黑体辐

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑体辐射实验
大学物理实验
一,实验目的
1,了解和掌握黑体辐射的光谱分布——普朗克辐射
定律
2,了解和掌握黑体辐射的积分辐射——斯忒藩玻尔
兹曼定律
3,了解和掌握维恩位移定律
难点:通过实验掌握黑体辐射的光谱分布规律
重点:WGH—10黑体实验仪的原理和使用方法

固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子,原子受到激发而发射电磁波的现象称为热辐射.所辐射电磁波的特征仅与温度有关.
固体在温度升高时颜色的变化
1400
K
物体辐射总能量及能量按波长分布都决定于温度.
800
K
1000
K
1200
K
1. 热辐射现象
二,实验原理
绝对黑体:若物体在任何温度下,对任何波长的辐射能的吸收比都等于1,则称该物体为绝对黑体,简称黑体.
2. 黑体辐射实验规律
不透明的材料制成带小孔的的空腔,可近似看作黑体.
研究黑体辐射的规律是了解一般物体热辐射性质的基础.
测定黑体辐出度的实验简图
P
L2
B2
A
L1
B1
C
A为黑体
B1PB2为分光系统
C为热电偶
1700K
1500K
1300K
1100K
0 1 2 3 4 5
绝对黑体的辐出度按波长分布曲线
实验曲线
维恩经验公式
问题:如何从理论上找到符合实验曲线的函数式
3. 普朗克量子假设
这个公式与实验曲线波长短处符合得很好,但在波长很长处与实验曲线相差较大.
瑞利--金斯经验公式
这个公式在波长很长处与实验曲线比较相近,但在短波区,按此公式, 将随波长趋向于零而趋向无穷大的荒谬结果,即"紫外灾难".
维恩公式和瑞利-金斯公式都是用经典物理学的方法来研究热辐射所得的结果,都与实验结果不符,明显地暴露了经典物理学的缺陷.黑体辐射实验是物理学晴朗天空中一朵令人不安的乌云.
为了解决上述困难,普朗克利用内插法将适用于短波的维恩公式和适用于长波的瑞利-金斯公式衔接 起来,提出了一个新的公式:
普朗克常数
这一公式称为普朗克公式.它与实验结果符合得很好.
o
实验值
/μm
维恩线
瑞利--金斯线







线
1
2
3
4
5
6
7
8
普朗克公式还可以用频率表示为:
普朗克得到上述公式后意识到,如果仅仅是一个侥幸揣测出来的内插公式,其价值只能是有限的.必须寻找这个公式的理论根据.他经过深入研究后发现:必须使谐振子的能量取分立值,才能得到上述普朗克公式.
能量子假说:辐射黑体分子,原子的振动可看作
谐振子,这些谐振子可以发射和吸收辐射能.但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值.相应的能量是某一最小能量

ε(称为能量子)的整数倍,即:ε, 1ε, 2ε, 3ε, ... nε. n为正整数,称为量子数.
对于频率为ν的谐振子最小能量为
能量
量子
经典
振子在辐射或吸收能量时,从一个状态跃迁到另一个状态.在能量子假说基础上,普朗克由玻尔兹曼分布律和经典电动力学理论,得到黑体的单色辐出度,即普朗克公式.
能量子的概念是非常新奇的,它冲破了传统的概念,揭示了微观世界中一个重要规律,开创了物理学的一个全新领域.由于普朗克发现了能量子,对建立量子理论作出了卓越贡献,获1918年诺贝尔物理学奖.
黑体的辐出度与黑体的绝对温度四次方成正比:
(1) 斯特藩-玻耳兹曼定律
根据实验得出黑体辐射的两条定律:
热辐射的功率随着温度的升高而迅速增加.
斯特藩常数
对于给定温度T ,黑体的单色辐出度 有一
最大值,其对应波长为 .
热辐射的峰值波长随着温度的增加而向着短波方向移动.
(2) 维恩位移定律
例 试从普朗克公式推导斯特藩-玻尔兹曼定律
及维恩位移定律.
解:在普朗克公式中,为简便起见,引入

