第一章 解三角形 章末复习

合集下载

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学解三角形章末复习课

高中数学解三角形章末复习课

知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
(2)由 S=12absin C=10 3,C=π3,得 ab=40.① 由余弦定理得:c2=a2+b2-2abcos C, 即 c2=(a+b)2-2ab(1+cos 3π), ∴72=(a+b)2-2×40×1+12.∴a+b=13.② 由①②得 a=8,b=5 或 a=5,b=8.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
例 2 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且满 足(2a-b)cos C=c·cos B,△ABC 的面积 S=10 3,c=7. (1)求角 C; (2)求 a,b 的值.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
高中知数识学网·必络修5·人教A版
章末复习
第一章 解三角形
目标:正弦定理、余弦定理,解三角形与三角函数的综合问题 重点:解三角形与三角函数结合 难点:正弦定理、余弦定理,解三角形与三角函数的综合问题
知识网络 要点归纳 题型研修
知识网络
第一章 解三角形
知识网络 要点归纳 题型研修
要点归纳
第一章 解三角形
所以 sin A=sin(π-B-C)=sin34π-B
=sin
3π 4 cos
B-cos
3π 4 sin
B=7102.
由正弦定理,得 c=assiinnAC=170,
所以 S=12acsin B=12×2×170×45=87.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
例3 (2015·课标全国Ⅱ)如图,在△ABC中,D是BC上的点, AD平分∠BAC,△ABD面积是△ADC面积的2倍.

八年级上册第一章三角形整章复习知识点和对应练习

八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

专题01 三角形章末重难点题型(解析版)

专题01 三角形章末重难点题型(解析版)

