水闸、冲沙闸坝段水力及结构计算书(精)
水闸、冲沙闸坝段水力及结构计算书
计算书名称:进水闸、冲沙闸坝段水力及结构计算书目录1工程概况 (1)2水力计算 (1)2.1进水闸坝段过水能力计算 (1)2.2消能防冲设计 (3)2.3冲砂闸过水能力复核 (4)2.4消能防冲设计 (5)3稳定及应力计算 (6)3.1基本资料与数据 (6)3.2结构简化 (6)3.3计算公式 (6)3.4荷载计算及组合 (8)3.5计算成果 (9)3.6冲沙闸荷载计算 (12)3.7计算成果 (13)3.8计算简图 (17)1工程概况某调水工程由关山低坝引水枢纽和穿越秦岭山区的输水隧洞两大部分组成,按其供水对象及性质,根据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),工程等别为三等中型工程,主要建筑物按3级建筑物设计。
低坝无调节引水枢纽由拦河坝、冲砂闸、进水闸和输水暗渠四部分组成,前三部分在平面上呈一条直线南北方向并列布置,输水暗渠紧接进水闸并连接进水闸和输水隧洞。
两个闸均设在坝的左侧。
坝轴线位于两河口下游95m ,关山村上游约1km 处,此处河谷宽度74m ,河床宽度约60m ,高程为1467.2m ,河床漂卵石覆盖层厚5~12m ,最大15m ,其下的基岩为黑云片麻岩和斜长片麻岩,岩石强风化层厚约2~3m ,岩体分类为Ⅱ~Ⅲ类,岩层倾向上游,对防渗有利。
进水闸位于冲砂闸左侧,设计流量13.5m 3/s ,单孔布置,孔口尺寸3.0m ×2.5m ,设潜孔式弧形工作闸门和平面检修闸门。
闸室后接4m 长的1:4陡坡,陡坡后接消力池,消力池池长14m ,池深1.0m ,底板厚度1.0m ,为C20钢筋混凝土结构;消力池后与输水暗渠相接。
2水力计算2.1进水闸坝段过水能力计算 2.1.1引水渠内水深的确定Q=3/22/11R Ai n式中Q -引水渠流量,13.5m 3/s ; n -引水渠糙率,0.015;A 、χ、R 、b 、h 、m 分别为过水断面面积、湿周、水力半径、渠道底宽、水深及边坡系数,其表达式如下: A=(b+mh)h χ=b+2h 21m +; R=χA =212)(mh b h mh b +++故 13.5=1/0.015×(3+0 h )h ×(1/1000)1/2×3/2)23).03((hh h ++经试算求得:h=2.282m 2.1.2过流能力复核设计流量下的渠内水深为h=2.282m ,进口闸底板高程取为1469.00m ,即下游水位为1471.282m ,进口翼墙为圆弧形翼墙。
水闸过流能力及稳固计算[整理版]
水闸过流能力及结构计算计算说明书审查校核计算***市水利电力勘测设计院2011 年 08 月 29日1、水闸过流能力复核计算水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:2302H g b m Q s εσ=22'02ϕg bh Q h H c c ⎪⎪⎭⎫⎝⎛+=4001171.01ss b b b b ⎪⎪⎭⎫ ⎝⎛--=ε 式中:B 0—— 闸孔总净宽,(m );Q ——过闸流量,(m 3/s );H 0——计入行进流速水头的堰上水深,(m );h s ——由堰顶算起的下游水深,(m );g ——重力加速度,采用9.81,(m/s 2);m ——堰流流量系数,采用0.385;ε——堰流侧收缩系数;b 0——闸孔净宽,(m );b s ——上游河道一半水深处的深度,(m );b ——箱涵过水断面的宽度,m ;h c 进口断面处的水深,m ;s σ——淹没系数,按自由出流考虑,采用1.0;ϕ——流速系数,采用0.95;已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。
2、结构计算**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。
(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。
闸门重 2.352×9.81=23.07 KN;闸底板重25×4.0×0.7×4.1=287 KN;闸墩重25×0.8×4×2*2=320 KN;平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;柱25×2.82×0.4×0.4×4=45.12 KN;启闭力-100 KN;启闭机重0.56×9.81=5.49 KN;启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;启闭房砖墙22×0.864×4.1×4=311.73 KN;∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN ;水重 10×2.0×2.0×2.5=100 KN ;由表可知浪压力为2.35 KN ;有表可知土压力为38.49 KN ;闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ;离截面形心距离 e=()()377.477.277.477.222⨯++⨯⨯=0.91扬压力 0.5×2×10×2×2.5=-50KN ;计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式[]c c K HGf K ≥⋅=∑∑式中:Kc ——为抗滑稳定安全系数;[]c K ——规范要求的抗滑稳定安全系数最小值;∑G ——作用在防洪闸上的全部垂直力总和 ;∑H ——作用在防洪闸上的全部水平力总和;f ——闸室基底面与地基之间的摩擦系数,取0.44)计算结果工况一:∑G =951.5 KN ;∑H =33.33 KN ; K c =33.335.9514.0⨯=11.41>1.2 满足要求;工况二:∑G =1001.5 KN ;∑H =224.18 KNK c =18.2245.10014.0⨯=1.78>1.2 满足要求。
水闸计算书_secret
第一章工程选址和闸型的选择一、工程选址可考虑三个方案:①原闸址上游(第Ⅲ方案);②原闸址(第Ⅰ方案);③原闸址下游(第Ⅱ方案)。
方案比较:①方案Ⅲ:优点:闸址上移后减少xx河两岸堤围的防洪长度。
缺点:增加海堤的防潮长度,减少澄海市区的淡水面积,特别是由于现有桥闸上游附近存在大量的取水口,水闸上移新建后势必影响到这些取水口及引水渠系的正常使用,需择址破堤重建。
另外,水闸上移新建后势必打乱原有城市的规划框架,导致大量拆迁费用的产生。
②方案Ⅰ:本方案拟将旧桥闸拆除,并在原址按设计标准重建。
工程施工布置可利用现有河中砂洲经加高后作为纵向围堰分二期二年施工。
③方案Ⅱ:本方案拟将工程移至原闸址下游约2.8公里处新建,选择此处作为新闸址是因为澄海市城市规划中有一条城市干道延伸至此且新闸址地处市郊、河面相对开阔,河道水流较为平顺等有利条件。
但此时需在河中填筑一道纵向围堰和上、下游两道横向围堰。
经上面比较选原闸址(方案Ⅰ)为新建闸址位置。
二、桥闸选型(一)闸孔型式及闸底板高程开敞式及涵洞式两种基本闸型均可以采用,但若考虑运用和检修方便,则采用开敞式平底板较好,闸底板高程根据现有桥闸上下游河床的地形条件(闸上游30米处的河床高程-2.50米,闸下游60米处的河床高程-4.50米),考虑重建后桥闸的最大过流能力(尽可能减少设计情况下和校核情况下的过闸水头差),重建工程的闸底高程取-1.80米。
(二)孔口轮廓尺寸的拟定从1:1000地形图上量得进水口宽度约360米,河床土质为砂壤土,q=10~15(m 3/s·m )。
B 0=Q/q=4850/(10~15)=485~323m 经比较选B 0=360m以砂洲岛为界xx 闸分东西两闸,东闸16孔,西闸20孔(其中4孔为电站进水口不计水闸泄洪);水闸为宽顶堰,闸底标高-1.80米(珠基,下同),每孔净宽10米,采用二孔一联结构,中墩厚1.2米,缝墩厚0.9米。
