0-1背包问题动态规划详解及代码
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
0-1背包问题的分支限界法源代码
int i;
n=nn;
c=cc;
p=new int[n];
w=new int[n];
M=new int[n];
for(i=0;i<n;i++)
{
p[i]=pp[i];
w[i]=ww[i];
M[i]=i; //用M数组记录大小顺序关系
}
front=new node[1];
front->next=NULL;
cin>>w[i];
cout<<endl;
cout<<"请输入这"<<n<<"个物品的价值P:"<<endl;
for(i=0;i<n;i++)
cin>>p[i];
Knap knbag(p,w,c,n);
knbag.solvebag();
getch();
return 0;
}
//#include "stdafx.h"
#include<iostream>
#include<cstdio>
#include<conio.h>
#include<iomanip>
using namespace std;
int *x;
struct node //结点表结点数据结构
{
node *parent;//父结点指针
{
minl=1.0*p[i]/w[i];
k=0;
for(j=1;j<=n-i;j++)
{
if(minl<1.0*p[j]/w[j])
0-1背包问题的多种解法
问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。
首先说明一下 0-1 背包问题拥有最优解。
假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。
因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。
如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
动态规划——01背包问题
动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
动态规划——背包问题python实现(01背包、完全背包、多重背包)
动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
(完整版)01背包问题
01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
分支限界法求0-1背包问题实验程序以及代码(C++)
分支限界法求0-1背包问题实验程序以及代码(C++)本程序中(规定物品数量为3,背包容量为30,输入为6个数,前3个为物品重量,后3个数为物品价值):代码:#include<iostream>#include<stack>using namespace std;#define N 100classHeapNode //定义HeapNode结点类{public:doubleupper,price,weight; //upper为结点的价值上界,price是结点所对应的价值,weight为结点所相应的重量int level,x[N]; //活节点在子集树中所处的层序号};double MaxBound(int i);double Knap();void AddLiveNode(double up,double cp,double cw,bool ch,int level);stack<HeapNode>High; //最大队Highdouble w[N],p[N]; //把物品重量和价值定义为双精度浮点数double cw,cp,c=30; //cw为当前重量,cp为当前价值,定义背包容量为30int n=3; //货物数量为3int main(){cout<<"请按顺序输入3个物品的重量:(按回车键区分每个物品的重量)"<<endl;int i;for(i=1;i<=n;i++)cin>>w[i]; //输入3个物品的重量cout<<"请按顺序输入3个物品的价值:(按回车键区分每个物品的价值)"<<endl;for(i=1;i<=n;i++)cin>>p[i]; //输入3个物品的价值cout<<"最大价值为:";cout<<Knap()<<endl; //调用knap函数输出最大价值return 0;}double MaxBound(int j) //MaxBound函数求最大上界{doubleleft=c-cw,b=cp; //剩余容量和价值上界while(j<=n&&w[j]<=left) //以物品单位重量价值递减装填剩余容量{left-=w[j];b+=p[j];j++;}if(j<=n)b+=p[j]/w[j]*left; //装填剩余容量装满背包return b;}void AddLiveNode(double up,double cp,double cw,bool ch,int lev)//将一个新的活结点插入到子集数和最大堆High中{HeapNode be;be.upper=up;be.price=cp;be.weight=cw;be.level=lev;if(lev<=n)High.push(be); //调用stack头文件的push函数}double Knap() //优先队列分支限界法,返回最大价值,bestx返回最优解{ int i=1; cw=cp=0; doublebestp=0,up=MaxBound(1); //调用MaxBound求出价值上界,best为最优值while(1) //非叶子结点{ double wt=cw+w[i];if(wt<=c) //左儿子结点为可行结点{ if(cp+p[i]>bestp) bestp=cp+p[i];AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);}up=MaxBound(i+1);if(up>=bestp) //右子数可能含最优解AddLiveNode(up,cp,cw,false,i+1);if(High.empty()) return bestp;HeapNode node=High.top(); //取下一扩展结点High.pop(); cw=node.weight; cp=node.price; up=node.upper; i=node.level;}}输出结果为:。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
动态规划之-0-1背包问题及改进
动态规划之-0-1背包问题及改进有N件物品和一个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。
形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。
数学描述为:求解最优值:设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。
所以原问题的解为m(1,C)将原问题分解为其子结构来求解。
要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。
最后求出的值即为最优值m(1,C)。
若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。
对于此时背包剩余容量j=0,1,2,3……C,分两种情况:(1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j)(2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。