专题01 三角形章末重难点题型汇编【举一反三】【考点1 三角形的稳定性】【方法点拨】理解稳定性:“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.【例1】(2019春•永泰县期中)如图小方做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A.B.C.D.【思路点拨】根据三角形的稳定性进行解答.【答案】解:根据三角形的稳定性可得C是最好的加固方案.故选:C.【方法总结】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.【变式1-1】(2019秋•西陵区校级期中)将几根木条用钉子钉成如图的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.【思路点拨】根据三角形具有稳定性进行解答.【答案】解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.【方法总结】此题主要考查了三角形的稳定性,是需要识记的内容.【变式1-2】(2018秋•桐梓县校级期中)图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A.1个B.2个C.3个D.4个【思路点拨】用木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,可用三角形的稳定性解释.【答案】解:如图:A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边.故选:A.【方法总结】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【变式1-3】(2019秋•安陆市期中)我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十二边形至少再钉上()A.11根B.10根C.9根D.8根【思路点拨】根据分成三角形个数与边数的关系,需要的木条数等于过多边形的一个顶点的对角线的条数,由此得出答案即可.【答案】解:过n边形的一个顶点可以作(n﹣3)条对角线,把多边形分成(n﹣2)个三角形,所以,要使一个十二边形木架不变形,至少需要12﹣3=9根木条固定.故选:C.【方法总结】此题考查了图形的变化规律,考虑把多边形分成三角形是解题的关键.【考点2 判断三角形的高】【方法点拨】三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【例2】(2019春•海州区期中)如图,△ABC中的边BC上的高是()A.AF B.DB C.CF D.BE【思路点拨】根据三角形高的定义即可解答.【答案】解:△ABC中的边BC上的高是AF,故选:A.【方法总结】本题考查了三角形的角平分线、中线和高:过三角形的一个顶点引对边的垂线,这个点与垂足的连线段叫三角形的高.【变式2-1】(2019春•大丰区期中)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【思路点拨】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【答案】解:过点C作AB边的垂线,正确的是C.故选:C.【方法总结】本题是一道作图题,考查了三角形的角平分线、高、中线,是基础知识要熟练掌握.【变式2-2】(2019春•苏州期中)如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【思路点拨】根据直角三角形的性质即可直接得出结论.【答案】解:∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;故选:B.【方法总结】本题考查的是三角形高的性质,熟知直角三角形的三条高的交点恰好是三角形的一个顶点是解答此题的关键.【变式2-3】(2018春•南岗区校级期中)如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个【思路点拨】根据三角形的高的定义以及平行线的性质,即可解答.【答案】解:∵BD是△ABC的高,∴∠ADB=∠CDB=90°,∵EF∥AC,∴∠EGB=∠ADB=90°,∴BG是△EBF的高,①正确;∵∠CDB=90°,∴CD是△BGC的高,②正确;∵∠ADG=∠CDG=90°,∴DG是△AGC的高,③正确;∵∠ADB=90°,∴AD是△ABG的高,④正确.故选:D.【方法总结】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,理解定义是关键.也考查了平行线的性质.【考点3 三角形边角关系的应用】【方法点拨】掌握三角形两边的和大于第三边,三角形两边的差小于第三边是解题关键.【例3】(2019春•福州期末)用一根长为10cm的绳子围成一个三角形,若所围成的三角形中一边的长为2cm,且另外两边长的值均为整数,则这样的围法有()A.1种B.2种C.3种D.4种【思路点拨】根据三角形的两边之和大于第三边,根据周长是10厘米,可知最长的边要小于5厘米,进而得出三条边的情况.【答案】解:∵三角形中一边的长为2cm,且另外两边长的值均为整数,∴三条边分别是2cm、4cm、4cm.故选:A.【方法总结】本题主要考查了学生根据三角形三条边之间的关系解决问题的能力.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【变式3-1】(2019秋•银海区期末)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0B.2a+2b+2c C.4a D.2b﹣2c【思路点拨】首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.【答案】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.【方法总结】此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.【变式3-2】(2019春•秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b【思路点拨】先根据三角形的三边关系求得第三边的取值范围,再确定这个三角形的周长l的取值范围即可.【答案】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长L的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.【方法总结】考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.【变式3-3】(2019•孝感模拟)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6B.7C.8D.9【思路点拨】两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【答案】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.【方法总结】本题考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.【考点4 多边形的相关概念】【方法点拨】了解凸多边形的定义,掌握多边形对角线与所分成三角形个数之间的关系:从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.【例4】(2019春•道里区期末)下列选项中的图形,不是凸多边形的是()A.B.C.D.【思路点拨】根据凸多边形的概念,如果多边形的边都在任何一条边所在的直线的同旁,该多边形即是凸多边形.否则即是凹多边形.【答案】解:图形不是凸多边形的是A.故选:A.【方法总结】本题主要考查了凸多边形的定义,正确理解凸多边形的定义是解决此类问题的关键.【变式4-1】(2019秋•德州校级月考)要使一个五边形具有稳定性,则需至少添加()条对角线.A.1B.2C.3D.4【思路点拨】根据三角形具有稳定性,过一个顶点作出所有对角线即可得解.【答案】解:如图需至少添加2条对角线.故选:B.【方法总结】本题考查了三角形具有稳定性的应用,作出图形更形象直观.【变式4-2】(2018秋•南城县期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6B.5C.8D.7【思路点拨】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成(n﹣2)个三角形.【答案】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【方法总结】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.【变式4-3】(2018秋•绵阳期中)一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10【思路点拨】根据截去一个角后边数增加1,不变,减少1讨论得解.【答案】解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.【方法总结】本题考查了多边形,关键是理解多边形截去一个角后边数有增加1,不变,减少1三种情况.【考点5 多边形内角和与外角和的应用】【方法点拨】(1)掌握多边形内角和计算公式:(n-2) ×180 °(n ≥3的整数),多边形的外角和等于360°特别注意:与边数无关.【例5】(2019春•吴江区期中)一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【思路点拨】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【答案】解:设这个多边形的边数为n,依题意得(n﹣2)×180°=3×360°,解得n=8,∴这个多边形为八边形,故选:D.【方法总结】此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.【变式5-1】(2018秋•桐梓县校级期中)如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了()米.A.100B.120C.140D.60【思路点拨】根据多边形的外角和为360°,由题意得到小明运动的轨迹为正10边形的周长,求出即可.【答案】解:由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).故选:B.【方法总结】此题考查了多边形的内角与外角,熟练掌握多边形的外角和定理是解本题的关键.【变式5-2】(2019春•江都区期中)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.180°B.90°C.210°D.270°【思路点拨】根据两直线平行,同旁内角互补得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【答案】解:延长AB,DC,∵AB∥CD,∴∠4+∠5=180°,根据多边形的外角和定理可得∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选:A.【方法总结】本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.【变式5-3】(2019春•江阴市期中)如图,在六边形ABCDEF中,∠A+∠B+∠E+∠F=α,CP、DP分别平分∠BCD、∠CDE,则∠P的度数是()A.α﹣180°B.180°﹣αC.αD.360°﹣α【思路点拨】由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD=720°①,由角平分线定义得出∠BCP=∠DCP,∠CDP=∠PDE,根据三角形内角和定理得出∠P+∠PCD+∠PDE=180°,得出2∠P+∠BCD+∠CDE=360°②,由和②即可求出结果.【答案】解:在六边形ABCDEF中,∠A+∠B+∠E+∠F+∠CDE+∠BCD=(6﹣2)×180°=720°①,∵CP、DP分别平分∠BCD、∠CDE,∴∠BCP=∠DCP,∠CDP=∠PDE,∵∠P+∠PCD+∠PDE=180°,∴2(∠P+∠PCD+∠PDE)=360°,即2∠P+∠BCD+∠CDE=360°②,①﹣②得:∠A+∠B+∠E+∠F﹣2∠P=360°,即α﹣2∠P=360°,∴∠P=α﹣180°;故选:A.【方法总结】本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.【考点6 三角形内角和定理的应用】【方法点拨】三角形内角和等于180°.【例6】(2019春•石景山区期末)如图,BD平分∠ABC.∠ABD=∠ADB.(1)求证:AD∥BC;(2)若BD⊥CD,∠BAD=α,求∠DCB的度数(用含α的代数式表示).【思路点拨】(1)想办法证明∠ADB=∠DBC即可.(2)利用平行线的性质,三角形的内角和定理即可解决问题.【答案】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD∵∠ABD=∠ADB,∴∠ADB=∠DBC,∴AD∥BC.(2)解:∵AD∥BC,且∠BAD=α,∴∠ABC=180°﹣α,∴∠DBC=∠ABC=90°﹣α,∵BD⊥CD,∴∠BDC=90°∴∠C=90°﹣(90°﹣α)=α.【方法总结】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-1】(2018秋•包河区期末)如图,△ABC中,∠ACB>90°,AE平分∠BAC,AD⊥BC交BC的延长线于点D.(1)若∠B=30°,∠ACB=100°,求∠EAD的度数;(2)若∠B=α,∠ACB=β,试用含α、β的式子表示∠EAD,则∠EAD=.(直接写出结论即可)【思路点拨】(1)根据垂直的定义得到∠D=90°,根据邻补角的定义得到∠ACD=180°﹣100°=80°,根据三角形的内角和得到∠BAC=50°,根据角平分线的定义得到∠CAE=∠BAC=25°,于是得到结论;(2)根据垂直的定义得到∠D=90°,得到∠ACD=180°﹣β,求得∠BAC=90°﹣α﹣(β﹣90°)=180°﹣α﹣β,根据角平分线的定义得到∠CAE=∠BAC=90°﹣(α+β),根据角的和差即可得到结论.【答案】解:(1)∵AD⊥BC,∴∠D=90°,∵∠ACB=100°,∴∠ACD=180°﹣100°=80°,∴∠CAD=90°﹣80°=10°,∵∠B=30°,∴∠BAD=90°﹣30°=60°,∴∠BAC=50°,∵AE平分∠BAC,∴∠CAE=∠BAC=25°,∴∠EAD=∠CAE+∠CAD=35°;(2)∵AD⊥BC,∴∠D=90°,∵∠ACB=β,∴∠ACD=180°﹣β,∴∠CAD=90°﹣∠ACD=β﹣90°,∵∠B=α,∴∠BAD=90°﹣α,∴∠BAC=90°﹣α﹣(β﹣90°)=180°﹣α﹣β,∵AE平分∠BAC,∴∠CAE=∠BAC=90°﹣(α+β),∴∠EAD=∠CAE+∠CAD=90°﹣(α+β)+β﹣90°=β﹣α.故答案为:β﹣α.【方法总结】本题考查了三角形的内角和,角平分线的定义,正确的识别图形是解题的关键.【变式6-2】(2019春•福州期末)如图,在△ABC中,∠ABC的平分线交AC于点D.作∠BDE=∠ABD 交AB于点E.(1)求证:ED∥BC;(2)点M为射线AC上一点(不与点A重合)连接BM,∠ABM的平分线交射线ED于点N.若∠MBC =∠NBC,∠BED=105°,求∠ENB的度数.【思路点拨】(1)利用角平分线的定义,进行等量代换,得出内错角相等,从而两直线平行;(2)分两种情况分别进行解答,根据每一种情况画出相应的图形,依据图形中,角之间的相互关系,转化到一个三角形中,利用三角形的内角和定理,设未知数,列方程求解即可.【答案】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,又∵∠BDE=∠ABD,∴∠BDE=∠DBC,∴ED∥BC;(2)∵BN平分∠ABM,∴∠ABN=∠NBM,①当点M在线段AC上时,如图1所示:∵DE∥BC,∴∠ENB=∠NBC,∵∠MBC=∠NBC,∴∠NBM=∠MBC=∠NBC,设∠MBC=x°,则∠EBN=∠NBM=x°,∠ENB=∠NBC=2x°,在△ENB中,由内角和定理得:x+2x+105°=180°,解得:x=25,∴∠ENB=2x=50°,②当点M在AC的延长线上时,如图2所示:∵DE∥BC,∴∠ENB=∠NBC,∵∠MBC=∠NBC,∴∠NBM=3∠MBC,设∠MBC=x°,则∠EBN=∠NBM=3x°,∠ENB=∠NBC=2x°,在△EMB中,由内角和定理得:3x+2x+105°=180°,解得:x=15,∴∠ENB=2x=30°,答:∠ENB的度数为50°或30°.【方法总结】综合考查角平分线的定义、平行线的性质、三角形的内角和定理等知识,分类讨论,分别画出相应的图形,利用等量代换和图形中角之间的关系布列方程是解决问题常用的方法.【变式6-3】(2018秋•丰城市期末)已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.(1)∠DBC+∠DCB=度;(2)过点A作直线直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.【思路点拨】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)在Rt△ABC中,根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,即,∴∠ABD+∠BAC=90°﹣∠ACD=70°,整体代入即可得出结论.【答案】解:(1)在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;故答案为90;(2)在△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠BAC,∴∠ABD+∠BAC=90°﹣∠ACD=70°.又∵MN∥DE,∴∠ABD=∠BAN.而∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°,∴∠CAM=180°﹣(∠ABD+∠BAC)=110°.【方法总结】此题主要考查了三角形内角和定理,平行线的性质,解本题的关键是求出∠ABD+∠BAC=70°.【考点7 三角形外角性质的应用】【方法点拨】三角形的外角等于与它不相邻的两个内角的和.【例7】(2019春•宝应县期中)如图,在Rt△ABC中,∠ACB=90°,∠A=34°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【思路点拨】(1)根据三角形的外角的性质求出∠CBD,根据角平分线的定义计算,得到答案;(2)根据平行线的性质解答即可.【答案】解:(1)∵∠ACB=90°,∠A=34°,∴∠CBD=124°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=62°;(2)∵∠ECB=90°,∠CBE=62°,∴∠CEB=28°,∵DF∥BE,∴∠F=∠CEB=28°.【方法总结】本题考查的是三角形的外角的性质、平行线的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【变式7-17】(2018春•岱岳区期中)如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB 于D,DF⊥CE于F,求∠ACE和∠CDF的度数.【思路点拨】根据三角形内角和定理求出∠ACB,根据角平分线的定义求出∠ACE;根据垂直的定义、三角形内角和定理求出∠CDF.【答案】解:∵∠A=30°,∠B=62°,∴∠ACB=180°﹣30°﹣62°=88°;∵CE平分∠ACB,∴∠ACE=∠BCE=∠ACB=44°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=28°,∴∠ECD=∠ECB﹣∠BCD=16°,∵DF⊥CE,∴∠CDF=90°﹣∠DCF=74°.【方法总结】本题考查的是三角形内角和定理、三角形的外角的性质以及角平分线的定义,掌握三角形内角和等于180°是解题的关键.【变式7-2】(2018春•商水县期末)如图,∠BAD=∠CBE=∠ACF,∠FDE=64°,∠DEF=43°,求△ABC各内角的度数.【思路点拨】根据三角形外角性质得到∠FDE=∠BAD+∠ABD,而∠BAD=∠CBE,则∠FDE=∠BAD+∠CBE=∠ABC=64°;同理可得∠DEF=∠ACB=43°,然后根据三角形内角定理计算∠BAC=180°﹣∠ABC﹣∠ACB即可.∠BAD=∠CBE=∠ACF,∠FDE=48°,∠DEF=64°,【答案】解:∵∠FDE=∠BAD+∠ABD,∠BAD=∠CBE∴∠FDE=∠BAD+∠CBE=∠ABC,∴∠ABC=64°;同理∠DEF=∠FCB+∠CBE=∠FCB+∠ACF=∠ACB,∴∠ACB=43°;∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣64°﹣43°=73°,∴△ABC各内角的度数分别为64°、43°、73°.【方法总结】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形外角的性质,熟记:三角形的外角等于与它不相邻的两个内角之和是解题的关键.【变式7-3】(2019春•南开区校级月考)如图,在△ABC中,AD是高,∠DAC=10°,AE是∠BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.【思路点拨】根据直角三角形的性质求出∠BAD的度数,得到∠BAC的度数,根据邻补角的性质求出∠CAM的度数,根据角平分线的定义求出∠MAE的度数,根据三角形的外角的性质计算即可.【答案】解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°﹣∠ABC=44°,又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°,∵AE是∠BAC外角的平分线,∴∠MAE=∠MAC=63°,∵BF平分∠ABC,∴∠ABF=∠ABC=23°,∴∠AFB=∠MAE﹣∠ABF=40°.【方法总结】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【考点8 利用互余关系倒角】【方法点拨】直角三角形两锐角互余,通常利用这一结论进行倒角.【例8】(2019春•莲湖区期中)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【思路点拨】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CF A=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【答案】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CF A=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【方法总结】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.【变式8-1】(2011春•越城区校级期中)如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P,已知∠EPD=125°,求∠BAD的度数.【思路点拨】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CBE的度数,再根据角平分线的定义求出∠ABC的度数,然后利用直角三角形的两锐角互余列式计算即可得解.【答案】解:∵AD是BC边上的高线,∠EPD=125°,∴∠CBE=∠EPD﹣∠ADB=125°﹣90°=35°,∵BE是一条角平分线,∴∠ABD=2∠CBE=2×35°=70°,在Rt△ABD中,∠BAD=90°﹣∠ABD=90°﹣70°=20°.故答案为:20°.【方法总结】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,准确识图,根据图形找出图中各角之间的关系是解题的关键.【变式8-2】在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE,垂足为F,过点B作BD ⊥BC,交CF的延长线于点D,若∠D=65°,求∠EAC的度数.【思路点拨】根据直角三角形的两个锐角互余进行解答即可.【答案】解:在RT△DBC中,∠D=65°,可得:∠DCB=25°,在RT△ACE中,∠DCB=25°,可得:∠ACF=65°,在RT△ACF中,∠ACF=65°,可得:∠EAC=25°.【方法总结】此题考查直角三角形的性质,关键是根据直角三角形的两个锐角互余进行解答.【变式8-3】(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状是什么?为什么?(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?【思路点拨】(1)根据直角三角形的性质得出∠ACD+∠A=∠B+∠DCB=90°,再解答即可;(2)根据直角三角形的性质得出∠ADE+∠A=∠A+∠B=90°,再解答即可;(3)根据直角三角形的性质得出∠ABC+∠A=∠ABC+∠DBE=∠DBE+∠D=90°,再解答即可.【答案】解:(1)∠ACD=∠B,理由如下:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠DCB=90°,∴∠ACD=∠B;(2)△ADE是直角三角形.∵在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,∠A为公共角,∴∠AED=∠ACB=90°,∴△ADE是直角三角新;(3)∠A+∠D=90°.∵在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,∴∠ABC+∠A=∠ABC+∠DBE=∠DBE+∠D=90°,∴∠A+∠D=90°.【方法总结】此题考查直角三角形的性质,关键是根据直角三角形的性质得出两锐角互余.。