水闸总净宽 B 0=36×10=360米 水闸总宽度 B=23.025×16=368.4米 (三)闸上水位计算采用1989年省设计院《韩江行洪控制线报告》的成果,各种频率的洪峰流量及相应的闸下游水位资料如下:闸上水头H 0=(gm B Q20 )2/3 式中H 0—计入行近流速水头的堰上水头; m —堰流流量系数,m=0.385; B 0—闸孔总净宽,B 0=320m ;ε—堰流侧收缩系数,对于本水闸闸孔净宽b 0=10m ,中缝b s =11.2m ,缝墩(2个)b s =11.2m 。
冲沙闸检修闸室及上部结构板梁计算 (9.6)
目录目录1 1检修间计算(采用壳单元shell93计算)5 1.1 两侧平台施加均布荷载,左侧平台施加集中荷载5图1.1 冲沙闸检修间模型和边界约束5图1.2 模型网格单元剖分5图1.3 整体弯矩分布MX(顺水流向) 6图1.4 整体剪力分布TX(顺水流向) 6图1.5 整体弯矩分布MY(垂直水流向) 7图1.6 整体剪力分布TY(垂直水流向) 7图1.7 高程1285.00m平台顺水流向内力提取板带位置8图1.8 高程1285.00m平台顺水流向板带弯矩分布8图1.9 高程1285.00m平台顺水流向板带剪力分布9图1.10 高程1285.00m平台垂直水流向内力提取板带位置9图1.11 高程1285.00m平台垂直水流向板带弯矩分布10图1.12 高程1285.00m平台垂直水流向板带剪力分布10图1.13 高程1279.50m平台顺水流向内力提取板带位置11图1.14 高程1279.50m平台顺水流向板带弯矩分布11图1.15 高程1279.50m平台顺水流向板带剪力分布12图1.16 高程1279.50m平台顺水流向内力提取板带位置12图1.17 高程1279.50m平台垂直水流向板带弯矩分布13图1.18 高程1279.50m平台垂直水流向板带剪力分布13 1.2 仅在两侧施加均布荷载14图1.19 整体弯矩分布MX(顺水流向) 14图1.20 整体弯矩分布MY(垂直水流向) 14 2 冲沙闸左边联交通桥和桩号0+003.70处板梁内力计算结果15图2.1 车辆荷载、堆积荷载和门机轮压荷载显示15图2.2 车辆荷载、堆积荷载和门机轮压荷载显示(垂直水流向)15图2.3 竖向位移16图2.4 水平向位移16图2.5 弯矩和剪力计算结果17 2.1桩号0+003.70处梁内力计算结果18图2.6 跨中弯矩剪力18图2.7 右侧弯矩剪力19图2.8 左侧弯矩剪力20 2.2桩号0+008.30处交通桥计算结果21图2.9 跨中弯矩剪力21图2.10 右侧弯矩剪力22图2.11 左侧弯矩剪力23 2.3桩号0+0011.80处交通桥计算结果24图2.12 跨中弯矩剪力24图2.13 右侧弯矩剪力25图2.14 左侧弯矩剪力263 冲沙闸左边桩号0-004.80处板梁内力计算结果27图3.1 模型网格剖分及荷载施加(左图分布荷载,右图门机轮压)27图3.2 竖向位移27图3.3 水平向位移28 3.1 桩号0-004.80处梁内力计算结果29图3.4 跨中弯矩剪力29图3.5 右侧弯矩剪力30图3.6 左侧弯矩剪力31 3.2 桩号0-005.95处梁内力计算结果32图3.7 跨中弯矩剪力32图3.8 右侧弯矩剪力33图3.9 左侧弯矩剪力34 4 冲沙闸右边联交通桥内力计算结果35图4.1 人群荷载显示35图4.2 车辆荷载显示35图4.3 竖向位移36图4.4 水平向位移36图4.5 弯矩和剪力计算结果37 4.1 桩号0+010.35处交通桥内力计算结果38图4.6 跨中弯矩剪力38图4.7 右侧弯矩剪力39图4.8 左侧弯矩剪力40 4.2 桩号0+012.15处交通桥内力计算结果41图4.9 跨中弯矩剪力41图4.10 右侧弯矩剪力42图4.11 左侧弯矩剪力43 4.3 桩号0+013.90处交通桥内力计算结果44图4.12 跨中弯矩剪力44图4.13 右侧弯矩剪力45图4.14 左侧弯矩剪力46 5 冲沙闸右边联工作闸门上部板梁内力计算结果47图5.1 人群荷载显示47图5.2 启闭荷载(左)和门机轮压荷载(右)显示47图5.3 竖向位移48图5.4 水平向位移48图5.5 桩号0+002.25和桩号0+003.03处弯矩和剪力计算结果49图5.6 桩号0+003.70和桩号0+004.33处弯矩和剪力计算结果49 5.1 桩号0+002.25处梁内力计算结果50图5.7 跨中弯矩剪力50图5.8 右侧弯矩剪力51图5.9 左侧弯矩剪力52 5.2 桩号0+003.03处梁内力计算结果53图5.10 跨中弯矩剪力53图5.11 右侧弯矩剪力545.3 桩号0+003.70处梁内力计算结果56图5.13 跨中弯矩剪力56图5.14 右侧弯矩剪力57图5.15 左侧弯矩剪力58 5.4 桩号0+004.33处梁内力计算结果59图5.16 跨中弯矩剪力59图5.17 右侧弯矩剪力60图5.18 左侧弯矩剪力61 6 冲沙闸右边联检修闸门上部板梁内力计算结果62图6.1 人群荷载显示62图6.2 门机轮压荷载显示62图6.3 竖向位移63图6.4 水平向位移63图6.5 桩号0-004.80和桩号0-005.80处弯矩和剪力计算结果64 6.1 桩号0-005.80处梁内力计算结果65图6.6 跨中弯矩剪力65图6.7 右侧弯矩剪力66图6.8 左侧弯矩剪力67 6.2 桩号0-004.80处梁内力计算结果68图6.9 跨中弯矩剪力68图6.10 右侧弯矩剪力69图6.11 左侧弯矩剪力70 7 胸墙内力计算结果71图7.1 模型网格剖分71图7.2 分布荷载显示71图7.3 集中力荷载显示72图7.4 X向位移72图7.5 Y向位移73图7.6 Z向位移73图7.7 X向应力74图7.8 Y向应力74图7.9 Z向应力75 7.1 高程1285.00m内力计算结果76图7.10 跨中弯矩剪力76图7.11 左侧弯矩剪力77图7.12 跨中弯矩剪力78图7.13 左侧弯矩剪力79 7.2 高程1279.50m内力计算结果80图7.14 跨中弯矩剪力80图7.15 左侧弯矩剪力81图7.16 跨中弯矩剪力82图7.17 左侧弯矩剪力83 7.3 高程1268.00m内力计算结果84图7.19 左侧弯矩剪力85 7.4 高程1289.50m处牛腿内力计算结果86图7.20 跨中弯矩剪力86 7.5 高程1279.50m处牛腿内力计算结果87图7.21 跨中弯矩剪力871 检修间计算(采用壳单元shell93计算)1.1 两侧平台施加均布荷载,左侧平台施加集中荷载图 1.1 冲沙闸检修间模型和边界约束图 1.2 模型网格单元剖分图 1.3 整体弯矩分布MX(顺水流向)内力方向说明:顺水流向为X轴,Mx意义为垂直X向的断面上的弯矩;Tx意义为垂直X向断面上的剪力。
水闸过流能力及稳定计算
水闸过流能力及结构计算计算说明书审查校核计算***市水利电力勘测设计院2011 年 08 月 29日1、水闸过流能力复核计算水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:2302H g b m Q s εσ=22'02ϕg bh Q h H c c ⎪⎪⎭⎫ ⎝⎛+=4001171.01ss b b b b ⎪⎪⎭⎫ ⎝⎛--=ε 式中:B 0—— 闸孔总净宽,(m );Q ——过闸流量,(m 3/s );H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m );b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; hc 进口断面处的水深,m ;sσ——淹没系数,按自由出流考虑,采用1.0;ϕ——流速系数,采用0.95;已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。
