黑体辐
黑体辐射
![黑体辐射](https://img.taocdn.com/s3/m/c1edbf52eff9aef8951e062b.png)
不同温度的黑体辐射频谱。
随着温度下降,频谱峰值波长增加地球溫度的黑體輻射黑体辐射维基百科,自由的百科全书黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。
黑体辐射的电磁波谱只取决于黑体的温度。
或許我們換一個角度來說: 所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。
物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。
而描述這關係的便是普朗克分佈(Planck distribution )。
黑体辐射能量按波长的分布仅与温度有关。
黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。
对于黑体的研究,使自然现象中的量子效应被發现。
而在現實上黑體輻射是不存在的,只有非常近似的黑體【好比在一顆恆星或一個只有單一開口的空腔之中】 舉個例來說,我們觀測到宇宙背景輻射,對應到一個約3K 的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。
而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。
(頻率和溫度的效應抵銷)目录1黑體輻射方程1.1黑体辐射本领1.2黑體輻射的普朗克公式1.3黑體輻射的維恩位移定律1.4黑體輻射的斯特藩玻爾茲曼定律2人體的輻射3行星和其衛星之間的熱力學關係3.1因素3.2推導3.3地球的溫度4運動黑體的多普勒效應5參考文獻6參閱黑體輻射方程黑体辐射本领基尔霍夫(G. R. Kirchhoff)证明,对于任意一个物体,辐射本领与吸收率之比是一个与组成物体的物质无关的普适函数(以表示)其中,辐射本领为单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,所以,在人體的大多數能量以紅外線的形式散射掉了。
一些材料對地球(雲層,大氣和地面)的長波熱輻射強度可以認為地球受到太陽照射的地區仅等於一個二維的圆形面積而非整個球面。
黑體輻射定理的應用之一是用於概略的估計一個行星的溫度。
黑体辐射的规律和结论
![黑体辐射的规律和结论](https://img.taocdn.com/s3/m/93e4ec5f8f9951e79b89680203d8ce2f00666590.png)
黑体辐射是由德国物理学家爱因斯坦在20世纪初提出的一种热辐射的理论。
黑体辐射的规律是物体的温度越高,它所发出的辐射能量就越大。
黑体辐射的结论是:物体的温度越高,它所发出的辐射能量也就越大,而且辐射能量随着物体温度的增加而增加,并且辐射能量随着物体温度的升高而升高。
黑体辐射还有一个重要的结论,就是黑体辐射的能量分布是随着波长缩短而增加的,这个结论叫做黑体辐射定律。
黑体辐射的理论对于热学和光学领域有重要的意义,并且在宇宙学、天文学、材料科学等领域有广泛的应用。
黑体辐射是由热力学原理推导出来的,它是描述物质在高温下发射出的电磁辐射能量分布的理论。
黑体是指在黑暗中发射的辐射,它是理论上的概念,不存在真正的黑体。
黑体辐射的规律是物体的温度越高,它所发出的辐射能量就越大。
这个规律称为黑体辐射定律,也被称为爱因斯坦辐射定律。
定律表明,对于同一温度的黑体,它所发出的辐射能量是固定的,并且随着温度的升高而增加。
黑体辐射还有一个重要的结论,就是黑体辐射的能量分布是随着波长缩短而增加的,这个结论叫做黑体辐射定律。
根据这个定律,可以得出黑体辐射能量在红外波段和紫外波段较强,而在可见光波段较弱。
黑体辐射的理论对于热学和光学领域有重要的意义,并且在宇宙学、天文学、材料科学等领域有广泛的应用。
黑体辐射的原理和应用
![黑体辐射的原理和应用](https://img.taocdn.com/s3/m/4fd37d29a88271fe910ef12d2af90242a995ab4a.png)
黑体辐射的原理和应用1. 黑体辐射的基本概念黑体是指具有完美吸收和辐射性能的物体,它能够吸收所有入射到其表面的辐射能量,而且能够以最高效率将能量辐射出去。
黑体辐射是指黑体表面上的电磁波辐射,它是由于黑体内部原子或分子的热运动而产生的,具有各种波长的辐射光谱。
黑体辐射的特点是它的辐射能量与波长之间的关系是确定的。