解三角形 高一期末复习

解三角形 高一期末复习

解三角形一、知识梳理:三角形中的有关公式:(1)内角和定理:π=++C B A ,这是三角形中三角函数问题的特殊性,解题可不能忘记!锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方。

(2)正弦定理:R R CcB b A a (2sin sin sin ===为三角形外接圆的半径). ①C B A c b a sin :sin :sin ::=;②R a A 2sin = R b B 2s i n = RcC 2s i n =③=a R A 2sin ⋅ R B b 2s i n⋅= R C c 2sin ⋅= 已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.A 为锐角 A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=等,常选用余弦定理鉴定三角形的形状.(4)面积公式:)(21sin 2121c b a r C ab ah S a ++===(其中r 为三角形内切圆半径) 特别提醒:(1)求解三角形中的问题时,一定要注意π=++C B A 这个特殊性:C B A -=+π,2cos 2sin ,sin )sin(CB AC B A =+=+;(2)求解三角形中含有边角混合关系问题时,常运用正弦定理、余弦定理实现边角互化。

二、典型例题:题型一:利用正、余弦定理解三角形1、在ABC ∆中,若,60,2,6 ===B BC AC 则______=C 。

2、下列条件判断三角形解的情况,正确的是_______①30,16,8===A b a ,有两解; ②60,20,18===B c b ,有一解; ③90,2,15===A b a ,无解 ④150,25,30===A b a ,有一解 3、设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c .已知41cos ,2,1===C b a . (1)求ABC ∆的周长(2)求)cos(C A -的值.题型二:判断三角形形状1、在ABC ∆中,,cos sin 2sin C B A =且C B A 222sin sin sin +=,试判断ABC ∆的形状。

高中数学必修5第一章:解三角形

高中数学必修5第一章:解三角形

外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.

A

,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.

高二数学必修五 第一章 解三角形

高二数学必修五 第一章 解三角形

高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。

②.n a 的求法:i.归纳法。

ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。

iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。

iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。

第一章 解三角形复习指南

第一章 解三角形复习指南

必修五第一章解三角形一.基础知识1. 正弦定理:ABC ∆中,2sin sin sin a b c R A B C===(R 是ABC ∆外接圆半径) 正弦定理变式:(1)2sin ,2sin ,2sin a R A b R B c R C ===(2)::sin :sin :sin a b c A B C =(3)111sin sin sin 222ABC S ab C ac B bc A ∆===(4)正弦定理可以解决:①已知两角与任一边:或;②已知两边(5)中线长:AM =. 2. 余弦定理:ABC ∆中,2222cos a b c bc A =+-;或222cos 2b c a A bc+-=.(1) 余弦定理可以解决:①已知三边(2) cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.二.必做题1.在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ;【解析】已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况.具体判断方法如下:在△ABC 中.已知a 、b 和A ,求B .若A 为锐角,①当a ≥b 时,有一解;②当a =b sin A 时,有一解;③当b sin A <a <b 时,有两解;④当a <b sin A 时,无解.若A 为直角或钝角,①当a >b 时,有一解;②当a ≤b 时,无解.【解答】(1)由正弦定理a sin A =b sin B 得,sin A =32. ∵a >b ,∴A >B ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. 综上,A =60°,C =75°,c =6+22,或A =120°,C =15°,c =6-22. 【注意】注意答案的写法。

【数学】第一章《解三角形复习》课件(新人教B版必修5)

【数学】第一章《解三角形复习》课件(新人教B版必修5)


A
A.
2 , B.
3 , C . 2, D .
5
4 6
1
本章知识框架图
正弦定理 解 三 角 形 余弦定理 应 用 举 例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解
三角形问题;
3、解三角形的实际应用问题
练习
一、选择题:

2.在 A B C 中 , A 60 , a
A 6 , b 3, 则 A B C 解 得 情 况 是
C. 有两解,


A .无解, B. 有一解,
1、 在 A B C 中 , A C =
D. 不能确定 .

3 , A 45 , C 75 , 则 BC
变式 2、 已知 ABC 中 , s inA : sin B : sin C 1 :
7:
3 , 那么 B 等于 150° ____
变式 3、 已知 ABC 中 , b c) : (c a) : (a b) 4 : 5 : 6 , 那么 A 等于 ____ (
变式 4、 已知 ABC 中 ,a
必修5 解三角形复习
一、正弦定理及其变形:
a sin A b sin B
变 形

c sin C
2R
( R为 三 角 形 外 接 圆 半 径 )
a 2 R sin A b 2 R sin B c 2 R sin C
(sin A (sin B (sin C
a 2R b 2R c 2R
) ) )
a : b : c sin A : sin B : sin C

浙教版九年级下《第一章解直角三角形》期末复习试卷(含解析)

浙教版九年级下《第一章解直角三角形》期末复习试卷(含解析)

期末复习:浙教版九年级数学学下册第一章解直角三角形一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,如果AB=6,BC=3,那么cosB的值是()A. √32B. √55C. √33D. 122.已知tanA=1,则锐角A的度数是A. 30°B . 45° C.60° D.75°3.在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为( )A. √55B. 2√55C. 12D. 24.如图,其中A,B,C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C 地在A地北偏东75°方向.且BD=BC=30cm.从A地到D地的距离是()A. 30 √3 mB. 20 √5m C. 30 √2m D. 15 √6 m5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=2,BC=1,则sin∠ACD=()A. √53B. 2√55C. √52D. 236.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海里C到航线AB的距离CD是()A. 20海里B. 40海里 C. 20√3海里 D. 40√3海里7.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C. msin35°D. mcos35°8.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是()A. 24°B . 34° C.44° D.46°,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的9.如图,在△ABC中,∠B=90°,tan∠C= 34速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm210.如图,已知mm是△mmm的角平分线,mm是mm的垂直平分线,∠mmm=90°,mm=3,则mm的长为()A. 6B. 5C. 4D. 3√3二、填空题(共8题;共24分)11.计算:3tan30°+sin45°=________.)﹣2﹣|1﹣√3 |﹣(π﹣2015)0﹣2sin60°+ √12 =________.12.计算:(12,那么∠A=________゜.13.如果∠A是锐角,且sinA= 1214.B在A北偏东30°方向(距A)2千米处,C在B的正东方向(距B)2千米处,则C和A之间的距离为________ 千米.15.如图,在平面直角坐标系xOy内有一点Q(3,4),那么射线OQ与x轴正半轴的夹角α的余弦值是________,则BC的长是________16.如图,在△ABC中,∠C=90°,AB=8,sinA=3417.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是________.x于点B1, B2,18.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= √32x于点B3,…,按过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y= √32照此规律进行下去,则点A n的横坐标为________.三、解答题(共9题;共66分)19.计算:√12−|−2|+(1−√3)0−9tan30°20.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?21.某游乐场一转角滑梯如图所示,滑梯立柱mm,mm均垂直于地面,点m在线段mm上.在m点测得点m的仰角为300,点m的俯角也为300,测得m,m间的距离为10米,立柱mm高30米.求立柱mm 的高(结果保留根号).22.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(B,F,D在同一条直线上)。