2、结构计算**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。
(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。
闸门重 2.352×9.81=23.07 KN;闸底板重25×4.0×0.7×4.1=287 KN;闸墩重25×0.8×4×2*2=320 KN;平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;柱25×2.82×0.4×0.4×4=45.12 KN;启闭力-100 KN;启闭机重0.56×9.81=5.49 KN;启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;启闭房砖墙22×0.864×4.1×4=311.73 KN;∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN;水重10×2.0×2.0×2.5=100 KN;由表可知浪压力为2.35 KN ;有表可知土压力为38.49 KN ;闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ; 离截面形心距离 e=()()377.477.277.477.222⨯++⨯⨯=0.91 扬压力 0.5×2×10×2×2.5=-50KN ;计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式 []cc K HGf K ≥⋅=∑∑式中:Kc ——为抗滑稳定安全系数;[]c K ——规范要求的抗滑稳定安全系数最小值;∑G ——作用在防洪闸上的全部垂直力总和 ;∑H ——作用在防洪闸上的全部水平力总和;f ——闸室基底面与地基之间的摩擦系数,取0.4 4)计算结果工况一:∑G =951.5 KN ;∑H =33.33 KN ; K c =33.335.9514.0⨯=11.41>1.2 满足要求;工况二:∑G =1001.5 KN ;∑H =224.18 KNK c =18.2245.10014.0⨯=1.78>1.2 满足要求。
水闸计算书
Pmax=∑ G/A+∑M/W
Pmin=∑ G/A-∑M/W
式中:
Pmax--闸室 基底应力 的最大 值;
Pmin--闸室 基底应力 的最小 值∑;G--作用 在∑闸M-室-作上用 在闸室上
324.5475
水平力P 向下游
18.7 18.7
力臂L(m)
3.5 0
3.5 1.9 3.5 1.79
0 1.8 3.76 19.75
弯矩(吨*米)
+
-
190.05018.62源自87.5913.44
33.473
0
161.1225
65.8752
222.11 348.0607
-125.9507
ΣM(吨*米) -125.9507
吨/m2< δmin=ΣG/A(1-6e/B)= 5.1373989 10吨/m2
δmax/δmin= 1.5167632 <2
满足稳定要求
a:闸室运行时(无车) 名称
闸房 闸墩及底板 启闭机及人群荷载
交通桥 闸门 垂直水水压力 浮的托力 扬压力 水平水压力
总计
3.闸室稳 定计算
重量W(吨)
+
-
54.3
366.54
A(m2)
B(m)
0
0
12.4
222.11 30.59 191.52
191.52
69.12
10.8
e=ΣMa/ΣG= 0.523 吨/m2<
δmax=ΣG/A(1+6e/B)= 7.8197751 10吨/m2
水闸、泵站、挡墙结构计算书
目录1 水闸配筋及裂缝计算 (1)1.1 基本情况 (1)1.1.1 主要计算依据规范 (1)1.1.2 计算方法 (1)1.1.3 主要参数的选取 (5)1.1.4 计算软件 (6)1.1.5 基本概况 (6)1.2 闸室段荷载及内力计算 (6)1.2.1 完建无水期 (6)1.2.2 检修期 (10)1.3 闸室段配筋计算及裂缝宽度验算 (14)1.3.1 底板底层 (14)1.3.2 底板面层 (17)1.3.3 边墩 (19)1.3.4 中墩 (21)1.4 箱涵段荷载及内力计算 (22)1.4.1 完建无水期 (22)1.4.2检修期 (26)1.5 箱涵段配筋计算及裂缝宽度验算 (26)1.5.1 底板底层 (26)1.5.2 底板面层 (29)1.5.3 顶板面层 (31)1.5.4 顶板底层 (34)1.5.5 边墩外侧 (36)2 箱涵配筋及裂缝计算 (40)2.1 基本情况 (40)2.1.1 主要计算依据规范 (40)2.1.2 计算方法及计算软件 (40)2.1.3 主要参数的选取 (40)2.1.4基本概况 (41)2.2 荷载及内力计算 (41)2.2.1 完建无水期 (42)2.2.2 校核洪水期 (47)2.3 配筋计算及裂缝宽度验算 (51)2.3.1底板 (51)2.3.2 箱涵边墩 (55)2.3.3 箱涵中墩 (58)2.3.4 箱涵顶板 (58)3 移动泵房配筋及裂缝计算 (63)3.1 基本情况 (63)3.1.1 主要计算依据规范 (63)3.1.2 计算方法及计算软件 (63)3.1.3 主要参数的选取 (63)3.1.4基本概况 (64)3.2 荷载及内力计算 (64)3.2.1 荷载计算 (65)3.2.2 内力计算 (65)3.3 配筋计算及抗裂验算 (67)3.3.1 边墩 (67)3.3.2 底板底层 (69)3.3.3 底板面层 (71)4 水闸扶壁式挡墙配筋及裂缝计算 (73)4.1 基本情况 (73)4.1.1 主要计算依据规范 (73)4.1.2 计算方法及计算软件 (73)4.1.3 主要参数的选取 (73)4.1.4基本概况 (74)4.2 内力计算 (75)4.2.1 内河扶壁挡墙 (75)4.2.2 外河扶壁挡墙 (78)4.3 配筋计算及裂缝宽度验算 (82)4.3.1 内河扶壁挡墙 (82)4.3.2 外河扶壁挡墙 (91)2.2.3 渗流稳定计算 (119)1 水闸配筋及裂缝计算1.1 基本情况1.1.1 主要计算依据规范(1)《水工混凝土结构设计规范》(SL 191-2008);(2)《水工建筑物荷载设计规范》(DL 5077-1997);(3)其他相关规程规范。
水闸设计步骤计算书(多表)范本
正向挡水
反向挡水
校核情况
正向挡水
(
根据以上算得的渗压水头值,并认为沿水平段的水头损失呈线性变化,绘出如图所示的渗压力分布图:
1、
2、
2、
(
表3-5出口渗透坡降计算表
参数
水位情况
(m)
(m)
备 注
设计正向
各水位组合情况的出口渗透坡降按式(C.2.6)计算:J=h0//s/
设计反向
校核正向
闸室结构布置
——流速系数,取1.00;
——上游行进流速。
A. <0.9时用下式计算过流能力:
>0.72时,σ= ;(《水闸设计规范》公式A.0.1-6)
≤0.72时,σ=1
侧收缩系数ε=1.0,流量系数m=0.385
B= =
B. ≥0.9时用下式计算过流能力:
闸孔总净宽:B= ==
时所需的闸孔总净宽小于初拟定的闸宽
12
内部水平段
13
内部垂直段
14
内部水平段
15
出口段
计算得:
(
根据式 计算
式中: ;
表3-2各典型段渗压水头损失计算表
渗压水头损失
设计正向
设计反向
校核正向
当底板有倾斜段时
(
(1)进口处修正系数 :
进口段水头损失应修正为: ;
进口段水头损失减小值为:
按相应公式修正各段的水头损失值为:
(2)出口处修正系数 :
式中:
φ0=0.9 =
——所有作用在闸室上垂直力的总和;
——作用在闸室上所有水平力的总和;
