存在着无惯性自由度时,才会出现半正定
的情况。q为广义速度向量。
n
- f (t) f (t)
kij u j
j1
n
mij ui
j1
i 1, 2,..., n
(4.2-4) (4.2-5)
方程表明,时间函数和空间函数是可以分离 的,方程左边与下标i无关,方程右边与时间 无关。因此,其比值一定是一个常数。
f(t)是时间的实函数,比值一定是一个实数,
把势能函数在系统平衡位置近旁展为Taylor级 数,有
n U 1 n n 2U
U

第四章 多自由度体系(自由振动)

第四章 多自由度体系(自由振动)

第四章多自由度体系无阻尼自由振动主要内容1 多自由度体系的自振振型和自振频率2 振型的正交性3 位移的振型展开和能量的振型展开1 多自由度体系的自振振型和自振频率所谓振型就是结构体系在无外荷载作用时的自由振动时的位移形态,N个自由度体系有N个不同的振型。

当结构按某一振型振动时,自振频率是与之相对应的常量。

因此对N个自由度体系,一般情况下有个N个自振频率。

多自由度结构的振型和自振频率是结构的固有特性,和单自由度一样是反映结构动力特性的主要量。

因此在讲到结构动力特性时,首先想到的就是结构的自振振型和频率。

结构的自振振型和频率,可通过分析结构的无阻尼自由振动方程获得。

多自由度体系无阻尼自由振动的方程为:其中[M ]、[K ]为N ×N 阶的质量和刚度矩阵,{u }和{ü}是N 阶位移和加速度(或广义坐标)向量,{0}是N 阶零向量。

上式是体系作自由振动时必须满足的控制方程,下面分析当位移向量{u }是什么形式时可以满足此式要求。

[]{}[]{}{}0=+u K uM根据前面经验,多自由度体系的振动形式可写为:{φ}—表示体系位移形状向量,它仅与坐标位置有关,不随时间变化,称为振型。

ω—简谐振动的频率,θ—相位角。

上式对时间求两次导数可得{}{}{})sin()(θωφ+==t t u u {}{}{})sin()(2θωφω+−==t t u u对于稳定结构体系,其质量阵与刚度阵具有实对称性和正定性,所以相应的频率方程的根都是正实根。

对于N 个自由度的体系,频率方程是关于ω2的N 次方程,由此可以解得N 个根(ω12<ω22<ω32…<ωN 2)。

ωn (n =1, 2, …, N )即为体系的自振频率。

其中量值最小的频率ω1叫基本频率(相应的周期T 1=2π/ω1叫基本周期)从以上分析可知,多自由度体系只能按一些特定的频率即按自振频率做自由振动。

按某一自振频率振动时,结构将保持一固定的形状,称为自振振型,或简称振型。

第4章-多自由度系统振动(d)

第4章-多自由度系统振动(d)

ΦN


(1) ,
m p1
(2) ,
mp2
(3)

mp3
1
1 6m
2 1
3 0 3
2
2
2

正则模态和主模态之间的关系:
φ( i ) N

1 φ(i)
mpi
15
多自由度系统振动 / 多自由度系统的自由振动/正交性,主质量和主刚度
小结:模态的正交性,主质量和主刚度
若 i j 时, φ(i)T Mφ( j) 0
φ(i)T Kφ( j) 0
模态关于质量的正交性 模态关于刚度的正交性
当 i=j 时,
φ(i)T Mφ(i) mpi
φ(i)T Kφ(i) k pi
第 i 阶模态主质量 第 i 阶模态主刚度
第 i 阶固有频率:
i
k pi m pi
mpi φ(i)T Mφ(i)
第 i 阶模态主质量
k pi φ(i)T Kφ(i)
第 i 阶模态主刚度
正则模态:i 1~ n
φ(i) N
φ φ M (i)T
(i)
N
N
1
第 i 阶正则模态
主质量为1
2019年7月8日 《振动力学》
φ φ K (i)T
(i)
N
N
i2
固有频率的平方
9
多自由度系统振动 / 多自由度系统的自由振动/正交性,主质量和主刚度
多自由度系统振动 / 多自由度系统的自由振动/正交性,主质量和主刚度
模态矩阵: 1 1 1
Φ (1) , (2) , (3) 2 0 1
1 1 1