期末复习:解三角形

期末复习:解三角形

高三期末复习:解三角形一、知识点梳理: 1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用 2、余弦定理:在△ABC 中,A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=也可以写成第二种形式:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+=3、疑点:解三角形问题解决过程中,注意:① 角的联系:π=++C B A ② 角的范围:),0(,,π∈C B A ③ 边角的关系与转换,如:sin sin A B a b A B >⇔>⇔>△ABC 的面积公式,B ac A bc C ab S sin 21sin 21sin 21=== 二、诊断练习:1、判定下列三角形的形状(1)在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。

(2)在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。

(3)在△ABC 中,已知bc a A ==2,21cos ,请判断△ABC 的形状。

(4)在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。

(5)在三角形ABC 中,sinA=sin sin sin cosB+cosCB CA +=,判断三角形的形状2、在△ABC 中,已知030,4,5===A b a ,则△ABC 的面积__________;3、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为__________;4、在△ABC 中,若△ABC 的面积为S ,且22)(2c b a S -+=,则tanC 的值__________; 5、在△ABC 中,已知87cos ,6,0222===--A a c bc b ,则△ABC 的面积__________; 三、典型例题1、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=.(Ⅰ)求BAtan tan 的值; (Ⅱ)求tan()A B -的最大值.2、在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.3、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .4、在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45+θ(其中sin θ=26,090θ<< )且与点A 相距海里的位置C .(I )求该船的行驶速度(单位:海里/小时);(II )若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.四、课后练习:1、等腰三角形顶角的正弦值为2524,则底角的余弦值为__________; 2、在ΔABC 中,若2cosBsinA =sinC ,则ΔABC 的形状一定是__________三角形;3、在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断,其中正确的是__________; ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+4、在直角三角形ABC 中,A 、B 为锐角,则sinAsinB 的取值范围是__________;5、在ΔABC 中,sinA ︰sinB ︰sinC =2︰3︰4,则cos C =__________;6、给出下列四个命题,则正确的命题为__________;⑴ 若sin2A=sin2B ,则△ABC 是等腰三角形 ⑵ 若sinA=cosB ,则△ABC 是直角三角形 ⑶ 若cosA·cosB·cosC <0, 则△ABC 是钝角三角形 ⑷ 若cos(A -B)cos(B -C)cos(C -A) = 1, 则△ABC 是等边三角形7、已知△ABC 中,135cos ,54sin ==B C ,则A cos =__________; 8、在ABC ∆中,D 为BC 中点,45,30,BAD CAD ∠=︒∠=︒2=AB ,则AD =__________;9、已知△ABC 中,AB 边上的高与AB 边的长相等,则2AC BC AB BC AC BC AC++⋅的最大值为__________; 10、在△ABC 中,求证:2222112cos 2cos ba b B a A -=-11、设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (1)求B 的大小; (2)求cos sin A C +的取值范围.12、在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.13、如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120 .已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的 半径OA 的长(精确到1米).。

高中数学人教A版必修五第一章《解三角形》章末知识整合

高中数学人教A版必修五第一章《解三角形》章末知识整合

数学·必修5(人教A版)题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A=b sin B,得sinB =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?题型4 正、余弦定理在实际问题中的应用如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.。

人教课标版高中数学必修5《解三角形》章末总结

人教课标版高中数学必修5《解三角形》章末总结

人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr (S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:A>90° A=90° A<90° a>b 一解 一解 一解 a=b无解 无解 一解a<ba>bsinA 两解 无解 无解 a=bsinA 一解a<bsinA无解9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2.余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角.例1..(2011江西卷17).(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,23a =,tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c例2..(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==。

2019人教版数学必修5第一章 解三角形

2019人教版数学必修5第一章 解三角形

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C解析 由正弦定理a sin A =bsin B,得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C解析 由a sin A =b sin B 得sin B =b sin A a =2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C ) =3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A , 化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°, 即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: 1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C ,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C . 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2, ∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A=6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明 因为在△ABC 中,a sin A =b sin B =csin C =2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A=sin Bsin A .12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A =sin 120° cos A -cos 120°sin Asin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ;(3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a =a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C ,∴C =45° .二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30° 解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60° =12 ∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.答案 120° 解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎪⎨⎪⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∴sin C =22.∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R .(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B . 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角, 则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2, 则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2. 由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3.三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且·=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设· =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a ,∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin ∠ACB sin ∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°.由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎫x -5142-257+100 ∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小.二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得 BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile). 即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°,由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形.∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km. 能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. ∴B 1B 2=10 2.因此,乙船速度的大小为10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△P AB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( )A .16B .17.5C .18D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α, 则a +b =9,a 2+b 2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16.二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =t v ,AC =3t v ,B =120°,由正弦定理知BC sin ∠CAB=ACsin B ,∴1sin ∠CAB =3sin 120°, ∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝⎛⎫-12=3a 2,∴AC =3a . 8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12,由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A = 1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β), ∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β).即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M . DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m).在△DEF 中,由余弦定理的变形公式,得 cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0)C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β) 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49.6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( ) A .30° B .60° C .120° D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2解析 如图所示,BC sin 45°=ACsin 30°∴BC =AC sin 30°×sin 45°=2012×22=20 2 (km). 三、解答题11.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.解 由(a +b +c )(b +c -a )=3bc , 得b 2+2bc +c 2-a 2=3bc ,即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =π3.又sin A =2sin B cos C .∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴b 2=c 2,b =c ,∴△ABC 为等边三角形.12.在△ABC 中,若已知三边为连续正整数,最大角为钝角. (1)求最大角的余弦值;(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积. 解 (1)设这三个数为n ,n +1,n +2,最大角为θ, 则cos θ=n 2+(n +1)2-(n +2)22·n ·(n +1)<0,化简得:n 2-2n -3<0⇒-1<n <3.。

解直角三角形知识点章末重难点题型(举一反三)

解直角三角形知识点章末重难点题型(举一反三)