C0=0.3C=
——底板与地基的接触面积,A=BL=。
现列表5-9计算抗稳定安全系数如下:
水闸过流能力及稳定计算
水闸过流能力及结构计算计算说明书审查校核计算***市水利电力勘测设计院2011 年 08 月 29日1、水闸过流能力复核计算水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:2302H g b m Q s εσ=22'02ϕg bh Q h H c c ⎪⎪⎭⎫ ⎝⎛+=4001171.01ss b b b b ⎪⎪⎭⎫ ⎝⎛--=ε 式中:B 0—— 闸孔总净宽,(m );Q ——过闸流量,(m 3/s );H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m );b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; hc 进口断面处的水深,m ;s σ——淹没系数,按自由出流考虑,采用1.0;ϕ——流速系数,采用0.95;已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。
2、结构计算**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。
(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。
闸门重 2.352×9.81=23.07 KN;闸底板重25×4.0×0.7×4.1=287 KN;闸墩重25×0.8×4×2*2=320 KN;平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;柱25×2.82×0.4×0.4×4=45.12 KN;启闭力-100 KN;启闭机重0.56×9.81=5.49 KN;启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;启闭房砖墙22×0.864×4.1×4=311.73 KN;∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN;水重10×2.0×2.0×2.5=100 KN;由表可知浪压力为2.35 KN ;有表可知土压力为38.49 KN ;闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ; 离截面形心距离 e=()()377.477.277.477.222⨯++⨯⨯=0.91 扬压力 0.5×2×10×2×2.5=-50KN ;计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式 []cc K HGf K ≥⋅=∑∑式中:Kc ——为抗滑稳定安全系数;[]c K ——规范要求的抗滑稳定安全系数最小值;∑G ——作用在防洪闸上的全部垂直力总和 ;∑H ——作用在防洪闸上的全部水平力总和;f ——闸室基底面与地基之间的摩擦系数,取0.4 4)计算结果工况一:∑G =951.5 KN ;∑H =33.33 KN ; K c =33.335.9514.0⨯=11.41>1.2 满足要求;工况二:∑G =1001.5 KN ;∑H =224.18 KNK c =18.2245.10014.0⨯=1.78>1.2 满足要求。
闸门水力计算说明
水闸水力计算说明一、过流能力计算1.1外海进水外海进水时,外海水面高程取5.11m,如意湖内水面高程取l.Omo中间三孔放空闸,底板高程为-4. Om,两侧八孔防潮闸底板高程为2.0m,每孔闸净宽度为10mo表2 内海排水时计算参数特性表1.1.1中间三孔放空闸段a.判定堰流类型H 9.11 -式中8为堰壁厚度,H为堰上水头。
2. 5V5.27V10,为宽顶堰流。
b.堰流及闸孔出流判定e 5=0. 549^0. 65,为闸孔岀流。
式中,e为闸门开启高度,H为堰、闸前水头。
C.自山出流及淹没出流判定闸孔出流收缩断面水深he二e le=5. 0X0. 650=3. 25m。
式中,e为闸门开启高度,为5.0m;£1为垂向收缩系数,查《水利计算手册》(2006年第二版)中表3-4-1得0. 650o收缩断面处水流速为0.95x72x9.81x(9.11-3.25)=10.19m/So式中,“为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95;H0为闸前总水头,为9. 11m;he为收缩断面水深。
收缩断面水深he的共觇水深he” 二=6. 83m;下游水深ht=5. Om<hc" =6. 83m,故为自由出流。
d ・过流量计算根据闸孔自山出流流量计算公式 Q1 二“0 加0.503x30x5x72x9.81x9.11=1008. 71m3/so式中,口0为流量系数,平板闸门流量系数可按经验公式口0二0・ 60-0. 176e71二0. 60-0. 176X0. 549=0. 503;b 为闸孔宽度,为3X10二30m 。
1.1.2两侧八孔防潮闸段a. 判定堰流类型b. 过流量计算因泄洪闸下游与陡坡相连,水利计算可按堰流计算方法进行。
1H>10,过渡为明渠流。
H 3.11= 15.43式中5为堰壁厚度, H 为堰上水头。
-13J1=-0. 32<0. 8,为自由泄流;式中,ht为堰顶下游水深,H为堰顶上游水深。
水闸水力计算书
水闸水力计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本资料:1.国家规范:《水闸设计规范》(SL 265-2001),以下简称规范《溢洪道设计规范》(DL/T 5166-2002)2.参考书目:中国水利水电出版社《水力计算手册》(武汉水利电力学院编)中国水利水电出版社《水闸》(陈宝华、张世儒编)中国水利水电出版社《水工设计手册》(华东水利学院主编) 3.输入参数:闸坎型式: 无底坎的宽顶堰闸门型式: 平板闸门计算目标: 计算闸孔净宽闸孔数n = 1上游水位:530.730m下游水位:530.730m堰顶高程:529.000m设计流量Q = 6.500 m3/s闸门开启高度he = 531.000m闸前行近流速V = 1.500 m/s计算确定流量系数m计算确定收缩系数ε,胸墙底圆弧半径r = 0.200m上游河道一半水深处宽度bs=40.000m计算确定淹没系数σ三、计算过程:采用试算,拟定闸孔净宽bo = 3.000m计算水闸过流能力。
1.判断水流状态:Ho =H + V2/2/g =1.73+1.502/2/9.81 = 1.845 m因为:he/H=306.936>0.65,所以属于堰流2.判断是否高淹没度出流:因为:hs/Ho=0.938≥0.90,所以堰流为高淹没度出流淹没堰流综合流量系数计算公式为:μo=0.877+(hs/Ho-0.65)2μo=0.877+(1.730/1.845-0.65)2=0.960平底宽顶堰淹没堰流计入行近流速的流量计算公式为:3.流量计算:Q = μo×hs×n×bo×[2.0×g×(Ho-hs)]1/2Q =0.960×1.73×1×3.00×[2×9.81×(1.84-1.73)]1/2=7.472 m3/s 四、计算结果当闸孔净宽bo = 3.000m时,计算流量与设计流量大约相等,闸孔净宽bo = 3.000m即为所求。
水闸设计计算书
水闸设计计算书水力计算拟定底板高程为31m,则闸门高度为35-31=4m,闸孔宽深比为1.6~1.8,单孔宽度取整数为7m,闸孔总宽度取m 210307=?。
根据规范,上游水位雍高为0.1~0.3m ,先假定一个上游水位雍高,用EXCEL 进行试算,算出一个流量,之后反复试算,直到计算出的流量等于校核流量。