第四章多自由度系统

第四章多自由度系统

kq 2 q1 M 1 (t ) q M (t ) kq 2 kq 3 2 2
角振动与直线振动在数学描述上相同,在多自由度系统中也 将质量、刚度、位移、加速度以及力都理解为广义的。
例4-3 汽车振动的力学模型。 以D点的垂直位移 xD 及杆AB绕 点D的角位移为坐标,列出车体 作微小振动的运动微分方程。
1、多自由度的微分方程: 例4-1 试建立系统的运动微分方程。
两自由度系统; 解:
m1 1 k1 x1 k2 ( x1 x2 ) P (t ) x 1 m2 2 k2 ( x2 x1 ) k3 x2 P2 (t ) x
m11 (k1 k2 ) x1 k2 x2 P (t ) x 1 m2 2 k2 x1 (k 2 k3 ) x2 P2 (t ) x
x [ M ]{} [C ]{x} [ K ]{x} { f } {x(0)} {x0}, {x(0)} {x0}
1、[M],[C],[K]分别为系统的质量矩阵、阻尼矩阵和 刚度矩阵。 2、{x}为n维位移向量,它的分量是各个自由度的广义位 移,而{x}和{ }分别为速度向量和加速度向量,它们的 x 分量分别为各个自由度的广义速度和广义加速度。{f}是 广义外力向量,它的分量是各个自由度所受到的广义外 力。
x [ M ]{} [C ]{x} [ K ]{x} { f } {x(0)} {x0}, {x(0)} {x0}
1、运动微分方程建立的关键:求得[M], [C],[K]中的各个元素。 2、可使用定义法。 3、求解微分方程的过程就是使[M],[C], [K]对角化的过程,可求得固有频率及其 振型。
静力加载 K x P(t )

多自由度系统振动

多自由度系统振动
有限元方法需要建立系统的离散化模型,并选择合适的单元类型和边界 条件,计算精度和计算效率取决于离散化的的传递矩阵来描述系统动态特性
的方法。
传递矩阵法适用于线性时不变系 统,能够处理多自由度系统的振
动问题,计算效率较高。
传递矩阵法的精度取决于系统参 数和边界条件的准确性,对于复 杂系统和非线性问题,需要采用
其他方法进行求解。
模态叠加法
模态叠加法是一种基于模态展开的数值 计算方法,通过将系统的振动表示为一 系列模态的线性组合,求解每个模态的
振动方程,得到系统的动态特性。
模态叠加法适用于线性时不变系统,能 够处理多自由度系统的振动问题,计算
精度较高。
模态叠加法需要选择合适的模态数目和 模态提取方法,对于大规模系统和复杂
未来研究方向
深入研究多自由度系统振动的 非线性特性,探索更精确的数
学模型和数值模拟方法。
针对复杂多自由度系统,研究 多因素耦合振动和多场耦合振
动的理论和方法。
发展多自由度系统振动主动控 制和智能控制技术,提高系统 振动控制精度和响应速度。
将多自由度系统振动理论应用 于实际工程领域,解决重大装 备和结构的振动问题,提高其 稳定性和安全性。
THANKS FOR WATCHING
感谢您的观看
02
它涉及到多个振动子之间的相互 作用和耦合,其动力学行为比单 自由度系统更为复杂。
研究背景和意义
随着科技的发展,多自由度系统在许多领域中得到了广泛应用,如大型机械装备、 精密仪器、高层建筑等。
由于多自由度系统在受到外部激励或内部参数变化时,会产生复杂的振动行为,这 不仅会影响系统的性能和稳定性,还可能引发安全问题。
航天器振动控制
总结词