专题1.4解直角三角形章末重难点题型【考点1 锐角三角函数的定义】【方法点拨】锐角角A的正弦(sin),余弦(cos)和正切(tan),都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边,余弦(cos)等于邻边比斜边正切(tan)等于对边比邻边.【例1】(2020•平房区二模)在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AB的长为()A.mcosαB.m•cosαC.m•sinαD.m•tanα【分析】根据解直角三角形的三角函数解答即可.【解答】解:如图所示:∵cosα=BC AB,∴AB=m cosα,故选:A .【点评】本题考查了锐角三角函数的定义的应用,关键是根据学生的理解能力和计算能力解答. 【变式1-1】(2019秋•沈河区校级期中)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,下列各组线段的比不能表示sin ∠BCD 的( )A .BD BCB .BCABC .CD BCD .CD AC【分析】根据三角形内角和定理求出∠BCD =∠A ,再解直角三角形得出即可. 【解答】解:∵CD ⊥AB , ∴∠CDA =∠CDB =90°, ∵∠ACB =90°,∴∠BCD +∠ACD =90°,∠A +∠ACD =90°, ∴∠BCD =∠A ,∴sin ∠BCD =sin A =BCAB =CDAC =BDBC , 即只有选项C 错误,选项A 、B 、D 都正确, 故选:C .【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键,注意:在Rt △ACB 中,∠C =90°,则sin A =BC AB ,cos A =AC AB ,tan A =BC AC ,cot A =AC BC. 【变式1-2】(2019秋•包河区期末)如图,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sin A 的式子为( )A .BD ABB .CD OCC .AEADD .BEOB【分析】根据BD ⊥AC 于D ,CE ⊥AB 于E ,利用锐角三角函数的定义进行求解即可. 【解答】解:A 、∵BD ⊥AC 于D ,CE ⊥AB 于E ,∴sin A=BDAB=EC AC,故A不合题意;B、∵∠A+∠ACE=90°,∠ACE+∠COD=90°,∴∠A=∠COD,∴sin A=sin∠COD=CDOC,故B不合题意;C、无法得出sin A=AEAD,符合题意;D、∵∠BOE=∠COD,∴∠A=∠BOE,∴sin A=sin∠BOE=BEBO,故D不合题意;故选:C.【点评】本题主要考查的是锐角三角函数的定义的有关知识,正确掌握边角关系是解题关键.【变式1-3】(2020•下城区模拟)如图,△ACB中,∠ACB=Rt∠,已知∠B=α,∠ADC=β,AB=a,则BD的长可表示为()A.a•(cosα﹣cosβ)B.atanβ−tanαC.a cosα−a⋅sinαtanβD.a•cosα﹣a sinα•a•tanβ【分析】利用锐角三角函数关系分别表示出BC,DC的长进而得出答案.【解答】解:∵∠C=90°,∠B=α,∠ADC=β,AB=a,∴cos B=cosα=BCAB=BC a,则BC=a•cosα,sin B=sinα=ACAB=AC a,故AC=a•sinα,则tanβ=AC DC,故DC=ACtanβ=a⋅sinαtanβ,则BD =BC ﹣DC =a •cos α−a⋅sinαtanβ. 故选:C .【点评】此题主要考查了锐角三角函数的定义,正确表示出DC 的长是解题关键. 【考点2网格中的锐角三角函数值计算】【方法点拨】解决此类问题的关键在于构造直角三角形,利用勾股定理求解各边的长度,有时还会运用面积法来求解关键边的长度.【例2】(2020•岳麓区模拟)如图,在6×6的正方形网格中,△ABC 的顶点都在小正方形的顶点上,则tan ∠BAC 的值是( )A .45B .43C .34D .35【分析】过点B 作BD ⊥AC ,交AC 延长线于点D ,利用正切函数的定义求解可得. 【解答】解:如图,过点B 作BD ⊥AC ,交AC 延长线于点D ,则tan ∠BAC =BDAD =34, 故选:C .【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A 的对边a 与邻边b 的比叫做∠A 的正切.【变式2-1】(2020•南海区一模)如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠OAB 的正弦值是 .【分析】过点O 作OC ⊥AB 的延长线于点C ,构建直角三角形ACO ,利用勾股定理求出斜边OA 的长,即可解答.【解答】解:如图,过点O 作OC ⊥AB 的延长线于点C ,则AC =4,OC =2,在Rt △ACO 中,AO =√AC 2+OC 2=√42+22=√20=2√5, ∴sin ∠OAB =OCOA =22√5=√55. 故答案为:√55. 【点评】本题考查了解直角三角形,锐角三角函数的定义和勾股定理,作出辅助线并利用网格构造直角三角形是解题的关键.【变式2-2】(2020•铁东区三模)如图,将∠BAC 放置在5×5的正方形网格中,如果顶点A 、B 、C 均在格点上,那么∠BAC 的正切值为 .【分析】连接BC ,先利用勾股定理逆定理证△ABC 是等腰直角三角形,再根据正切函数的定义可得. 【解答】解:如图所示,连接BC ,则AB =BC =√12+32=√10,AC =√22+42=2√5, ∴AB 2+BC 2=10+10=20=AC 2,∴△ABC 是等腰直角三角形,且∠ABC =90°, ∴∠BAC =45°,则tan ∠BAC =1, 故答案为:1.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及其逆定理和三角函数的定义. 【变式2-3】(2020•泰兴市一模)如图,△ABC 的三个顶点都在正方形网格的格点上,则sin ∠ACB 的值为 .【分析】根据勾股定理,可得BC 、AC 的长,求出△ABC 的面积,求出高AN ,解直角三角形求出即可.【解答】解:设小正方形的边长为1,则由勾股定理得:BC =√32+42=5,AC =√12+22=√5, ∵S △ABC =S △BDC ﹣S 正方形EAFD ﹣S △AFC ﹣S △BEA =12×4×3−1×1−12×1×2−12×3×1=52, ∴12×BC ×AN =52,∴AN =1,∴sin ∠ACB =ANAC =1√5=√55,故答案为:√55. 【点评】本题考查了锐角三角函数的定义和勾股定理,能构造直角三角形是解此题的关键,注意:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 【考点3锐角三角函数的增减性】【方法点拨】解决此类问题的关键在于掌握锐角三角函数的增减性,当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小)【例3】(2019秋•新乐市期中)sin58°、cos58°、cos28°的大小关系是( )A.cos28°<cos58°<sin58°B.sin58°<cos28°<cos58°C.cos58°<sin58°<cos28°D.sin58°<cos58°<cos28°【分析】先把正弦化成余弦,然后根据锐角三角函数值的变化规律:锐角余弦值随着角度的增大而减小进行排列大小.【解答】解:sin58°=cos32°.∵58°>32°>28°,∴cos58°<cos32°<cos28°,∴cos58°<sin58°<cos28°.故选:C.【点评】本题考查了锐角三角形的增减性,当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).也考查了互余两角的三角函数之间的关系.【变式3-1】(2020春•兴庆区校级月考)比较大小:(1)cos35°cos45°,tan50°tan60°;(2)若sinα=0.3276,sinβ=0.3274,则αβ.【分析】(1)根据余弦值随角度的增大余弦值越小,正切值随角度的增增大而增大,进而得出答案;(2)利用正弦值随角度的增大而增大,进而得出答案.【解答】解:(1)cos35°>cos45°,tan50°<tan60°;故答案为:>,<;(2)∵sinα=0.3276,sinβ=0.3274,则α>β.故答案为:>.【点评】此题主要考查了锐角三角函数的增减性,熟练记忆锐角三角函数增减性是解题关键.【变式3-2】(2020•高邮市一模)比较大小:sin81°tan47°(填“<”、“=”或“>”).【分析】根据sin81°<1,tan47°>1即可求解.【解答】解:∵sin81°<sin90°=1,tan47°>tan45°=1,∴sin81°<1<tan47°,∴sin81°<tan47°.故答案为<.【点评】本题考查了锐角三角函数值的增减性:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).也考查了不等式的传递性.【变式3-3】(2019•丰台区模拟)如图所示的网格是正方形网格,∠AOB∠COD.(填“>“,“=”或“<“)【分析】连接CD,则CD⊥OD,过B作BE⊥OA于E,在Rt△OBE与Rt△OCD中,分别求∠AOB、∠COD的正切,根据锐角的正切值随着角度的增大而增大作判断即可.【解答】解:连接CD,则CD⊥OD,过B作BE⊥OA于E,在Rt△OBE中,tan∠AOB=BEOE=2,在Rt△OCD中,tan∠COD=CDOD=33=1,∵锐角的正切值随着角度的增大而增大,∴∠AOB>∠COD,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.【考点4同角三角函数的关系】【方法点拨】解决此类问题的关键在于掌握同角三角函数的关系:平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA =sinAcosA 或sinA =tanA •cosA .【例4】(2019•东明县一模)如图,P 是∠α的边OA 上一点,且点P 的横坐标为3,sin α=45,则tan α=( )A .35B .34C .43D .45【分析】先由sin α=PQOP =45求得PQ =4,OP =5,再根据正切函数的定义求解可得. 【解答】解:如图,由sin α=PQ OP =45可设PQ =4a ,OP =5a , ∵OQ =3,∴由OQ 2+PQ 2=OP 2可得32+(4a )2=(5a )2, 解得:a =1(负值舍去), ∴PQ =4,OP =5, 则tan α=PQOQ =43, 故选:C .