2. 黑体辐射的原理黑体辐射的原理可以用普朗克辐射定律来描述,该定律是由德国物理学家马克斯·普朗克在20世纪初提出的。
普朗克辐射定律表明,黑体辐射的能量密度与波长的关系符合普朗克分布函数。
该函数在不同波长范围内的峰值位置和强度有所不同,但都是由辐射体的温度所决定的。
当温度较低时,黑体辐射的能量主要集中在长波段;当温度较高时,能量则主要分布在短波段。
普朗克辐射定律的数学表达式如下:$$B(\\lambda,T)=\\frac{2hc^2}{\\lambda^5}\\frac{1}{e^{hc/\\lambda kT}-1}$$其中,$B(\\lambda,T)$表示波长为$\\lambda$的辐射能量密度,ℎ为普朗克常数,c为光速,k为玻尔兹曼常数,T为黑体的温度。
3. 黑体辐射的应用黑体辐射在许多领域都有广泛的应用。
以下列举了一些常见的应用领域:3.1 热辐射和能量转换黑体辐射是热辐射的基础,它在能量转换和传递过程中起着重要的作用。
例如,太阳光是由黑体辐射引起的,地球上的太阳能利用就是通过能源转换将太阳辐射的能量转换为电能或其他形式的能量。
3.2 红外线技术黑体辐射的波长范围覆盖了红外线区域,红外线技术利用了黑体辐射的特性。
红外线技术在军事、医学、安防等领域有广泛的应用,如红外线热成像、红外线测温、红外线通信等。
3.3 热辐射测量和光谱分析利用黑体辐射的特点,可以进行热辐射测量和光谱分析。
例如,利用红外光谱技术可以对物质的成分进行分析和检测,而红外辐射测温技术可以测量物体的温度。
黑体辐射名词解释
![黑体辐射名词解释](https://img.taocdn.com/s3/m/94ecb0ad82d049649b6648d7c1c708a1294a0a74.png)
黑体辐射名词解释
黑体辐射,也称之为核电磁辐射,是由原子弹、核反应堆以及射线技术等可
观测核技术产生的一种辐射能。
它指的是射线的能量以电磁波的形式被释放出来。
由于具有伦理与安全性的威胁,黑体辐射一直被严格监管。
黑体辐射有很多类型,比如可见光、紫外线和X射线仅仅是其中的几种。
这种
辐射的性质为单色的、短波的、高能的电磁辐射,且具有穿透性,能够穿过绝大多数物质,当它们与物质碰撞时会释放出能量。
说起黑体辐射,首先应引起人们对它的足够重视,一定要谨慎处理和使用,防
止造成污染和对人体造成伤害。
一般情况下,人们长时间接触黑体辐射可能会有不良后果,其中常见的损害有损伤皮肤、眼睛、呼吸道等组织和器官,同时还可能对免疫力造成干扰,甚至诱发癌症。
因此,为了人们的健康,应避免接触黑体辐射。
对于待在高辐射水平区域的人群,最好避免低限,使用保护设施并减少长期接触时间。
另一方面,应当充分改进监测技术与抗辐射研究,以更好地分析黑体辐射的危害,以免发生不可逆转的事故。
黑体辐射wien公式
![黑体辐射wien公式](https://img.taocdn.com/s3/m/952e425bdcccda38376baf1ffc4ffe473368fd18.png)
黑体辐射wien公式【最新版】目录1.引言2.黑体辐射的概念3.Wien 公式的提出4.Wien 公式的含义5.Wien 公式的应用6.总结正文1.引言在热辐射领域,黑体辐射是一个非常重要的研究课题。
黑体辐射是指一个物体在热力学平衡状态下,发出的电磁辐射。
在黑体辐射中,有一个著名的公式,即 Wien 公式,它描述了黑体辐射的强度与温度之间的关系。
本文将介绍黑体辐射和 Wien 公式的相关内容。
2.黑体辐射的概念黑体辐射指的是一个理想化的物体,它能够完全吸收所有入射的电磁辐射,并在热力学平衡状态下重新辐射出去。
这种物体被称为黑体,黑体辐射是热辐射的一种。
3.Wien 公式的提出Wien 公式最早由德国物理学家 Wilhelm Wien 在 1893 年提出。
他是在研究黑体辐射的实验规律时,发现了这一公式。
4.Wien 公式的含义Wien 公式描述了黑体辐射强度与温度之间的关系。
公式如下:I = (σ * T^4) / (h * ν)其中,I 是黑体辐射强度,σ是斯特藩 - 玻尔兹曼常数,T 是黑体温度,h 是普朗克常数,ν是辐射频率。
从公式中可以看出,黑体辐射强度与温度的四次方成正比,与辐射频率成反比。
5.Wien 公式的应用Wien 公式在实际应用中有很多重要意义。
例如,在热力学、天体物理学、环境科学等领域都有广泛的应用。
通过 Wien 公式,我们可以更好地了解黑体辐射的性质,从而为实际问题提供理论支持。
6.总结黑体辐射是热辐射的一个重要类型,而 Wien 公式则是描述黑体辐射强度与温度之间关系的重要公式。