第4章 多自由度系统振动a

第4章 多自由度系统振动a

多自由度系统的角振动与直线振动在数学描述上相同 。 如同在单自由度系统中所定义的,在多自由度系统中 也将质量、刚度、位移、加速度及力都理解为广义的。
2018年10月10日 <<振动力学>>
12
多自由度系统振动 / 多自由度系统的动力学方程/作用力方程
小结:
例1:
1 k1 k 2 x m1 0 0 m 2 x2 k2
多自由度系统振动
例子:轿车行驶在路面上会产生上下振动。
m
k 要求:对轿车的上下振动进行动力学建模。 分析:人与车、车与车轮、车轮与地面之间的运动存在耦合。 建模方法1: 将车、人等全部作为一个质量考虑,并考虑弹性和阻尼。 优点:模型简单;
2018年10月10日 <<振动力学>>
c
缺点:模型粗糙,没有考虑人与车、车与车轮之间 的相互影响。
M、K 该如何确定? 先讨论 K 假设外力是以准静态方式施加于系统
0 加速度为零 X
KX P (t )
静力平衡
2018年10月10日 <<振动力学>>
准静态外力列向量
16
多自由度系统振动 / 多自由度系统的动力学方程
KX P (t ) 作用力方程: MX
KX P (t )
k 1 k 2 0 1 I 2 2 k 2
k 2 1 M 1 (t ) k 2 k 3 2 M 2 (t )
坐标间的耦合项
2018年10月10日 <<振动力学>>
I1 1
M 2 (t )

振动力学第四章多自由度系统的振动

振动力学第四章多自由度系统的振动
m 0 0 M 0 m 0 0 0 2m
2k K k 0
k 2k k
0 k k
2 将M和K代入频率方程 K p M 0
2k p 2 m k 0
k 2k p 2 m k
0 k k 2 p2m 0
4.1 固有频率 主振型
4.1.3位移方程的解
当运动微分方程是位移方程时,仍可设其解具有 代入位移方程 x 0 Mx
xi Ai sin( pt )
sin( pt )
i 1,2,3,n
p 2 MA A 0
LM
( M 1 I)A 0 2 p
例 题
(2k p 2 m)(k 2 p 2 m) k 2 adj B k ( k 2 p 2 m) 2 k
(2k p 2 m)(k 2 p 2 m) k ( 2 k p 2 m) k ( 2 k p 2 m) ( 2 k p 2 m) 2 k 2 k ( k 2 p 2 m) k2
1 I 2 p
特征矩阵
频率方程
M
1 I 0 2 p
求出n个固有频率,其相应的主振型也可从特征矩阵的伴随矩 阵adjL将pi值代入而求出.
4.1 固有频率 主振型
例 题
例 图是三自由度振动系统,设k1= k2= k3= k, m1= m2= m, m3= 2m,试求系统的固有频率和主振型。 解:选择x1、 x2、 x3坐标如图所示。则系统的质量矩阵和刚 度矩阵分别为
FT
11
l
FT
11
3l
1
11
3l 4T
由图中三角形的几何关系可解出
21 11

机械振动基础知识培训

机械振动基础知识培训

按振动产生原因
自由振动 无阻尼自由振动
有阻尼自由振动
强迫振动 无阻尼的强迫振动
有阻尼的强迫振动
自激振动
本章只研究单自由度系统和两自由度系统的振动。
2
第四章 机械振动基础
1 单自由度系统的自由振动 2 计算固有频率的能量法 3 单自由度系统的有阻尼自由振动 4 单自由度系统的无阻尼受迫振动 5 单自由度系统的有阻尼受迫振动 6 转子的临界转速
物块沿x轴的运动微分方程
m
d2x dt 2
mg
sin
k ( 0
x)
0
mg
sin k
m
d2x dt 2
kx
固有频率与斜面倾角β无关
固有频率 n
k m
0.8 1000 0.5
40rad / s
系统的通解 x Asin(nt ) x
0
x
F
O
mg
mg FN
h
16
§4-1 单自由度系统的自由振动
h
17
§4-1 单自由度系统的自由振动
x0 3.06103 m; v0 1.4m / s;n 40rad / s
系统的通解 x Asin(nt )
0
x
h
得振幅及初相位
2
x v A
2
0
0 2
35.1mm
n
x
F
mg
O
FN
arctan n x0 0.087rad
v0
此物块的运动方程为 x 35.1sin(40t 0.087)mm
动的固有频率和振幅,并给出物块的运动方程。
解:⑴ 取质量弹簧系统为研究对象
物块在平衡位置时,弹簧变形量