【点评】本题考查了锐角三角函数的定义,勾股定理的应用,能求出PQ 、OP 的长是解此题的关键. 【变式4-1】(2020春•西湖区校级月考)若∠a 为锐角,且tan a 是方程x 2﹣2x ﹣3=0的一个根,则sin α等于( ) A .1B .√22C .√1010D .3√1010【分析】运用因式分解法解方程,根据锐角三角函数值都大于0,确定tan α的值,再根据锐角三角函数的定义求解.【解答】解:解方程x 2﹣2x ﹣3=0,得 x =﹣1或x =3. ∵tan a >0, ∴tan a =3.设α所在的直角三角形的对边是3,则邻边是1. 根据勾股定理,得斜边是√10. 所以sin α=3√1010. 故选:D .【点评】此题综合考查了一元二次方程的解法和锐角三角函数的知识.【变式4-2】(2020秋•丰泽区校级月考)在Rt △ABC 中,∠C =90°,下列式子正确的是( ) A .sin A +cos A <1 B .sin A +cos A =1C .sin A +cos A >1D .sin A +cos A ≥1【分析】根据三角函数的定义得到sin A =a c,cos A =b c,则sin A +cos A =a+bc,然后根据三角形三边的关系可判断sin A +cos A >1.【解答】解:∵sin A =a c,cos A =b c, ∴sin A +cos A =a+bc, ∵a +b >c , ∴sin A +cos A >1. 故选:C .【点评】本题考查了同角三角函数的关系:平方关系:sin 2A +cos 2A =1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tan A =sinAcosA 或sin A =tan A •cos A . 【变式4-3】(2019秋•肥西县期末)已知sin αcos α=18,且0°<α<45°,则sin α﹣cos α的值为( ) A .√32B .−√32C .34D .±√32【分析】把已知条件两边都乘以2,再根据sin 2α+cos 2α=1,进行配方,然后根据锐角三角函数值求出cos α与sin α的取值范围,从而得到sin α﹣cos α<0,最后开方即可得解.【解答】解:∵sin αcos α=18,∴2sin α•cos α=14,∴sin 2α+cos 2α﹣2sin α•cos α=1−14,即(sin α﹣cos α)2=34,∵0°<α<45°,∴√22<cos α<1,0<sin α<√22, ∴sin α﹣cos α<0,∴sin α﹣cos α=−√32.故选:B .【点评】本题考查了同角的三角函数的关系,利用好sin 2α+cos 2α=1,并求出sin α﹣cos α<0是解题的关键.【考点5互余两角三角函数的关系】【方法点拨】解决此类问题的关键在于掌握互余角的三角函数间的关系:sin (90°-α)=cos α, cos(90°-α)=sinα,【例5】如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D .给出下列四个结论:①sin α=sin B ;②sin β=sin C ;③sin B =cos C ;④sin α=cos β.其中正确的结论有 .【分析】本题主要考查锐角三角函数的定义,根据∠A =90°,AD ⊥BC ,可得∠α=∠B ,∠β=∠C ,再利用锐角三角函数的定义可列式进行逐项判断.【解答】解:∵∠BAC =90°,AD ⊥BC ,∴∠α+∠β=90°,∠B +∠β=90°,∠B +∠C =90°,∴∠α=∠B ,∠β=∠C ,∴sin α=sin B ,故①正确;sin β=sin C ,故②正确;∵在Rt △ABC 中sin B =AC BC ,cos C =AC BC, ∴sin B =cos C ,故③正确;∵sin α=sin B ,cos ∠β=cos C ,∴sin α=cos ∠β,故④正确;故答案为①②③④.【点评】本题主要考查锐角的三角函数,解题的关键是熟练掌握互余两角的三角函数间的关系.【变式5-1】已知α为锐角,sin α+cos (90°﹣α)=√3,则α= .【分析】求出sin α的值即可解决问题;【解答】解:∵sin α+cos (90°﹣α)=√3,∴2sin α=√3,∴sin α=√32,∴α=60°,故答案为60°.【点评】本题考查互余两角三角函数的关系,特殊角的三角函数值等知识,记住sin A =cos (90°﹣∠A ),cos A =sin (90°﹣∠A )是解题的关键;【变式5-2】若a <60°,且sin (60°﹣a )=1215,则cos (30°+a )= .【分析】由于60°﹣α+30°+α=90°,且α<60°,即60°﹣α和30°+α互余,根据互余两角的三角函数的关系即可得到cos (30°+α)=sin (60°﹣a )=45.【解答】解:∵60°﹣α+30°+α=90°,且α<60°,∴cos (30°+α)=sin (60°﹣a )=45.故答案为45. 【点评】本题考查了互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .【变式5-3】化简:√(1−sin57°37′)2−|cos32°23′−1|= .【分析】先化简二次根式和去绝对值符号,再根据互余两角三角函数的关系计算即可求解.【解答】解:√(1−sin57°37′)2−|cos32°23′−1|=1﹣sin57°37′+cos32°23′﹣1=1﹣sin57°37′+sin57°37′﹣1=0.故答案为:0.【点评】考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sin A=cos B或sin B=cos A.【考点6特殊角的三角函数值的计算】【方法点拨】解决此类问题的关键在于熟记特殊角三角函数值:【例6】(2020•灌云县模拟)计算:(1)2sin30°+3cos60°﹣4tan45°(2)cos230°1+sin30°+tan260°【分析】(1)直接利用特殊角的三角函数值进而分别代入求出答案;(2)直接利用特殊角的三角函数值进而分别代入求出答案.【解答】解:(1)原式=2×12+3×12−4×1=1+32−4=−32;(2)原式=(√32)1+122+(√3)2=3432+3=72.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【变式6-1】(2020•青浦区一模)计算:3tan30°−1cos60°+√8cos45°+√(1−tan60°)2【分析】代入特殊角的三角函数值即可.【解答】解:原式=3×√33−112+√8×√22+√(1−√3)2=√3−2+2+√3−1=2√3−1.【点评】考查了特殊角的三角函数值,属于只记内容,熟练掌握特殊角的三角函数值,代入求值即可.【变式6-2】(2020•涡阳县模拟)计算:2sin260°−cos60°tan60°+4cos45°【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式=2×(√32)2−12(3)2+4×√22=3+22=√2(3+2√2)(3−2√2)=3﹣2√2.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【变式6-3】(2019秋•碑林区校级期中)计算(1)3tan60°﹣tan245°﹣2cos30°.(2)√1−2tan30°+tan230°+2sin230°−sin45°cos45°.【分析】(1)直接利用特殊角的三角函数值分别代入化简得出答案;(2)直接利用特殊角的三角函数值分别代入化简得出答案.【解答】解:(1)原式=3√3−1﹣2×√3 2=3√3−1−√3=2√3−1;(2)原式=(1−√33)2+2×(12)2√2222=1−√33+12−1=−√33+12.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【考点7特殊角的三角函数值中的新定义问题】【例7】(2020•丛台区校级一模)嘉琪在某次作业中得到如下结果:sin 27°+sin 283°≈0.122+0.992=0.9945,sin 222°+sin 268°≈0.372+0.932=1.0018,sin 229°+sin 261°≈0.482+0.872=0.9873,sin 237°+sin 253°≈0.602+0.802=1.0000,sin 245°+sin 245°=(√22)2+(√22)2=1.据此,嘉琪猜想:在Rt △ABC 中,∠C =90°,设∠A =α,有sin 2α+sin 2(90°﹣α)=1.(1)当α=30°时,验证sin 2α+sin 2(90°﹣α)=1是否成立.(2)请你对嘉琪的猜想进行证明.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A =α,则∠B =90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解:(1)当α=30°时,sin 2α+sin 2(90°﹣α)=sin 230°+sin 260°=(12)2+(√32)2=14+34=1;(2)嘉琪的猜想成立,证明如下:如图,在△ABC 中,∠C =90°,设∠A =α,则∠B =90°﹣α,∴sin 2α+sin 2(90°﹣α)=(BC AB )2+(AC AB )2=BC 2+AC 2AB 2=AB 2AB 2=1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.【变式7-1】阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sin α=BC AC cos α=AB AC tan α=BC AB一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sin αcos β+cos αsin βsin (α﹣β)=sin αcos β﹣cos αsin β例如sin15°=sin (45°﹣30°)=sin45°cos30°﹣cos45°sin30°=√22×√32−√22×12=√6−√24根据上述材料内容,解决下列问题:(1)计算:sin75°= √2+√64 ;(2)在Rt △ABC 中,∠A =75°,∠C =90°,AB =4,请你求出AC 和BC 的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC 和BC 的值.