若不放入物品i,则此时m(i,j)=m(i+1,j)若放入物品i,此时背包剩余容量为 j-w[i],在子结构中已求出当容量k=0,1,2……C 时的最优值m(i+1,k)。
所以此时m(i,j)=m(i+1,j-w[i])+v[i]。
01背包问题动态规划算法
01背包问题动态规划算法
01背包问题是求在限定条件下,在一定的容量内最优装载物品,使得总价值最大。
动态规划算法是一种用于解决多阶段决策问题的途径,其特点是将原问题划分成若干子问题,每个子问题只求解一次,保存子问题的解,避免了重复计算。
01背包问题动态规划算法的步骤如下:
1、确定状态:物品的种数i (i=1,2,…n),背包的容量j (j=0,1,2,…V)。
2、确定状态转移方程:f[i][j]=max{f[i-1][j],f[i-1][j-wi]+vi}。
3、确定初始状态:f[i][0]=0,f[0][j]=0。
4、确定输出:最后f[n][V]即为最优解。
5、根据状态转移方程从左到右,从上到下进行迭代计算。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
5.5动态规划求解01背包问题
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
0-1背包问题动态规划和贪心法实现
算法设计与分析实验报告实验二 0-1背包问题院系:班级:计算机科学与技术学号:姓名:任课教师:成绩:湘潭大学2016年5月实验二0-1背包问题一. 实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。
二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。
三. 算法描述/*动态规划 0-1背包问题算法如下*/Template<class Type>Void Knapsack(Type v,int w,int c,int n,Type ** m){int jMax = min(w[n] - 1,c);For(int j = 0;j <= jMax;j++){m[n][j] = 0;}For(int j = w[n];j <= c;j++){m[n][j] = v[n];}For(int i = n- 1;i > 1;i--){jMax = min(w[i] - 1,c);For(int j = 0;j <= jMax;j++) m[i][j] = m[i+1][j];For(int j = w[i];j <= c;j++) min[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c] = m[2][c];If(c >= w[1]) m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}Template<class Type>Void Traceback(Type**m,int w,int c,int n,int x){for(int i =1 ;i < n;i ++)If(m[i][c] == m[i+1][c]) x[i] = 0;Else{x[i] = 1;c -=w[i];}x[n] = (m[n][c]) ? 1:0;}按上述算法Knapsack计算后m[1][c]给出所要求的0-1背包问题的最优解。
动态规划中的0-1背包模型
动态规划中的0-1背包模型 看完题后能否形成⼀个清晰思路的关键就在于能否根据题意的描述构建出⼀个恰当的模型,适合这道题⽬本⾝同时⼜能联系⾃⼰之前头脑库中的模型。
⽽对于01背包这类模型来说,形成的关键思维就在想最后⼀个n,即⽤⼀种抽象的语⾔把最终的结果给描述出来。
01背包的例⼦就不举了,这⾥先给出⼀个简单的01背包变形的例⼦: 按照之前的逻辑,我们⽤抽象的语⾔描述这道题的结果就是:给定⼀个长度为n的数列,问从这n个数中获取某些的数的和,使这个和最⼤同时⼜不超过某个值k,问能取⼏个或者这个和是多少。
话说到这⾥,就很容易和0-1背包⼀⼀对应起来了,这个k就是0-1中的最⼤背包容量,某些数的最⼤和就是0-1背包中所有物品的最⼤价值。
不过0-1背包中的value和weight两个量在这道题⽬中缩成了num这⼀个变量。
下⾯给出两个例题,都是这样的思路。
饭卡Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18818 Accepted Submission(s): 6584Problem Description电⼦科⼤本部⾷堂的饭卡有⼀种很诡异的设计,即在购买之前判断余额。
如果购买⼀个商品之前,卡上的剩余⾦额⼤于或等于5元,就⼀定可以购买成功(即使购买后卡上余额为负),否则⽆法购买(即使⾦额⾜够)。
所以⼤家都希望尽量使卡上的余额最少。
某天,⾷堂中有n种菜出售,每种菜可购买⼀次。
已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
Input多组数据。
对于每组数据:第⼀⾏为正整数n,表⽰菜的数量。
n<=1000。
第⼆⾏包括n个正整数,表⽰每种菜的价格。
价格不超过50。
第三⾏包括⼀个正整数m,表⽰卡上的余额。
m<=1000。
n=0表⽰数据结束。
动态规划01背包问题
01 背包问题的时间复杂度为 O(nW),空间复杂度为 O(nW)。
• 选择放入第 i 个物品。此时,背包的剩余容量为 j-w[i], 所以 f[i][j] = f[i-1][j-w[i]] + v[i]。 • 不选择放入第 i 个物品。此时,f[i][j] = f[i-1][j]。
综上所述,状态转移方程为:
f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i])
01 背包问题是一种经典的动态规划问题,其目的是在限制条 件下,使得背包内的物品价值最大。
在 01 背包问题中,每种物品都有其体积和价值。同时,背 包也有一定的容量限制。问题的目标是在不超过背包容量的 前提下,使得背包内物品的价值最大。
为了解决 [j]表示前 i 个物品放入一个容量为 j 的背包可以获得的最大价值。然后,我们考虑第 i 个物品的 选择情况,其中有两种情况:
0-1背包问题动态规划详解及代码
0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。
其关键是发现子问题和记录其结果。
然后利用这些结果减轻运算量。
比如01背包问题。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。
输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。
所以,我们的程序要从1到M一个一个的试。
比如,开始任选N 件物品的一个。
看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。
怎么能保证总选择是最大价值呢?看下表。
测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。
加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。
总的最佳方案是5+4为9.这样.一排一排推下去。
最右下放的数据就是最大的价值了。
(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。
完全背包问题和0-1背包问题