最后底板高程为31m ,30个孔,每孔宽7m ,溢流前缘总净宽210m ,校核情况下上游水位38.1m 。
根据经验,混凝土闸墩厚1~1.6m ,取闸墩厚1m 。
所以总宽度,最后确定总净宽210m ,总宽度268m泄流能力计算水闸闸门全开敞时的泄流能力按堰流计算(1) 校核情况:,230gH m Nb Q σε= N N bz εεε+-=)1(778.0277000=+=+=z s d b b b b ,查表5-6得941.0=z ε 823.0121772000=++=++=b z s b d b b b b ,查表5-6得964.0=b ε 942.030964.0)130(941.0)1(=+-?=+-=NN bz εεε 91.066.770==h h s 80.0=σ 5000571966.76.19385.0942.080.07303>==Q满足泄流能力渗流计算铺盖的长度为20m,厚度为0.6m,齿墙的深度和宽度为0.8m,闸室段的长度为14.5m,厚度为2m,齿墙的深度为1m,宽度为1m,板桩的长度为6m,要钢筋混凝土m L 5.340= m S 9.65.54.10=+=)(2682)130(730)1(m d n nb L =?--?=--=559.65.3400===S L m L T e 25.175.00== (2)分段阻力系数456.0441.0)25.178.0(5.1441.0)(5.12/32/31=+?=+=T S ξ 058.025.171)(7.0212==+-=T S S L ξ 296.2)]25.178.01(4cot[ln 2)]1(4cot[ln 23=-?=-=ππππξT S 801.025.17)9.68.0(7.02.194=+?-=ξ 06.2)25.179.61(4cot[ln 25=-=ππξ 102.2)]4.125.175.51(4cot[ln 26=--=ππξ 596.04.125.17)15.5(7.01157=-+?--=ξ 287.2)]4.125.1711(4cot[ln 28=--=ππξ 058.025.1719==ξ 519.0441.0)25.174.2(5.12/310=+?=ξ 233.11519.0058.0287.2596.0102.206.2801.0296.2058.0456.0101 =+++++++++=∑=i i ξ(3)各分段水头损失162.0233.114456.010111=?=?=∑=i i H h ξξ 021.0233.114058.02=?=h 818.0233.114296.23=?=h 285.0233.114801.04=?=h 734.0233.11406.25=?=h 749.0233.114102.26=?=h212.0233.114596.07=?=h 814.0233.114287.28=?=h 021.0233.114058.09=?=h 185.0233.114519.010=?=h (40进口段修正后的水头损失值.162.0)059.025.174.1(]2)25.1785.15(12[121.1)059.0'](2)'(12[121.1'22<=+?+?-=++-=T S T T β取62.0'=β100.0162.062.0''0=?==h h o β出口段修正后的水头损失值.175.0)059.025.174.2(]2)25.1785.14(12[121.1)059.0'](2)'(12[121.1'22<=+?+?-=++-=T S T T β139.0185.075.0''0=?==h h o β修正后的水头损失减少值进口段 062.0162.0)62.01()'1(1=?-=-=?h h β出口段 046.0185.0)75.01()'1(10=?-=-=?h h β水力坡降呈急变形式的长度进口段00.325.17233.114062.0'101=?=??=∑=T H h L i ix ξ出口段23.225.17233.114046.0'101=?=??=∑=T H h L i ix ξ出口段渗流坡降值046.03139.0''0===S h J闸室稳定计算)(130)274.0207.1(101KN G ==)(14661027)4.05.14()437.0207.1(212KN G =??-?-?= )(1840102747.05.143KN G ==)(42531027)2215.0)5.11(15.14(4KN G =++?= )(102062427)2215.0)5.11(15.14(6KN G =++?= )(1696525328.75.147KNG ==)(19474472.013333.042.033.042.08KN H B H k k G c b c ===σ)(352927)25)21.113.010(225.01.13.1(9KN G =+?+???=KN G 2510=)(14701021214)5.21(11KN G =+= )(51181021215.2)5.109(12KN G =+= )(4084275.5102121KN P == )(2160274102122KN P == )(11314378550927)239.11(10212710239.11)35.012.1239.11(2123KN P =-=-++?=)(05.724.025.141m L =-= )(15.2)4.05.14(3125.142m L =--= 03=L04=L06=L07=L08=L)(75.45.225.149m L =-= )(6.565.125.1410m L =-= )(25.45.075.411m L =-=)(225.1025.712m L =-= )(3.15.035.51m T =-= )(83.05.0342m T =-= )(49.070.119.2)695.5325.5()35.012.1239.11(31239.115.53m T =-=?--+++-= ))((91705.71301shun m KN M ?=?=)(315215.214662m KN M ?=?=)(1676375.435299m KN M ?=?=(顺)])(1406.52510m KN M ?=?=(逆)\)(624825.4147011m KN M ?=?=(逆))(102362511812m KN M ?=?=(顺)水平力的力偶)(53093.140841m KN H ?=?=(顺))(179383.021602m KN H ?=?=(逆))(55449.011313m KN H ?=?=(顺)∑?=+-++--+--=)(2057655417935309102366284140167633152917m KN M )(3651551181470253529191696510206425318401466130KN G =+++++++-++=∑)/(11565.1427205765.14273651522max m KN W MA G P =?+?=+=∑∑)/(7265.1427205765.14273651522min m KN W M A G P =?-?=-=∑∑ 0.2][60.172115=<==ηη 演算闸室抗滑稳定 3.13.530553651544.0>=?==∑∑P G f K c 综合摩擦系数3.14.630553651528tan tan 00>=?=+=∑∑PAC G k c φ 抗浮稳定计算 1.16.8425336515>===∑∑U V K f初步拟定调度方式为:在正常运行情况,即上游水位35m ,开启4个孔,每孔开度1.0m ,等到上下游水位比较稳定后,再把这4孔全开。
水闸计算书和图纸