从公式中,我们可以看到黑体辐射强度与温度的四次方成正比,与辐射频率成反比。
什么叫黑体辐射
![什么叫黑体辐射](https://img.taocdn.com/s3/m/931a214e6d175f0e7cd184254b35eefdc8d315a7.png)
B(λ, T)=2hc2 /λ5·1/exp(hc/λRT)1
B(λ, T)—黑体的光谱辐射亮度(W, m2 , Sr1 ,μm1 )
λ—辐射波长(μm)
T—黑体绝对温度(K、T=t+273k)
图表62410K下的斯特潘玻尔兹曼定律数据
误差:△=(1.91591.8214)/1.9159=4.9%
5
图表72580K下的斯特潘玻尔兹曼定律数据
误差:△=(2.57022.5164)/2.5164=2.1%
图表82670K下的斯特潘玻尔兹曼定律数据
误差:△=(3.03642.8863)/2.8863=5.2%
但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长,定义发射率为该波长的一个微小波长间隔内,真实物体的辐射能量与同温下的黑体的辐射能量之比。显然发射率为介于0与1之间的正数,一般发射率依赖于物质特性、环境因素及观测条件。如果发射率与波长无关,那么可把物体叫作灰体(grey body),否则叫选择性辐射体。
中国石油大学近代物理实验实验报告成班级:姓名:同组者:教师:
黑体辐射实验
1、了解黑体辐射实验现象,掌握辐射研究方法。
2、学会仪器调整与参数选择,提高物理数量关系与建模能力。
3、通过验证定律,充实物理假说与思想实验能力。
黑体是指能够完全吸收所有外来辐射的物体,处于热平衡时,黑体吸收的能量等于辐射的能量,由于黑体具有最大的吸收本领,因而黑体也就具有最大的辐射本领。这种辐射是一种温度辐射,辐射的光谱分布只与辐射体的温度有关,而与辐射方向及周围环境无关。事实上当然不存在绝对黑体,但有些物体可以近似地作为黑体来处理,比如,一束光一旦从狭缝射入空腔体内,就很难再通过该狭缝反射回来,那么,这个开着的狭缝空腔体就可以看作是黑体。
黑体辐射通俗理解
![黑体辐射通俗理解](https://img.taocdn.com/s3/m/e9f4ce6eec630b1c59eef8c75fbfc77da2699732.png)
黑体辐射通俗理解
摘要:
一、黑体辐射的定义
二、黑体辐射的特点
三、斯特藩- 玻尔兹曼定律
四、普朗克辐射定律
五、黑体辐射与量子力学的关系
六、实际应用与前景
正文:
黑体辐射是指黑体(理想热辐射体)在热平衡状态下产生的辐射现象。
黑体辐射具有以下特点:
1.连续谱:黑体辐射的强度与波长之间的关系是连续的,没有明显的谱线。
2.强度与温度成正比:黑体辐射的强度与温度成正比,这一特点由斯特藩- 玻尔兹曼定律描述。
3.紫外灾难:经典物理理论无法解释黑体辐射在紫外区的强度分布,导致紫外灾难。
为了解决紫外灾难,普朗克提出了量子假说,认为能量是以离散的量子形式传递的。
这一假说不仅解决了紫外灾难,还为量子力学的发展奠定了基础。
黑体辐射的研究对量子力学产生了深远的影响。
从黑体辐射现象中,科学家们发现了量子化、能量量子、波粒二象性等重要概念。
这些概念为量子力学
的发展奠定了基础。
在实际应用中,黑体辐射在许多领域都有重要作用,如热辐射、太阳能电池、红外遥感等。
黑体辐射什么
![黑体辐射什么](https://img.taocdn.com/s3/m/561b932c4531b90d6c85ec3a87c24028915f856e.png)
黑体辐射什么
黑体辐射是指一个处于热平衡状态的理想物体所发出的电磁辐射。
其名称“黑体”是因为这个物体能够完全吸收所有射入它的辐射,不反射也不透过任何辐射。
黑体辐射的研究与理解起源于19世纪,当时科学家们通过实验观察到,当一个物体被加热至足够高的温度时,它会发出一种特定的光谱,这种光谱与物体的温度有关。
根据理论推导和实验测量,经典物理学建立了黑体辐射的描述模型。
根据普朗克的理论,黑体辐射的能量与频率之间存在一定的关系,即普朗克公式。
这个公式描述了单位面积、单位时间内每个频率的辐射能量的数量。
根据普朗克公式,辐射的能量随着其频率的增加而增加,而根据维恩位移定律,辐射最强的频率对应于其温度的倒数。
黑体辐射的研究不仅对物理学有重大影响,还对天文学和热力学等其他科学领域都有重要意义。
通过观察天体的光谱,科学家们可以推断出它们的温度和成分,从而了解宇宙的起源和演化。
在热力学中,黑体辐射是理解热平衡和热传导等现象的关键。
黑体辐射理论的发展也导致了量子力学的诞生。
经典物理学无法解释黑体辐射中的紫外灾变问题,而量子理论则成功解释了这一现象。