1.实验目的(结出本次实验所涉及并要求掌握的知识点)利用动态规划策略解决0-1背包和完全背包问题2.实验内容(结出实验内容具体描述)(1)0-1 Knapsack Problem和Unbounded Knapsack Problem的算法进行实现(2)对0-1Knapsack Problem的算法进行空间优化,使其空间复杂度达到O(W)3.算法描述及实验步骤(用适当的形式表达算法设计思想与算法实现步骤)1. 二维数组的0-1背包空间O(nW)int record[100][100]; // 0-1 背包的二维表void ZO_knapsack_1(int num,int room){// 针对每一个物品进行筛选,看他是否是构成最终max的组成int i,j;for(i=0;i<=num;i++)for(j=0;j<=room;j++)record[i][j]=0; // 初始化record表for(i=1;i<=num;i++){for(j=0;j<=room;j++){if(a[i][0]>j)record[i][j]=record[i-1][j];else{if(record[i-1][j-a[i][0]]+a[i][1]>record[i-1][j])record[i][j]=record[i-1][j-a[i][0]]+a[i][1];elserecord[i][j]=record[i-1][j];}}}}int arry[100]; // 一维记录表int carry[100]; // 是否拿走该物品记录void ZO_knapsack_2(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=room;j>=a[i][0];j--){ //逆序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}3. 一维数组实现完全背包空间:O(W)void UNbounded(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=a[i][0];j<=room;j++){ //顺序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}}4.调试过程及运行结果(详细记录在调试过程中出现的问题及解决方法。
01背包问题 的python代码
以下是一个使用动态规划解决0-1背包问题的Python代码示例:
```python
def knapsack(weights, values, capacity):
n = len(weights)
dp = [[0 for _ in range(capacity+1)] for _ in range(n+1)]
for i in range(1, n+1):
for j in range(1, capacity+1):
if weights[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1])
return dp[n][capacity]
```
这个函数接受三个参数:一个包含物品重量的列表`weights`,一个包含物品价值的列表`values`,以及一个背包容量`capacity`。
它返回最大价值。
在这个函数中,我们使用一个二维数组`dp` 来保存状态。
其中,`dp[i][j]` 表示在前`i` 个物品中,背包容量为`j` 时的最大价值。
我们通过比较当前物品的重量和剩余容量来判断是否将当前物品放入背包中。
如果当前物品的重量超过了剩余容量,那么我们只能
选择不放入背包。
否则,我们可以选择将当前物品放入背包中,此时背包容量会减少,我们需要在前`i-1` 个物品中找到一个最优解,然后将当前物品的价值加到最优解上。
最后,我们返回`dp[n][capacity]`,表示在前`n` 个物品中,背包容量为`capacity` 时的最大价值。
0-1背包问题的递归方法
0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。
定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。
递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。
1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。
代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0/1背包问题动态规划详解及C代码
动态规划是用空间换时间的一种方法的抽象。
其关键是发现子问题和记录其结果。
然后利用这些结果减轻运算量。
比如01背包问题。
/*一个旅行者有一个最多能用M公斤的背包,现在有N件物品,
它们的重量分别是W1,W2,...,Wn,
它们的价值分别为P1,P2,...,Pn.
若每种物品只有一件求旅行者能获得最大总价值。
输入格式:
M,N
W1,P1
W2,P2
......
输出格式:
X*/
因为背包最大容量M未知。
所以,我们的程序要从1到M一个的试。
比如,开始任选N件物品的一个。
看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。
怎么能保证总选择是最大价值呢?看下表。
测试数据:
10,3
3,4
4,5
5,6
c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.
这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放
4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放
4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为
4."而背包容量为5的时候,则最佳方案为自己的重量
5."背包容量为7的时候,很显然是5加上一个值了。
加谁??很显然是7-4=3的时候.上一排c3的最佳方案是
4."所以。
总的最佳方案是5+4为
9."这样.一排推下去。
最右下放的数据就是最大的价值了。
(注意第3排的背包容量为7的时候,最佳方案不是本身的
6."而是上一排的
9."说明这时候3号物品没有被选.选的是1,2号物品.所以得
9.")
从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?
下面是实际程序(在VC
6."0环境下通过):
#include<stdio.h>
int c[10][100];/*对应每种情况的最大价值*/
int knapsack(int m,int n){int i,j,w[10],p[10];
printf("请输入每个物品的重量,价值:
\n");
for(i=1;i<=n;i++)
scanf("%d,%d",&w[i],&p[i]);
for(i=0;i<10;i++)
for(j=0;j<100;j++)
c[i][j]=0;/*初始化数组*/
for(i=1;i<=n;i++)
for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
/*如果本物品的价值加上背包剩下的空间能放的物品的价值*/
/*大于上一次选择的最佳方案则更新c[i][j]*/
c[i][j]=p[i]+c[i-1][j-w[i]];
else
c[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;
printf("请输入背包的承重量,物品的总个数:
\n");
scanf("%d,%d",&m,&n);
printf("旅行者背包能装的最大总价值为%d",knapsack(m,n));
printf("\n"); return 0;}。