洪水到来时关闸挡水,不让洪水涌入。根据水文资料,排水闸排涝标准按十年一遇 (P=10%)洪水,24 小时暴雨产生的洪水总量,24 小时排干计算。根据《xx 县城区防
1
洪工程洪水计算书》可知各排水闸的水位资料,详见排水闸洪水成果表 1.1-1。 表 1.1-1 编 河流 号 名称 1 2 3 4 5 白 沙 河 西 林 河 支流名 排水闸名称 称 樟洞水 xx中学 各排水闸洪水成果表 桩 号 地面控 制水位 (m) 68.60 68.10 70.80 73.40 66.90 外江洪水位 (m) P=2% 69.07 68.44 72.45 74.16 68.44 内江洪水成果 (P=10%) 3 P=20% Q设(m /s) 67.98 67.50 70.26 72.82 66.65 97 87 22 43 43.4
2.主要计算公式及工况
2.1 闸孔净宽 B0 计算公式 根据《水闸设计规范 SL265-2001》 ,水闸的闸孔净宽 B0 可按公式(A.0.1-1)~ (A.0.1-6)计算:
B0 Q
m 2 g H
3 2
(A.0.1-1)
0
3
单孔闸 1 0.171 1
b0 b0 4 bs bs
hs' ——出池河床水深(m) 。
2
2.4 防渗计算 2.4.1 计算工况 西林河两个排水闸的计算工况为: ①建设期,上游无水, 下游施工洪水; ②下游常 年蓄水位 67.0m,上游无水,关闸清淤;③下游 P=2%洪水位,上游水位至孔洞顶。白沙 河三个排水闸的计算工况为:①建设期,上游无水,下游施工洪水;②下游 P=2%洪水 位,上游水位至孔洞顶。 2.4.2 计算公式 2.4.2.1 渗径长度计算 水闸渗径长度必须满足闸基防渗长度要求,因此按下式计算:
水闸过流能力及稳定计算
水闸过流能力及结构计算计算说明书审查校核计算***市水利电力勘测设计院2011 年 08 月 29日1、水闸过流能力复核计算水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:2302H g b m Q s εσ=22'02ϕg bh Q h H c c ⎪⎪⎭⎫ ⎝⎛+=4001171.01ss b b b b ⎪⎪⎭⎫ ⎝⎛--=ε 式中:B 0—— 闸孔总净宽,(m );Q ——过闸流量,(m 3/s );H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m );b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; hc 进口断面处的水深,m ;sσ——淹没系数,按自由出流考虑,采用1.0;ϕ——流速系数,采用0.95;已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。
2、结构计算**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。
(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。
闸门重 2.352×9.81=23.07 KN;闸底板重25×4.0×0.7×4.1=287 KN;闸墩重25×0.8×4×2*2=320 KN;平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;柱25×2.82×0.4×0.4×4=45.12 KN;启闭力-100 KN;启闭机重0.56×9.81=5.49 KN;启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;启闭房砖墙22×0.864×4.1×4=311.73 KN;∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN;水重10×2.0×2.0×2.5=100 KN;由表可知浪压力为2.35 KN ;有表可知土压力为38.49 KN ;闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ; 离截面形心距离 e=()()377.477.277.477.222⨯++⨯⨯=0.91 扬压力 0.5×2×10×2×2.5=-50KN ;计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式 []cc K HGf K ≥⋅=∑∑式中:Kc ——为抗滑稳定安全系数;[]c K ——规范要求的抗滑稳定安全系数最小值;∑G ——作用在防洪闸上的全部垂直力总和 ;∑H ——作用在防洪闸上的全部水平力总和;f ——闸室基底面与地基之间的摩擦系数,取0.4 4)计算结果工况一:∑G =951.5 KN ;∑H =33.33 KN ; K c =33.335.9514.0⨯=11.41>1.2 满足要求;工况二:∑G =1001.5 KN ;∑H =224.18 KNK c =18.2245.10014.0⨯=1.78>1.2 满足要求。
水闸水力计算范文
水闸水力计算范文水闸是一种用于控制水流的水利工程设施,常见于河流、运河和水库中。
水闸的一个重要功能是调节水位,这对于防洪和灌溉等工程非常重要。
水闸的水力计算是指根据特定的水位和流量条件,确定水闸的尺寸和阻力等参数,以确保其正常运转和安全使用。
水闸的水力计算主要涉及以下几个方面:流量计算、水位计算、流速计算和阻力计算。
流量计算是水闸水力计算的基础,指的是确定通过水闸的水流量。
通常使用流量计或者流量测算方法进行测量。
流量计包括静力流量计和动力流量计两种类型。
静力流量计是根据测定的水位差和流过闸孔的断面积计算流量的,主要包括斜槽流量计、梯形闸流量计和射流流量计等。
动力流量计是利用流速计测定水流速度,并根据闸孔断面积计算流量的。
流量计的选择要根据水体的特性和测量的准确性进行选择。
水位计算是根据已知的流量和水闸的特性,来计算水闸的水位。
一般来说,水位的选择要根据水库或者河流的水位变化进行决策。
水位计算是根据流量-水位曲线来进行的,即根据已知流量和闸孔的尺寸计算出对应的水位。
流量-水位曲线是水闸的重要参数,能够直观的反映闸孔的流量分配特性,进而为工程设计提供依据。
流速计算是根据已知的流量和闸孔的尺寸,计算出水流的速度。
水流速度是水闸设计和运维的重要参数之一,它关系到水闸的性能和水力特性。
流速的计算可以采用不同的方法,例如流速公式和流速测量方法等。
流速公式基于质量守恒和能量守恒原理,将流量、水位和闸孔尺寸等因素进行综合考虑,以求出水流速度。
阻力计算是根据流速和水闸的特性,计算出流过水闸的阻力。
阻力是指水流经过水闸时遭受的阻碍,这与闸孔形状、材料和水流状态等因素有关。
阻力的计算可以采用不同的方法,常见的有基于Reynolds数的阻力公式和实际测量法等。
阻力的准确计算对于水闸的工程设计和正常运行非常重要,它能够直接影响到水位的变化和流量的分配。
除了以上几个方面,水闸的水力计算还需要考虑其他因素,包括水闸的运行方式、闸孔的数量和布置、闸门的开启程度等。
毕业设计水闸的水力计算
第二章水闸的水力计算2-1孔口设计计算因为该闸即要渲泄米湖洪水,又要排除龙河流域的内涝,所以拟规划为平底宽顶堰型式。
计算条件:以排涝流量设计孔径,以泄洪流量校核孔径。
一、闸孔净宽的确定(一)设计状况(排涝)设计龙河水位为2.85m,米湖水位为2.74m。
水深H为3.35m。
(1)流态的判别:h s=3.24 H=3.35 h s/H=3.24/3.35=0.0.97>0.85故出口水流为淹没流,查水闸设计规范(SD133-84)得淹没系数为0.50。
(2)侧收缩系数(ε)的确定边墩及中墩拟采用园弧型墩头,边墩计算厚度采用b b=13.60m,中墩厚度采用1.0m。