这一发现标志着经典物理学的失败,同时也为量子力学的发展铺平了道路。
总之,黑体辐射是一个重要的物理现象,它在物理学、天文学和热力学等领域都有广泛应用。
通过对黑体辐射的研究,科学家们不仅在理论上增进了对自然界的理解,还在技术上取得了一系列重大突破,如发展了激光、红外线技术等。
黑体辐射通俗理解
![黑体辐射通俗理解](https://img.taocdn.com/s3/m/ef5d799ab1717fd5360cba1aa8114431b90d8e8e.png)
黑体辐射通俗理解什么是黑体辐射?黑体辐射是指处于热平衡状态下的物体所发出的辐射,它的特点是不吸收任何辐射,同时也不反射辐射。
黑体辐射的研究对于理解物体的热辐射和热力学性质具有重要意义。
在物理学中,黑体辐射被广泛应用于热力学、量子力学、天体物理学等领域。
黑体辐射的特性黑体辐射具有以下几个特性:1. 完全吸收和完全发射黑体是完全吸收所有辐射的物体,所以它看起来是黑色的。
与此同时,黑体也是完全发射辐射的物体,不论是可见光、红外线还是紫外线等电磁辐射,黑体都能够以最大强度发射出来。
2. 频谱特性黑体辐射的频谱特性与温度有关。
根据普朗克辐射公式,黑体辐射的频谱强度与频率成正比,而与温度的四次方成正比。
随着温度的升高,黑体辐射的峰值频率也会向高频方向移动。
这就是为什么高温物体的辐射呈现为蓝色或白炽的原因,而低温物体的辐射呈现为红色或暗淡的原因。
3. 斯特凡-玻尔兹曼定律斯特凡-玻尔兹曼定律描述了黑体辐射的总功率与温度之间的关系。
根据这个定律,黑体辐射的总功率与温度的四次方成正比。
公式如下:P=σ∗T4其中,P表示黑体辐射的总功率,σ为斯特凡-玻尔兹曼常数,T为黑体的温度。
黑体辐射的应用黑体辐射在许多领域都有重要的应用,下面列举了几个常见的应用:1. 热力学研究黑体辐射是热力学研究中的基本概念之一。
通过对黑体辐射的研究,科学家们可以深入理解热力学定律和热力学性质,为能源转换、热力学系统的设计和优化提供理论基础。
2. 量子力学黑体辐射在量子力学中也有重要的应用。
根据普朗克辐射公式,科学家们可以推导出黑体辐射的频谱分布和平均能量。
这对于理解量子力学的基本原理和量子态的统计性质非常重要。
3. 天体物理学黑体辐射在天体物理学中具有重要的意义。
天体物体的辐射主要来自于它们的表面温度和组成。
通过研究黑体辐射,科学家们可以了解恒星、行星和其他天体的物理性质,例如它们的温度、亮度和组成。
这对于研究宇宙的起源和演化非常重要。
总结黑体辐射是处于热平衡状态下的物体所发出的辐射,它具有完全吸收和完全发射的特性。
黑体辐射三大定律
![黑体辐射三大定律](https://img.taocdn.com/s3/m/1ef9af23a66e58fafab069dc5022aaea998f416f.png)
黑体辐射三大定律
黑体辐射三大定律分别为:
1. 威恩位移定律(Wien's displacement law):它指出,黑体辐射的最大辐射强度对应的波长与黑体的温度呈反比关系。
数学表达式为λ_maxT = b,其中λ_max是最大辐射强度对应的波长,T是黑体的温度,b是一个常数。
2. 斯特藩-玻尔兹曼定律(Stefan-Boltzmann law):它规定了黑体辐射出的总功率与黑体的绝对温度的关系。
根据定律,黑体单位面积单位时间内辐射的总功率与黑体的温度的四次方成正比。
数学表达式为P = σT^4,其中P是黑体单位面积单位时间内辐射的总功率,T是黑体的温度,σ是斯特藩-玻尔兹曼常数。
3. 基尔霍夫定律(Kirchhoff's law):它描述了黑体辐射和黑体吸收的关系。
根据定律,任何物体在一定温度下的吸收比例与其辐射比例相等。
这意味着凡是对于某一波长来说是良好吸收体的物体,也是同样波长下的良好发射体。
黑体辐射原理(一)
![黑体辐射原理(一)](https://img.taocdn.com/s3/m/8c117616443610661ed9ad51f01dc281e53a563a.png)
黑体辐射原理(一)黑体辐射什么是黑体辐射?黑体辐射是物体根据其温度所发射的电磁辐射。
它是一种理想化的模型,可以用来研究和描述物体的辐射特性。
无论是日常生活中的物体还是恒星,都可以被视为发射黑体辐射。
黑体辐射的原理黑体辐射的原理可以通过以下几点来解释:•原子的能态:原子具有许多可能的能态,每个能态对应一定的能量。
这些能态之间的转变可以产生电磁辐射。
•热激发:当物体的温度升高时,原子的平均能量也增加,更多的原子能够跃迁到高能态,从而增强了电磁辐射的强度。