黑体的总辐出度:
其中:
普朗克公式可改写为:
由分部积分法可计算:
所以
可见由普朗克公式可以推导出斯特藩-玻尔兹曼定律.
为了求出最大辐射值对应的波长 ,可以由普朗克公式得到 满足:
经整理得到


这个方程通过迭代法解得

可见由普朗克公式可推导得出维恩位移定律.
三,实验仪器
WGH—10黑体实验装置(包括光源,电源)
电脑及配套数据处理软件
WGH-10型黑体实验装置,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,电压可调的稳压溴钨灯光源,计算机及输出设备组成.该设备集光学,精密机械,电子学,计算机技术于一体.光路图如图 :
接收器
白板
黑体
光栅
黑体修正
本实验用溴钨灯的钨丝作为辐射体,由于钨丝灯是一种选择性的辐射体,与标准黑体的辐射光谱有一定的偏差,因此必须进行一定修正.钨丝灯辐射光谱是连续光谱,其总辐射本领 由下式给出:
式中 为钨丝的温度为T 时的总辐射系数,其值为该温度下钨丝的辐射强度与绝对黑体的辐射强度之比:
钨丝灯的辐射光谱分布 为:
通过钨丝灯的辐射系数及测得的钨丝灯辐射光谱,用以上公式即可将钨丝灯的辐射光谱修正为绝对黑体的辐射光谱,从而进行黑体辐射定律的验证.
本实验通过计算机自动扫描系统和黑体辐射自动处理软件,可对系统扫描的谱线进行传递修正以及黑体修正,并给定同一色温下的绝对黑体的辐射谱线,以便进行比较验证.溴钨灯的工作电流与色温对应关系如下:
不同的仪器溴钨灯的工作电流与色温的对应关系不同,对应关系表格编号应

与溴钨灯的仪器编号相同.
2940
2.50
2860
2.30
2770
2.20
2680
2.10
2600
2.00
2550
1.90
2500
1.80
2450
1.70
2400
1.60
2330
1.50
2250
1.40
色温(K)
电流(A)
溴钨灯工作电流与色温对应关系表(表1)
四,实验内容
1,打开黑体辐射实验系统电控箱电源及溴钨灯电源开关.
溴钨灯电源开关
电控箱电源开关
2,打开显示器电源开关及计算机电源开关启动计算机.
3,双击"黑体"图标进入黑体辐射系统软件主界面, 此时仪器进入自到检零状态.
双击
设置:
"工作方式"——"模式"为"能量","间隔"为"1nm"
"工作范围"——"起始波长"为"800.0nm","终止波长"为"2499.9nm","最大值"为"4000.0","最小值"为"0.0" .("最大值"与狭缝宽度有关,宽度越大,能量越大,"最大值"最多能调节为"10000")
狭缝宽度调节旋钮
"传递函数"为
"修正为黑体 "为
去掉这两个选项
4,选择溴钨灯色温为2940K对应的工作电流,点击单程扫描记录溴钨灯光源全谱(不含传递函数和黑体修正).
得到如图所示的扫描线,然后计算传递函数
选择计算传递函数
软件中存了一条色温为2940K的溴钨灯的标准能量线
5,点击"传递函数","修正为黑体"为