P/H=0.5/3.35=0.15中孔b0/b s=5/6=0.833查得εz=0.978边也b0/b s=5/13.60=0.368查得εb=0.933为了控制运用的方便,初步拟定闸孔数为3孔,因此侧收缩系数ε=(εz(N-1)+εb)/N=0.963(3)流量系数:由P/H=0.5/3.35=0.15查规范(SD133-84)得流量系数m=0.434 因此闸孔总净宽B0=Q/σεm(2g)1/2H03/2=84/(0.5×0.963×0.434×(19.6)1/2×3.353/2)=14.8m取净宽B0=15m,故采用3孔,每孔净宽5.0m。
(二)校核状况(泄洪)米湖水位为5.50m,龙河水位为3.80m,闸门全开时水流型式判断:3.5/6=0.58<0.65故属于孔流。
过流量计算:根据规范(SD133-84)可知:Q=B0σ’μhe(2gH0)1/2B0=15mh e/H=0.58r/h e=0.3/3.5=0.09查表知流量系数:μ=0.555收缩断面水深hc可按下式试算:h c3-T0h c2+αq2/(2gψ2)=0h c——收缩断面水深(m)T0——总势能(m),等于7.1mαc—水流动能校正系数,取1.00q——单宽流量(m3/s.m),等于6 m3/s.mψ——流速系数,采用0.95经试算得h c=0.57m其共厄水深h c”=3.36m(h e- h c”)/(H- h c”)=(3.5-3.36)/(6-3.36)=0.05查表得孔流淹没系数σ’=0.99上游作用水头H0=6.0m因此校核过流能力Q=15×0.99×0.555×3×(19.6×6)1/2=268.1m3/s满足泄洪过流要求。
水闸、冲沙闸坝段水力及结构计算书(精)
计算书名称:进水闸、冲沙闸坝段水力及结构计算书目录1工程概况.................................................................................................. 1 2水力计算.................................................................................................. 1 2.1进水闸坝段过水能力计算 ............................................................... 1 2.2消能防冲设计 ................................................................................... 3 2.3冲砂闸过水能力复核 ....................................................................... 4 2.4消能防冲设计 ................................................................................... 5 3稳定及应力计算 ..................................................................................... 6 3.1基本资料与数据 ............................................................................... 6 3.2结构简化 ........................................................................................... 6 3.3计算公式 ........................................................................................... 6 3.4荷载计算及组合 .............................................................................. 8 3.5计算成果 ........................................................................................... 9 3.6冲沙闸荷载计算 ............................................................................ 12 3.7计算成果 ......................................................................................... 13 3.8计算简图 (17)1工程概况某调水工程由关山低坝引水枢纽和穿越秦岭山区的输水隧洞两大部分组成,按其供水对象及性质,根据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),工程等别为三等中型工程, 主要建筑物按3级建筑物设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算书名称:进水闸、冲沙闸坝段水力及结构计算书目录1工程概况.................................................................................................. 1 2水力计算.................................................................................................. 1 2.1进水闸坝段过水能力计算 ............................................................... 1 2.2消能防冲设计 ................................................................................... 3 2.3冲砂闸过水能力复核 ....................................................................... 4 2.4消能防冲设计 ................................................................................... 5 3稳定及应力计算 ..................................................................................... 6 3.1基本资料与数据 ............................................................................... 6 3.2结构简化 ........................................................................................... 6 3.3计算公式 ........................................................................................... 6 3.4荷载计算及组合 .............................................................................. 8 3.5计算成果 ........................................................................................... 9 3.6冲沙闸荷载计算 ............................................................................ 12 3.7计算成果 ......................................................................................... 13 3.8计算简图 (17)1工程概况某调水工程由关山低坝引水枢纽和穿越秦岭山区的输水隧洞两大部分组成,按其供水对象及性质,根据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),工程等别为三等中型工程, 主要建筑物按3级建筑物设计。