•电磁波谱:黑体辐射涵盖了整个电磁谱,从长波到短波,包括无线电波、可见光、紫外线、X射线和γ射线等。
黑体辐射的特性•频谱特性:根据普朗克公式,黑体辐射的频谱强度与波长呈反比关系。
随着波长的减小,辐射的强度逐渐增加。
•斯特藩-玻尔兹曼定律:根据该定律,黑体辐射的总辐射功率与温度的四次方成正比,即黑体的辐射强度随温度的升高而迅速增加。
•经典的紫外灾难:经典理论无法解释低频处的黑体辐射,即所谓的紫外灾难。
这引发了量子力学的发展。
应用黑体辐射在许多领域具有重要应用,其中一些应用包括:•宇宙学:黑体辐射是研究宇宙起源和演化的重要依据,例如宇宙背景辐射的研究。
•物体温度测量:根据黑体辐射的特性,可以通过物体发射的辐射能量来测量其温度。
•光谱学:通过研究黑体辐射的频谱特性,可以揭示物质的化学成分和结构。
•激光技术:黑体辐射研究为激光技术的发展提供了理论基础。
结语从原理到应用,黑体辐射在物理学和相关学科中具有重要地位。
通过研究和理解黑体辐射的特性,我们可以更好地认识和利用电磁辐射现象,在科学研究和实际应用中取得更进一步的发展和应用。
黑体辐射的发现和研究历程黑体辐射的研究可以追溯到19世纪末。
德国物理学家麦克斯·普朗克在1900年提出了普朗克公式,这一公式成功地解释了黑体辐射中的频谱特性。
普朗克假设辐射能量是分散的,只能取离散的能量值。
根据这个假设,他推导出了黑体辐射的频谱密度函数,即普朗克曲线。
黑体辐射实验原理
![黑体辐射实验原理](https://img.taocdn.com/s3/m/77855244cd1755270722192e453610661ed95aea.png)
黑体辐射实验原理黑体辐射实验是探究热辐射规律和黑体辐射特性的经典实验之一。
该实验通过对黑体辐射的探究,使我们能够了解热辐射的本质和特征,进而对热辐射进行更加深入的研究。
黑体是吸收一切辐射能的理想物体,它可以完全吸收入射的辐射能,不对外界环境产生任何反射或透射。
黑体辐射实验中常用的黑体是由金属或陶瓷制成的容器,内部被涂有吸收率接近于1的黑色物质。
黑体辐射实验的原理是利用黑体的能量吸收和辐射特性,来研究物体的热辐射规律。
实验中,首先需要将黑体加热到一定温度。
当黑体被加热后,它会发出辐射能,这些能量以电磁波的形式向四面八方传播。
黑体辐射的光谱能够覆盖从长波红外线到短波紫外线的所有频率范围,其中包含了可见光。
黑体辐射的能量分布与温度有关,根据普朗克的辐射定律和斯蒂芬-玻尔兹曼定律,黑体辐射的能量与温度的四次方成正比。
实验中,我们可以使用一些设备来测量黑体辐射的特性。
例如,可以使用辐射计来测量黑体辐射的辐射强度,辐射计的工作原理是利用热电效应或半导体效应来测量电磁辐射的能量。
同时,我们还可以使用光谱仪来测定黑体辐射的光谱分布,通过将黑体辐射光线分散成不同波长的光谱线,进而测量不同波长处的辐射强度。
实验中,我们可以通过改变黑体的温度来观察黑体辐射的变化。
当黑体温度较低时,黑体辐射主要是长波红外线,所以我们看不到明显的光亮。
随着温度的升高,黑体辐射的光谱会逐渐向可见光方向移动,从红色逐渐变为橙色、黄色、绿色、蓝色,最后变为紫色。
同时,黑体辐射的强度也会随温度升高而增加。
黑体辐射实验的结果与理论计算吻合得非常好。
根据普朗克的辐射定律和斯蒂芬-玻尔兹曼定律,我们可以利用黑体辐射的能量分布和温度之间的关系,来计算出黑体的温度。
这种方法被广泛应用于天体物理学中,用来研究远离地球的星体的温度和能量分布。
总之,黑体辐射实验通过观察和测量黑体辐射的特性,使我们能够更好地理解热辐射的规律和性质。
通过实验结果,我们可以验证普朗克的辐射定律和斯蒂芬-玻尔兹曼定律,并用来计算黑体的温度。
黑体辐射概念
![黑体辐射概念](https://img.taocdn.com/s3/m/e7d0a9c54793daef5ef7ba0d4a7302768e996fe1.png)
黑体辐射指黑体发出的电磁辐射.
黑体不仅仅能全部吸收外来的电磁辐射,且发射电磁辐射的能力比同温度下的任何其它物体强.
黑体辐射能量按波长的分布仅与温度有关.
对于黑体的研究,使得自然现象中的量子效应被发现.
或许我们换一个角度来说:
所谓黑体辐射其实就是当地的状态光和物质达到平衡所表现出的现象:物质达到平衡,所以可以用一个温度来描述物质的状态,而光和物质的交互作用很强,而如此光和光之间也可以用一个温度来描述(光和光之间本身不会有交互作用,但光和物质的交互作用很强).而描述这关系的便是普朗克分布(Plank distribution).
而在现实上黑体辐射是不存在的,只有非常近似(好比在一颗恒星之中).