【解答】解:(1)sin75°=sin (30°+45°)=sin30°cos45°+cos30°sin45°=12×√22+√32×√22=√2+√64,故答案为:√2+√64.(2)Rt △ABC 中,∵sin ∠A =sin75°=BC AB =√2+√64∴BC =AB ×√2+√64=4×√2+√64=√2+√6∵∠B=90﹣∠A ∴∠B=15°∵sin∠B=sin15°=ACAB=√6−√24∴AC=AB×√6−√24=√6−√2【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.【变式7-2】规定:sin(﹣x)=﹣sin x,cos(﹣x)=cos x,sin(x+y)=sin x•cos y+cos x•sin y.据此(1)判断下列等式成立的是(填序号).①cos(﹣60°)=−12;②sin2x=2sin x•cos x;③sin(x﹣y)=sin x•cos y﹣cos x•sin y.(2)利用上面的规定求①sin75°②sin15°.【分析】(1)根据已知中的定义以及特殊角的三角函数值即可判断;(2)利用已知进而将原式变形求出答案.【解答】解:(1)①cos(﹣60°)=cos60°=12,命题错误;②sin2x=sin x•cos x+cos x•sin x=2sin x•cos x,命题正确;③sin(x﹣y)=sin x•cos(﹣y)+cos x•sin(﹣y)=sin x•cos y﹣cos x•sin y,命题正确.故答案为:②③;(2)①sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°=12×√22+√32×√22=√24+√64=√6+√24;②sin15°=sin(45°﹣30°)=sin45°•cos30°﹣cos45°•sin30°=√22×√32−√22×12=√6−√24.【点评】本题考查锐角三角函数以及特殊角的三角函数值,正确理解三角函数的定义是关键.【变式7-3】对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.【分析】(1)按照题目所给的信息求解即可;(2)分三种情况进行分析:①当∠A =30°,∠B =120°时;②当∠A =120°,∠B =30°时;③当∠A =30°,∠B =30°时,根据题意分别求出m 的值即可.【解答】解:(1)由题意得,sin120°=sin (180°﹣120°)=sin60°=√32,cos120°=﹣cos (180°﹣120°)=﹣cos60°=−12,sin150°=sin (180°﹣150°)=sin30°=12;(2)∵三角形的三个内角的比是1:1:4,∴三个内角分别为30°,30°,120°,①当∠A =30°,∠B =120°时,方程的两根为12,−12, 将12代入方程得:4×(12)2﹣m ×12−1=0, 解得:m =0,经检验−12是方程4x 2﹣1=0的根,∴m =0符合题意;②当∠A =120°,∠B =30°时,两根为√32,√32,不符合题意; ③当∠A =30°,∠B =30°时,两根为12,√32, 将12代入方程得:4×(12)2﹣m ×12−1=0,解得:m =0,经检验√32不是方程4x 2﹣1=0的根. 综上所述:m =0,∠A =30°,∠B =120°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是按照题目所给的运算法则求出三角函数的值和运用分类讨论的思想解题,难度一般.【考点8解直角三角形】【方法点拨】解决此类问题的关键在于解直角三角形(Rt△ABC,∠C=90°)①三边之间的关系:a 2+b 2=c 2;②两锐角之间的关系:∠A+∠B=90°;③边角之间的关系;正弦(sin )等于对边比斜边,余弦(cos)等于邻边比斜边正切(tan)等于对边比邻边.;④解直角三角形中常见类型:①已知一边一锐角.②已知两边.【例8】(2020秋•沙坪坝区校级月考)如图,在△ABC中,AD是BC边上的高,BC=14,AD=12,sin B=4 5.(1)求线段CD的长度;(2)求cos∠C的值.【分析】根据sin B=45,求得AB=15,由勾股定理得BD=9,从而计算出CD,再利用三角函数,求出cos∠C的值即可.【解答】解:(1)∵AD是BC上的高,∴∠ADB=∠ADC=90°.∵sin B=45,AD=12,∴AB=15,∴BD=√AB2−AD2=√152−122=9,∵BC=14,∴DC=BC﹣BD=14﹣9=5;(2)由(1)知,CD=5,AD=12,∴AC=√AD2+CD2=√122+52=13,cos C=CDAC=513.【点评】本题考查了解直角三角形中三角函数的应用,熟练掌握好三角形边角之间的关系是解题的关键.【变式8-1】(2020•浦城县一模)如图,在Rt△ABC中,设a,b,c分别为∠A,∠B,∠C的对边,∠C=90°,b=8,∠A的平分线AD=163√3,求∠B,a,c的值.【分析】根据锐角三角函数,可以求得∠CAD的度数,从而可以得到∠CAB的度数,然后即可得到∠B 的度数,再根据锐角三角函数即可得到a、c的值.【解答】解:∵∠C=90°,b=8,∠A的平分线AD=163√3,∴cos∠CAD=ACAD=81633=√32,∴∠CAD=30°,∴∠CAB=60°,∴∠B=30°,∴c=2b=16,a=btan30°=33=8√3,即∠B=30°,a=8√3,c=16.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用锐角三角函数解答.【变式8-2】(2020秋•东明县期末)如图,Rt△ABC中,∠A=90°,AD、AE分别是BC边的中线和高,若cos B=35,BC=10.(1)求AB的长;(2)求AE的长;(3)求sin∠ADB的值.【分析】(1)在Rt△ABC中,通过解直角三角形可求出AB的长;(2)在Rt△ABC中,利用勾股定理可求出AC的长,再利用面积法可求出AE的长;(3)利用直角三角形斜边上的中线等于斜边的一半可求出AD的长,在Rt△AED中,利用正弦的定义可求出sin∠ADB的值.【解答】解:(1)在Rt△ABC中,∠A=90°,cos B=ABBC,BC=10,∴AB=BC•cos B=10×35=6.(2)在Rt△ABC中,∠A=90°,BC=10,AB=6,∴AC =√BC 2−AB 2=√102−62=8.∵AE 是BC 边的高,∴12AC •AB =12BC •AE ,即12×8×6=12×10AE , ∴AE =245. (3)Rt △ABC 中,AD 是BC 边的中线,BC =10,∴AD =12BC =5.在Rt △AED 中,∠AED =90°,AD =5,AE =245, ∴sin ∠ADB =AE AD =2455=2425.【点评】本题考查了解直角三角形以及勾股定理,解题的关键是:(1)利用余弦的定义,找出AB =BC •cos B ;(2)利用面积法,求出AE 的长;(3)利用正弦的定义,求出sin ∠ADB 的值.【变式8-3】(2019秋•解放区校级期中)如图,在△ABC 中,∠ACB =90°,cos A =35,BC =12,D 是AB 的中点,过点B 作直线CD 的垂线,垂足为点E .求:(1)线段CD 的长;(2)cos ∠ABE 的值.【分析】(1)在△ABC 中根据正弦的定义得到cos A =AC AB =35,则可计算出AB =15,然后根据直角三角形斜边上的中线性质即可得到CD =12AB =152.(2)在Rt △ABC 中先利用勾股定理计算出AC =6,在根据三角形面积公式得到S △BDC =S △ADC ,则S △BDC =12S △ABC ,即12CD •BE =12•12AC •BC ,于是可计算出BE =365,然后在Rt △BDE 中利用余弦的定义求解. 【解答】解:(1)在△ABC 中,∵∠ACB =90°,∴cos A =AC AB =35,∴可以假设AC =3k ,AB =5k ,则BC =4k ,而BC =12,∴k =3,∴AB =15∵D 是AB 中点,∴CD =12AB =152.(2)在Rt △ABC 中,∵AB =15,BC =12,AC =9,∵D 是AB 中点,∴BD =152,S △BDC =S △ADC , ∴S △BDC =12S △ABC ,即12CD •BE =12•12AC •BC ,∴BE =9×122×152=365, 在Rt △BDE 中,cos ∠ABE =BE BD =365152=2425, 即cos ∠ABE 的值为2425.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.【考点9解斜三角形】【方法点拨】解决此类问题的关键在于作垂线将斜三角形分割成两个直角三角形,进而通过解直角三角形进行求解.【例9】(2020春•牡丹江期末)如图,在△ABC 中,∠BAC =120°,AC =6,AB =4,则BC 的长是( )A .6√2B .2√19C .2√13D .9【分析】作CD⊥AB,根据直角三角形的性质求出AD,根据勾股定理求出CD,根据勾股定理计算,得到答案.【解答】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠DAC=180°﹣120°=60°,∴∠ACD=30°,∴AD=12AC=3,∴BD=AB+AD=7,由勾股定理得,CD=√AC2−AD2=3√3,在Rt△BCD中,BC=√BD2+CD2=2√19,故选:B.【点评】本题考查的是解直角三角形,掌握含30°的直角三角形的性质、勾股定理是解题的关键.【变式9-1】(2020春•东城区校级期末)如图,在△ABC中,∠A=30°,tan B=34,AC=6√3,求AB的长.【分析】过点C作CD⊥AB于点D,根据∠A=30°,tan B=34,AC=6√3可求出AD与BD的长度.【解答】解:如图,过点C作CD⊥AB于点D.∵在Rt△CDA中,∠A=30°,∴CD=AC•sin30°=3√3,AD=AC×cos30°=9,在Rt△CDB中,∵tan B=3 4∴CDBD =34∴BD=4√3,∴AB=AD+DB=9+4√3.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.【变式9-2】已知.在△ABC中,BC=√2AC,∠BCA=135°,求tan A的值.【分析】过B点作BD⊥AC交AC的延长线于D点,根据等腰直角三角形的性质得到BD=CD=√22BC,根据正切的定义计算即可.【解答】解:过B点作BD⊥AC交AC的延长线于D点,则∠BCD=45,∴BD=CD=√22BC,设AC=k,则BD=CD=k,AD=2k,tan A=BDAD=12.