低坝无调节引水枢纽由拦河坝、冲砂闸、进水闸和输水暗渠四部分组成,前三部分在平面上呈一条直线南北方向并列布置,输水暗渠紧接进水闸并连接进水闸和输水隧洞。
两个闸均设在坝的左侧。
坝轴线位于两河口下游95m ,关山村上游约1km 处,此处河谷宽度74m ,河床宽度约60m ,高程为1467.2m ,河床漂卵石覆盖层厚5~12m,最大15m ,其下的基岩为黑云片麻岩和斜长片麻岩,岩石强风化层厚约2~3m,岩体分类为Ⅱ~Ⅲ类,岩层倾向上游,对防渗有利。
进水闸位于冲砂闸左侧,设计流量13.5m 3/s,单孔布置,孔口尺寸3.0m×2.5m ,设潜孔式弧形工作闸门和平面检修闸门。
闸室后接4m 长的1:4陡坡,陡坡后接消力池,消力池池长14m ,池深1.0m ,底板厚度1.0m ,为C20钢筋混凝土结构;消力池后与输水暗渠相接。
2水力计算2.1进水闸坝段过水能力计算 2.1.1引水渠内水深的确定Q=3/22/11R Ai n式中Q -引水渠流量,13.5m 3/s; n -引水渠糙率,0.015;A 、χ、R 、b 、h 、m 分别为过水断面面积、湿周、水力半径、渠道底宽、水深及边坡系数,其表达式如下:A=(b+mhh χ=b+2h2m +; R=χA=22 (mh b h mh b +++故 13.5=1/0.015×(3+0 h)h ×(1/10001/2×3/2 23 . 03((hh h ++经试算求得:h=2.282m 2.1.2过流能力复核设计流量下的渠内水深为h=2.282m,进口闸底板高程取为1469.00m ,即下游水位为1471.282m ,进口翼墙为圆弧形翼墙。
按无坎宽顶堰流计算。
最低引水位为1471.50m ,则H0=1471.50-1469.0+(13.5÷4÷3 2/19.6=2.56m,下游水深为hs=2.282m0H hs =66. 2282. 2=0.86<0.9 此时,宽顶堰流处于自由出流状态,其流量公式为:Q=σεmB02/302H g式中Q -过闸流量; H0-堰上水头;σ-堰流淹没系数,σ=0.85; m -堰流流量系数,可取m=0.385;ε-侧收缩系数,取ε=0.909; b0—闸孔净宽,b0=3m。
Q=0.85×0.909×0.385×3.0×6. ×2.6623=17.14m3/s>13.5 m 3/s 故满足引流要求。
考虑到进水闸前根据引水需求需设置拦污栅,故在最低引水位时还需计入拦污栅的局部水头损失,初步估计其水头损失为Δh=0.6v2/2g,则H0=1471.50-1469.0+v2/2g-0.8 v2/2g=2.53m 下游水深为hs=2.282m0H hs =53. 2282. 2=0.901>0.9 此时,宽顶堰流处于高淹没出流状态,其流量公式为:Q=μhs B02/10 (2hs H g式中μ-淹没堰流的综合流量系数,可按下式计算μ=0.877+(hs/H0-0.65 2μ=0.0877+(0.901-0.652=0.94Q=0.94×2.282×3×g 2×(2.53-2.2821/2= 14.17m 3/s>13.5 m 3/s 故满足引流要求。
由于引水渠道的引水流量最大只能达到13.5,故在1471.5水位及其以上,应压闸运行,以保证流量不大于13.5。
2.2消能防冲设计消力池深d 可按下式计算d=σ0hc ''-hs-ΔZ hc ''=]1 (8[23-+hchhc k hc 3-T0hc 2+αq 2/(2gφ2=0ΔZ=αq 2/(2gφ2hs 2- αq 2/(2ghc’’2 式中d----消力池深度(m );σ0----水跃的淹没系数(一般取1.0~1.05 ;hc ''------以下游原河床高程为基准算出的收缩断面的跃后水深; hc-----收缩水深;α----水流动能校正系数,可采用1.0~1.05; q----单宽流量(m 2/s); b1----消力池首端宽度(m ); b2----消力池末端宽度(m );T0----由消力池底板顶面算起的总势能(m );ΔZ----出池落差(m ); hs----下游河床水深(m )。
经试算得:d=0.79 ΔZ=0.107消力池长Lsj 可按下式计算:Lsj=βLj Lj=6.9(hc’’-hc式中Lsj----消力池长度(m );Ls----消力池斜坡段水平投影长度(m );β----水跃长度校正系数,可采用(0.7~0.8); Lj----自由水跃长度(m )。
故Lj=6.9×(3.03-0.396)=18.22Lsj=βLj=+0.7×29.39=17.66 取池深1.0m, 池长14m 。
2.3冲砂闸过水能力复核该冲砂闸设计最大过流量Q=42m3/s,在非洪水期可根据冲砂要求适时开闸放水,在洪水期可关闭闸门或压闸运行,保证下泄流量不大于42m 3/s。
进口闸底板高程为1467.50m ,设计孔口尺寸为4×3.5(高×宽)。
按无坎宽顶堰流计算,进口翼墙为圆弧形翼墙。
1471.50水位时过水能力的计算出流形态判断忽略行进水头则H0=1471.50-1467.50=4.0m,下游水深为hs<2.25m(校核洪水位时下游水深hs=1469.75-1467.50=2.25m0H hs <0. 425. 2=0.563<0.9 此时,宽顶堰流处于自由出流状态,其流量公式为:Q=σεmB02/302H g式中Q -过闸流量; B0-闸孔总净宽; H0-堰上水头;σ-堰流淹没系数,σ=1.0; m -堰流流量系数,可取m=0.385;ε-侧收缩系数,取ε=0.909; b0—闸孔净宽,b0=4m。
Q=1×0.909×0.385×3.5×6. ×4.023=43.38m3/s>42 m3/s 故满足要求。
2.4消能防冲设计采用设计洪水工况作为消能防冲的设计标准。
hc ''=]1 (8[23-+hchhc k hc 3-T0hc 2+αq 2/(2gφ2=0ΔZ=αq 2/(2gφ2hs 2- αq 2/(2ghc’’2 式中σ0----水跃的淹没系数(一般取1.0~1.05 ;hc ''------以下游原河床高程为基准算出的收缩断面的跃后水深; hc-----收缩水深;α----水流动能校正系数,可采用1.0~1.05; q----单宽流量(m 3/s); b1----消力池首端宽度(m ); b2----消力池末端宽度(m );T0----由消力池底板顶面算起的总势能(m );ΔZ----出池落差(m ); hs----下游河床水深(m )。
经试算得:d=1.32 ΔZ=1.51消力池长Lsj 可按下式计算:Lsj=βLj Lj=6.9(hc’’-hc 式中Lsj----消力池长度(m );Ls----消力池斜坡段水平投影长度(m );β----水跃长度校正系数,可采用(0.7~0.8); Lj----自由水跃长度(m )。