举个例来说,我们观测到宇宙背景辐射(CMBR),对应到一个约3K的黑体辐射,
这暗示宇宙早期光是和物质达到平衡的.而随著时间演化,温度慢慢降了下来,但function的form却留了下来(还是blackbody).(频率和温度的效应抵销)。
黑体辐射原理
![黑体辐射原理](https://img.taocdn.com/s3/m/f28cb7ea32d4b14e852458fb770bf78a65293a6d.png)
黑体辐射原理
黑体辐射原理是指热能的辐射是与物体的温度有关的现象。
根据普朗克黑体辐射定律,黑体辐射的能量与频率呈正比,即辐射能量 E 与频率 v 成正比,表达式为 E = hv,其中 h 是普朗
克常数。
根据亥姆霍兹公式,频率与波长呈倒数关系,即 v =
c/λ,其中 c 是光速。
综合两个公式,黑体辐射能量 E 与波长
呈反比,即E = hc/λ。
这个关系称为普朗克-捷费-斯特芬定律。
根据黑体辐射原理,物体的温度越高,辐射的能量越大,辐射的波长也越短。
此外,黑体辐射是连续的,即辐射能量在不同频率(或波长)范围内具有连续的分布。
根据维恩位移定律,黑体辐射的最大强度出现在波长与物体温度的乘积为常数的位置,即λmT = b,其中 b 是维恩位移常数。
这个定律说明,随
着温度升高,最大强度波长变短。
黑体辐射原理在热辐射、热力学和量子力学等领域起着重要作用,可以用于解释物体的发光行为、引入量子概念,并为后续量子理论的发展奠定基础。
黑体辐射笔记
![黑体辐射笔记](https://img.taocdn.com/s3/m/d9047e0b11661ed9ad51f01dc281e53a58025136.png)
黑体辐射笔记
黑体辐射是指理想化的物体在热平衡状态下发射的辐射。
它是和物体的温度有关的,温度越高,黑体辐射的能量越大。
黑体辐射是研究物体热学性质、电磁波理论和量子力学等领域的重要基础。
黑体辐射的性质有以下几点:
1. 黑体辐射是连续的:经过实验观察,我们可以发现黑体辐射的波长范围是连续的,不仅包括可见光,还有红外线、紫外线等。
这也是黑体辐射和白体辐射的主要区别之一。
2. 黑体辐射的强度与温度有关:根据普朗克定律,黑体辐射的能量密度与频率有关,且与温度的四次方成正比。
这也是为什么高温的物体辐射的能量比低温的物体辐射的能量大的原因。
3. 黑体辐射的峰值波长与温度有关:根据维恩位移定律,黑体辐射的峰值波长与温度呈反比关系。
即温度越高,峰值波长越短,辐射的频率越高。
4. 黑体辐射遵循斯特凡-玻尔兹曼定律:根据斯特凡-玻尔兹曼定律,黑体辐射的总辐射功率与温度的四次方成正比。
这是黑体辐射的一个基本规律。
黑体辐射在实际应用中有很多重要的应用。
例如,在太阳能研究中,科学家通过研究黑体辐射来估计地球表面的平均温度和太阳辐射的能量。
另外,在天体物理学中,黑体辐射理论也被广泛应用于研究恒星的辐射特性和行星大气层的温度分布。
总之,黑体辐射是物体在热平衡状态下发射的辐射,具有连续
性、与温度有关的强度和峰值波长,并遵循斯特凡-玻尔兹曼定律。
它在物理学的研究和实际应用中扮演着重要的角色。
黑体辐射的概念
![黑体辐射的概念](https://img.taocdn.com/s3/m/36bc011bbf23482fb4daa58da0116c175f0e1ef7.png)
黑体辐射的概念黑体辐射是指一种理论上的光谱辐射,它表示了温度为给定值的物体所发出的辐射的特征。
这种光谱辐射是一个特定温度下,模拟了“完美吸收体”一种模型所计算出的光谱辐射。
黑体辐射的概念是在19世纪中叶由物理学家格斯托夫·柏姆发现的。
柏姆发现,所有温度不同的物体都会放出电磁波,因此他将这一现象称为“辐射”。
随后,柏姆继续研究,探究了各个温度下光谱的特点。
他发现,当物体的温度高于绝对零度时,它会放出光谱,这种光谱过程就是黑体辐射。
黑体辐射是一种具有独特特性的辐射效应。
首先,它的辐射强度与物体的温度有关,随着物体温度的升高,放射强度也会快速升高。
其次,黑体辐射的光谱强度会随着波长的增加而降低,当波长过长时几乎可以忽略不计。
在研究这种辐射的过程中,一种称为普朗克公式的理论被提出,它成了研究黑体辐射的基础。
普朗克公式是描述黑体辐射光谱的一个数学公式。
它从两种因素入手。
第一,黑体辐射强度与物体温度有关:温度升高时,辐射强度会增加。
第二,黑体辐射的光谱强度会随着波长的增加而降低。
普朗克根据这两种因素推导出了公式,该公式准确地预测了黑体辐射光谱在不同温度下的行为。
事实上,在研究黑体辐射的过程中,普朗克公式起到了关键作用。
黑体辐射在物理学和热力学领域有广泛的应用。
它被用来研究地球上的天气现象、太阳辐射、宇宙射线和其他物质的辐射行为。
此外,黑体辐射的研究也有很多工程应用,例如在照明、太阳能和辐射治疗方面的应用,以及广义相对论和量子力学等领域的基础研究。
总之,黑体辐射是物理学中一个重要的概念,它描述了物体温度和放射强度之间的关系,为我们理解物理世界提供了一个基本模型。