第4章多自由度系统的振动

第4章多自由度系统的振动
m1 m 2 m 3 m , l1 l 2 l 3 l
解:我们用Lagrange方程来建立振 动方程。
co s i sin j ) v1 l ( 1 1 1 1 v 2 l [(1 c o s 1 2 c o s 2 ) i s in s in ) j ] ( 1 1 2 2 v 3 l [(1 c o s 1 2 c o s 2 3 c o s 3 ) i s in s in s in ) j ] ( 1 1 2 2 3 3
qj 1
其余广义坐标的加速度为 0 ,为此而需要在各个广义坐标 方向上施加的广义力向量就是质量矩阵的第 j 列。
《振动力学》讲义 第4章 多自由度系统的振动 对于直梁,经常用几个位置的挠度作为广义坐标,来近似 描述直梁的振动。这时,采用影响系数法,建立梁的柔度矩 阵更方便的,因而需要用到简单边界条件下梁的挠度公式。 简支梁在横向集中力作用下的挠度公式为 P
第四章 多自由度系统的振动
大部分实际系统都是多自由度系统,其中的一类, 系统本身为近似的集中参数系统,可以简化为多自由度 系统,另一类是将分布参数系统通过一定的建模方法简 化得到的。本章只学习线性多自由度系统的分析方法和 基本规律,解决问题的基本方法是模态叠加法,就是将 n自由度系统分解成 n 个单自由度系统,每个单自由度 系统对应于原系统的一种特定的振动形态(即模态), 将各个单自由度系统的振动叠加便得到原系统的振动。 因此,本章的学习重点是要理解和掌握模态的求解和使 用。
系统的动能为
m1 1 1 2 2 2 1 m 2 y 2 m 3 y 3 ) { y1 , y 2 , y 3 } 0 T ( m1 y 2 2 0 0 m2 0 0 0 m3 y1 y2 y 3

多自由度系统振动

多自由度系统振动
I1 0 k 1 k 2 0 1 I 2 2 k 2
k2 x1 P 1 (t ) k2 k3 x2 P2 (t )
k 2 1 M 1 (t ) k 2 k 3 2 M 2 (t )
准静态外力列向量
15
多自由度系统振动 / 多自由度系统的动力学方程
KX P (t ) 作用力方程: MX
KX P (t )
X Rn
假设作用于系统的是这样一组外力:它们使系统只在第 j 个坐标上产生单位位移,而在其他各个坐标上不产生位移.
T T X [ x ,..., x , x , x ,..., x ] [ 0 ,..., 0 , 1 , 0 ,..., 0 ] 即: 1 j 1 j j 1 n
k11...k1 j ...k1n k 21...k 2 j ...k 2 n K .......... .......... . k n1...k nj ...k nn n n
刚度矩阵第 j 列
P 1 (t ) P (t ) P (t ) 2 Pn (t )
14
多自由度系统振动 / 多自由度系统的动力学方程
• 刚度矩阵和质量矩阵
KX P (t ) 作用力方程: MX
X Rn
当 M、K 确定后,系统动力方程可完全确定
M、K 该如何确定? 先讨论 K 假设外力是以准静态方式施加于系统
KX P (t )
0 加速度为零 X
静力平衡
多自由度系统的角振动与直线振动在数学描述上相同 。 如同在单自由度系统中所定义的,在多自由度系统中 也将质量、刚度、位移、加速度及力都理解为广义的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档