6.在表1中任选一工作电流,点击黑体扫描,输入相对应的色温,记录溴钨灯光源在传递函数修正和黑体修正后的全谱存于寄存器-内 ,然后归一化,如图所示.
选择归一化
7,改变溴钨灯工作电流,在表1中任选4个电流值,分别进行黑体扫描,输入相应的色温,记录全谱,并分别存于其余4个寄存器内.
8,分别对各个寄存器内的数据进行归一化.
寄存器选择
五,实验数据及数据处理
1,验证普朗克辐射定律(取五个点,每条曲线上取一个).
打开五个寄存器中的数据,显示五条能量曲线.
选择验证黑体辐射菜单中的普朗克辐射定律
选择
在界面弹出的数据表格中点击计算按钮.
单击
设计表格,记录数据.注:为了减小误差,选取曲线上能量最大的那一点.
1259.3
1382.2
1517.6
1775.7
2441.4
实( )
1256.3
1390.4
1520.9
1782.9
2448.8
理( )
2500
2550
2600
2680
2860
色温T(K)
1196
1136
1178
1082
1072
波长 (nm)
5
4
3
2
1
表2:
的理论值与实测值相差不大
2,验证斯忒藩-玻耳兹曼定律.
选择黑体辐射定律菜单下斯忒藩-玻耳兹曼定律.
选择
选择5个寄存器中的数据,再单击确定.
选择
单击
相对误差=1.16%
3,验证维恩位移定律 .
选择验证黑体辐射定律菜单下维恩位移定律.
选择5个寄存器中的数据,再单击确定.
选择
选择
单击
相对误差=1.97%
4,将以上所测辐射曲线与绝对黑体的理论曲线进行
比较并分析之 (在同一色温下).


求黑体辐射理论的详细介绍 2007-2-4 18:23

提问者:killerkong | 浏览次数:1686次
越全面越好
2007-2-4 18:55 最佳答案 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。

所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。

基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。

普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为

B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1

B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 )

λ—辐射波长(μm)

T—黑体绝对温度(K、T=t+273k)

C—光速(2.998×108 m·s-1 )

h—普朗克常数, 6.626×10-34 J·S

K—波尔兹曼常数(Bolfzmann), 1.380×10-23 J·K-1 基本物理常数

由图2.2可以看出:

①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关, 这就是维恩位移定律(Wien)

λm T=2.898×103 (μm·K)

λm —最大黑体谱辐射亮度处的波长(μm)

T—黑体的绝对温度(K)

根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。

当T~300K, λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。

②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是否是光谱最大辐射亮度处。

如果把B(λ,T)对所有的波长积分,同时也对各个辐射方向积分,那么可得到斯特番—波耳兹曼定律(Stefan-Boltzmann),绝对温度为T的黑体单位面积在单位时间内向空间各方向辐射出的总能量为B(T)

B(T)=δT4 (W·m-2 )

δ为Stefan-Boltzmann常数, 等于5.67×10-8 W·m-2 ·K-4

但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长, 定义发射率为该波长的一个微小波长间隔内, 真实物体的辐射能量与同温下的黑体的辐射能量之比。显然发射率为介于0

与1之间的正数,一般发射率依赖于物质特性、 环境因素及观测条件。如果发射率与波长无关,那么可把物体叫作灰体(grey body), 否则叫选择性辐射体。


在 黑体辐射实验中为什么要对数据进行归一化处理 2010-10-20 20:38 提问者:匿名

推荐答案 2010-10-22 20:38 归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) 注意复数部分变成了纯数量了,没有任何量纲。 另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。 在统计学中,归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。 即该函数在(-∞,+∞)的积分为1 例如概率中的密度函数就满足归一化条件 归一化是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系。简化计算,缩小量值的有效办法。例如,滤波器中各个频率值以截止频率作归一化后,频率都是截止频率的相对值,没有了量纲。阻抗以电源内阻作归一化后,各个阻抗都成了一种相对阻抗值,“欧姆”这个量纲也没有了。等各种运算都结束后,反归一化一切都复员了。信号处理工具箱中经常使用的是nyquist频率,它被定义为采样频率的一半,在滤波器的阶数选择和设计中的截止频率均使用nyquist频率进行归一化处理。例如对于一个采样频率为1000hz的系统,400hz的归一化频率就为400/500=0.8。归一化频率范围在[0,1]之间。如果将归一化频率转换为角频率,则将归一化频率乘以pi;如果将归一化频率转换为hz,则将归一化频率乘以采样频率的一半。参考资料:百度百科





相关文档
最新文档