黑体辐射的三个公式
![黑体辐射的三个公式](https://img.taocdn.com/s3/m/83365cec59f5f61fb7360b4c2e3f5727a4e92459.png)
黑体辐射的三个公式
1.黑体辐射公式:B=σT^4,
这是伽马发表的原始黑体辐射公式,它的结果表明,即使在等温条件下,绝热物体也会发射出辐射能量。
其中,σ为常数,T为物体表面
温度,B为物体表面发射辐射强度。
2.Rayleigh-Jeans公式:B=2kT/λ^4,
这是根据Rayleigh和Jeans对伽马黑体辐射公式做出的改进,它认为,辐射强度与波长有关,研究结果表明,如果实验结果与伽马公式相比,则Rayleigh-Jeans公式在波长较小时表现更为逼近。
其中,k为常数,T为物体表面温度,B为物体表面发射辐射强度,λ为波长。
3.Planck公式:B=(2hc^2/λ^5)(1/(e^(h/kT)-1)),
这是Planck发表的黑体辐射公式,它把光子概念引入到公式中,将伽
马公式和Rayleigh-Jeans公式结合起来,由此取得最准确的结果。
其中,h表示普朗克常数,c表示光速,k为玻尔兹曼常数,T为物体表
面温度,B为物体表面发射辐射强度,λ为波长。
黑体辐射系数
![黑体辐射系数](https://img.taocdn.com/s3/m/28eaeace4793daef5ef7ba0d4a7302768e996f2c.png)
黑体辐射系数
黑体辐射系数是指黑体单位面积单位时间内发射的辐射功率与黑体的绝对温度的四次方之比。
它是一个物理常数,用字母σ
表示。
黑体辐射系数的数值为5.670367(13)×10^(-8) 瓦特/(米^2·开^4)。
根据斯蒂芬-玻尔兹曼定律,黑体单位面积单位时间内发射的
辐射功率P与温度T的四次方之间的关系可以用以下公式表示:
P = σ T^4
其中,σ就是黑体辐射系数。
黑体辐射系数在研究热辐射和热力学等领域中非常重要,可以用来计算物体的辐射强度、辐射热流以及黑体辐射的总功率等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由图2.2可以看出:
①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关, 这就是维恩位移定律(Wien)
Hale Waihona Puke λm T=2.898×103 (μm·K)
λm —最大黑体谱辐射亮度处的波长(μm)
T—黑体的绝对温度(K)
根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。
绝对黑体的辐出度按波长分布曲线
实验曲线
维恩经验公式
问题:如何从理论上找到符合实验曲线的函数式
3. 普朗克量子假设
这个公式与实验曲线波长短处符合得很好,但在波长很长处与实验曲线相差较大.
瑞利--金斯经验公式
这个公式在波长很长处与实验曲线比较相近,但在短波区,按此公式, 将随波长趋向于零而趋向无穷大的荒谬结果,即"紫外灾难".
1259.3
1382.2
1517.6
1775.7
2441.4
实( )
1256.3
1390.4
1520.9
1782.9
2448.8
理( )
2500
2550
2600
2680
2860
色温T(K)
1196
1136
1178
1082
接收器
白板
黑体
光栅
黑体修正
本实验用溴钨灯的钨丝作为辐射体,由于钨丝灯是一种选择性的辐射体,与标准黑体的辐射光谱有一定的偏差,因此必须进行一定修正.钨丝灯辐射光谱是连续光谱,其总辐射本领 由下式给出:
式中 为钨丝的温度为T 时的总辐射系数,其值为该温度下钨丝的辐射强度与绝对黑体的辐射强度之比:
维恩公式和瑞利-金斯公式都是用经典物理学的方法来研究热辐射所得的结果,都与实验结果不符,明显地暴露了经典物理学的缺陷.黑体辐射实验是物理学晴朗天空中一朵令人不安的乌云.
为了解决上述困难,普朗克利用内插法将适用于短波的维恩公式和适用于长波的瑞利-金斯公式衔接 起来,提出了一个新的公式:
普朗克常数
1072
波长 (nm)
5
4
3
2
1
表2:
的理论值与实测值相差不大
2,验证斯忒藩-玻耳兹曼定律.
选择黑体辐射定律菜单下斯忒藩-玻耳兹曼定律.
选择
选择5个寄存器中的数据,再单击确定.
选择
单击
相对误差=1.16%
3,验证维恩位移定律 .
选择验证黑体辐射定律菜单下维恩位移定律.
这一公式称为普朗克公式.它与实验结果符合得很好.
o
实验值
/μm
维恩线
瑞利--金斯线
紫
外
灾
难
普
朗
克
线
1
2
3
4
5
6
7
8
普朗克公式还可以用频率表示为:
普朗克得到上述公式后意识到,如果仅仅是一个侥幸揣测出来的内插公式,其价值只能是有限的.必须寻找这个公式的理论根据.他经过深入研究后发现:必须使谐振子的能量取分立值,才能得到上述普朗克公式.
狭缝宽度调节旋钮
"传递函数"为
"修正为黑体 "为
去掉这两个选项
4,选择溴钨灯色温为2940K对应的工作电流,点击单程扫描记录溴钨灯光源全谱(不含传递函数和黑体修正).
得到如图所示的扫描线,然后计算传递函数
选择计算传递函数
软件中存了一条色温为2940K的溴钨灯的标准能量线
黑体的辐出度与黑体的绝对温度四次方成正比:
(1) 斯特藩-玻耳兹曼定律
根据实验得出黑体辐射的两条定律:
热辐射的功率随着温度的升高而迅速增加.
斯特藩常数
对于给定温度T ,黑体的单色辐出度 有一
最大值,其对应波长为 .
热辐射的峰值波长随着温度的增加而向着短波方向移动.
(2) 维恩位移定律
黑体辐射实验
大学物理实验
一,实验目的
1,了解和掌握黑体辐射的光谱分布——普朗克辐射
定律
2,了解和掌握黑体辐射的积分辐射——斯忒藩玻尔
兹曼定律
3,了解和掌握维恩位移定律
难点:通过实验掌握黑体辐射的光谱分布规律
重点:WGH—10黑体实验仪的原理和使用方法
固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子,原子受到激发而发射电磁波的现象称为热辐射.所辐射电磁波的特征仅与温度有关.
能量子假说:辐射黑体分子,原子的振动可看作
谐振子,这些谐振子可以发射和吸收辐射能.但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值.相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε, 2ε, 3ε, ... nε. n为正整数,称为量子数.
5,点击"传递函数","修正为黑体"为
√
6.在表1中任选一工作电流,点击黑体扫描,输入相对应的色温,记录溴钨灯光源在传递函数修正和黑体修正后的全谱存于寄存器-内 ,然后归一化,如图所示.
选择归一化
7,改变溴钨灯工作电流,在表1中任选4个电流值,分别进行黑体扫描,输入相应的色温,记录全谱,并分别存于其余4个寄存器内.
普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为
B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1
B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 )
双击
设置:
"工作方式"——"模式"为"能量","间隔"为"1nm"
"工作范围"——"起始波长"为"800.0nm","终止波长"为"2499.9nm","最大值"为"4000.0","最小值"为"0.0" .("最大值"与狭缝宽度有关,宽度越大,能量越大,"最大值"最多能调节为"10000")
钨丝灯的辐射光谱分布 为:
通过钨丝灯的辐射系数及测得的钨丝灯辐射光谱,用以上公式即可将钨丝灯的辐射光谱修正为绝对黑体的辐射光谱,从而进行黑体辐射定律的验证.
本实验通过计算机自动扫描系统和黑体辐射自动处理软件,可对系统扫描的谱线进行传递修正以及黑体修正,并给定同一色温下的绝对黑体的辐射谱线,以便进行比较验证.溴钨灯的工作电流与色温对应关系如下:
经整理得到
令
有
这个方程通过迭代法解得
即
可见由普朗克公式可推导得出维恩位移定律.
三,实验仪器
WGH—10黑体实验装置(包括光源,电源)
电脑及配套数据处理软件
WGH-10型黑体实验装置,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,电压可调的稳压溴钨灯光源,计算机及输出设备组成.该设备集光学,精密机械,电子学,计算机技术于一体.光路图如图 :
所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。
基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。
选择5个寄存器中的数据,再单击确定.
选择
选择
单击
相对误差=1.97%
4,将以上所测辐射曲线与绝对黑体的理论曲线进行
比较并分析之 (在同一色温下).
求黑体辐射理论的详细介绍 2007-2-4 18:23 提问者:killerkong | 浏览次数:1686次
越全面越好
不透明的材料制成带小孔的的空腔,可近似看作黑体.
研究黑体辐射的规律是了解一般物体热辐射性质的基础.
测定黑体辐出度的实验简图
P
L2
B2
A
L1
B1
C
A为黑体
B1PB2为分光系统
C为热电偶
1700K
1500K
1300K
1100K
0 1 2 3 4 5
不同的仪器溴钨灯的工作电流与色温的对应关系不同,对应关系表格编号应与溴钨灯的仪器编号相同.
2940
2.50
2860
2.30
2770
2.20
2680
2.10
2600
2.00
2550
1.90
2500
1.80
2450
1.70
2400
1.60
λ—辐射波长(μm)
T—黑体绝对温度(K、T=t+273k)
C—光速(2.998×108 m·s-1 )
h—普朗克常数, 6.626×10-34 J·S
K—波尔兹曼常数(Bolfzmann), 1.380×10-23 J·K-1 基本物理常数
对于频率为ν的谐振子最小能量为
能量
量子
经典
振子在辐射或吸收能量时,从一个状态跃迁到另一个状态.在能量子假说基础上,普朗克由玻尔兹曼分布律和经典电动力学理论,得到黑体的单色辐出度,即普朗克公式.