【点评】本题考查的是解直角三角形,掌握等腰直角三角形的性质、正切的定义是解题的关键.【变式9-3】(2019秋•抚州期末)如图,在△ABC中,∠B=45°,∠C=75°,夹边BC的长为6.求△ABC的面积.【分析】如图,作CD⊥AB于点D.解直角三角形求出CD,AB即可解决问题.【解答】解:如图,作CD⊥AB于点D.∵∠B=45°,CD⊥AB,∴∠BCD=45°,∵BC=6,∴CD=3√2,在Rt△ACD中,∠ACD=75°﹣45°=30°,∴tan30°=AD3√2,∴AD=3√2×√33=√6,∴S=12×(3√2+√6)×3√2=9+3√3,∴△ABC的面积是9+3√3.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.【考点10解直角三角形(作垂线)】【例10】(2019•包头模拟)如图,在四边形ABCD中,AB=8,BC=3,CD=5,∠BCD=120°,∠ADC+∠ABC=180°.(1)求△BCD的面积;(2)求cos∠ADB.【分析】(1)在Rt△DEC中,∠E=90°,sin∠DCE=DECD,求出DE的长度,即可求解;(2)在Rt△DEB中,由勾股定理知:DE2+BE2=BD2,求出BD的长度;同理在Rt△DFB中,求出DF 的长度,即可求解.【解答】解:(1)过点D作DE⊥BC交BC的延长线于E,∵∠BCD=120°,∴∠DCE=60°,在Rt△DEC中,∠E=90°,sin∠DCE=DECD,cos∠DCE=CECD,CD=5,∴DE=CD⋅sin∠DCE=5×sin60°=5√32,CE=CD⋅cos∠DCE=5×cos60°=52,∵BC=3,∴S△BCD=12BC⋅DE=12×3×5√32=15√34;(2)过点B作BF⊥AD于F,∵∠BCD=120°,∠ADC+∠ABC=180°,∴∠A=60°,∵在Rt△AFB中,∠AFB=90°,sin∠A=BFAB,AB=8,∴BF=AB⋅sin∠A=8×sin60°=4√3,∵BE=BC+CE=3+52=112;∵在Rt△DEB中,∠E=90°,由勾股定理知:DE2+BE2=BD2,∴BD=√DE2+BE2=(532)2+(112)2=7,∵在Rt△DFB中,∠DFB=90°,由勾股定理知:DF2+BF2=BD2,∴DF=√BD2−BF2=√72−(4√3)2=1,∴在Rt△DFB中,∠DFB=90°,cos∠ADB=DFAB=17.【点评】此题是一个综合性很强的题目,主要考查勾股定理的运用、三角形面积计算、解直角三角形等知识点,难度很大,有利于培养同学们钻研和探索问题的精神.【变式10-1】(2019秋•锦江区校级期中)已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB =1,BC=3+√3,CD=2√3(1)求∠ABD的值;(2)求AD的长.【分析】(1)过点D作DE⊥BC于点E,根据∠C=60°求出CE、DE,再求出BE,从而得到DE=BE,然后求出∠EDB=∠EBD=45°,再求出∠ABD=45°,然后根据特殊角的三角函数值解答;(2)过点A作AF⊥BD于点F,求出BF=AF=√22,再求出BD,然后求出DF,在Rt△ADF中,利用勾股定理列式计算即可得解.【解答】解:(1)过点D作DE⊥BC于点E,∵在Rt△CDE中,∠C=60°,CD=2√3,∴CE=√3,DE=3,∵BC=3+√3,∴BE=BC﹣CE=3+√3−√3=3,∴DE=BE=3,∴在Rt△BDE中,∠EDB=∠EBD=45°,∵AB⊥BC,∠ABC=90°,∴∠ABD =∠ABC ﹣∠EBD =45°;(2)过点A 作AF ⊥BD 于点F .在Rt △ABF 中,∠ABF =45°,AB =1,∴BF =AF =√22,∵在Rt △BDE 中,DE =BE =3,∴BD =3√2,∴DF =BD ﹣BF =3√2−√22=5√22,∴在Rt △AFD 中,AD =√DF 2+AF 2=(522)2+(22)2=√13.【点评】本题考查了勾股定理,解直角三角形,根据边的长度得到等腰直角三角形是解题的关键,难点在于作辅助线构造成直角三角形.【变式10-2】(2020•福建模拟)已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD ,设AD =m ,DC =n ,BE =p ,DE =q .(1)若tan C =2,BE =3,CE =2,求点B 到CD 的距离;(2)若m =n ,BD =3√2,求四边形ABCD 的面积.【分析】(1)要求点B 到CD 的距离,于是作垂线构造直角三角形,又知tan C =2,BE =3,CE =2,可以得到BF =2FC ,设未知数根据勾股定理列方程可以求解.(2)m =n ,即AD =DC ,通过作垂线,构造全等三角形将问题转化为求正方形BEDG 的面积即可.【解答】解:(1)过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4,在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x )2=(3+2)2, 解得:x =2√5,即:BF =2√5,答:点B 到CD 的距离是2√5.(2)过点D 作DG ⊥AB ,交BA 的延长线相交于点G ,∵四边形ABCD 的内角和是360°,∠ABC =∠ADC =90°,∴∠C +∠BAD =180°,又∵∠BAD +∠GAD =180°,∴∠C =∠GAD ,∵∠DEC =∠G =90°,AD =CD∴△DEC ≌△DGA ,(AAS )∴DE =DG ,∴四边形BEDG 是正方形,∴S 四边形ABCD =S 正方形BEDG =12BD 2=9.答:四边形ABCD 的面积是9.【点评】考查解直角三角形,勾股定理、和全等三角形等知识,作垂线构造直角三角形是常用的辅助线作法,通过作辅助线将问题转化求正方形的面积.【变式10-3】如图,在四边形ABCD 中,∠DAB =60°,AD :AB =2:3,BD =√7,AB ⊥BC .(1)求sin ∠ABD 的值.(2)若∠BCD =120°,求CD 的长.【分析】(1)作DE⊥AB于E,CF⊥DE于F.设AE=a.在Rt△BDE中,利用勾股定理构建方程求出a,即可解决问题;(2)作CF⊥DE于F.首先证明四边形CFEB是矩形,解直角三角形△CFB即可解决问题;【解答】解:(1)作DE⊥AB于E,设AE=a.在Rt△ADE中,∵∠A=60°,AE=a,∴∠ADE=30°,∴AD=2a,DE=√3a,∵AD:AB=2:3,∴AB=3a,EB=2a,在Rt△DEB中,(√3a)2+(2a)2=(√7)2,解得a=1,∴DE=√3,BE=2,∴sin∠ABD=DEBD=√37=√217.(2)CF⊥DE于F.∵CB⊥AB,CF⊥DE,∴∠CFE=∠FEB=∠CBE=90°,∴四边形CFEB是矩形,∴CF=EB=2,BC=EF,∵∠DCB=120°,∠FCB=90°,∴∠DCF=30°,∴DF=CF•tan30°=2√3 3,∴CD=2DF=4√3 3.【点评】本题考查解直角三角形,矩形的判定和性质,直角三角形30度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【考点11解直角三角形的应用(实物建模问题)】【例11】(2020•芝罘区一模)如图1,图2分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB,点B、F在线段AC上,点C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°.请根据以上信息,解决下列问题;(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留到1cm).参考数据:√2≈1.41,√3≈1.73,√6≈2.45.【分析】(1)过F作FH⊥DE于H,解直角三角形即可得到结论;(2)过A作AG⊥ED交ED的延长线于G,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)过F作FH⊥DE于H.∴∠FHC=∠FHD=90°.∵∠FDC=30°,DF=30,∴FH=12DF=15,DH=√32DF=15√3,∵∠FCH=45°,∴CH=FH=15,∴CD=CH+DH=15+15√3,∵CE:CD=1:3,∴DE=43CD=20+20√3,∵AB=BC=DE,∴AC=(40+40√3)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=√22AC=20√2+20√6,=20×1.41+20×2.45=77.2≈77(cm)答:拉杆端点A到水平滑杆ED的距离为77cm.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.【变式11-1】(2020•柯桥区模拟)目前,各大城市都在积极推进公共自行车建设,努力为人们绿色出行带来方便.图(1)所示的是一辆自行车的实物图.图(2)是自行车的车架示意图.CE=30cm,DE=20cm,AD=25cm,DE⊥AC于点E,座杆CF的长为15cm,点A,E,C,F在同一直线上,且∠CAB=75°,公共自行车车轮的半径约为30cm,且AB与地面平行.(1)求车架中AE的长;(2)求车座点F到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】(1)由DE⊥AC及DE,AD的长,利用勾股定理即可求出AE的长;(2)作FG⊥AB于G,延长FG交地平线于点Q,由AE,CE,CF的长可得出F A的长,通过解直角三角形可求出FG的长,再结合FQ=FG+GQ即可求出结论.【解答】解:(1)∵DE⊥AC,DE=20,AD=25,∴AE=√AD2−DE2=√252−202=15(cm);(2)在图(2)中,作FG⊥AB于G,延长FG交地平线于点Q.∵AE=15,CE=30,CF=15,∴F A=FC+CE+EA=15+30+15=60.∵sin∠CAB=FG FA,∴FG=F A•sin∠CAB≈60×0.97=58.2(cm),∴FQ=FG+GQ=58.2+30=88.2≈88(cm).答:车座点F到地面的距离约为88cm.【点评】本题考查了勾股定理以及解直角三角形,解题的关键是:(1)利用勾股定理求出AE的长;(2)通过解直角三角形求出FG的长.【变式11-2】(2020•东胜区二模)如图是一种简易台灯的结构图,灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)当E点到水平桌面(AB所在直线)的距离为45cm﹣46cm时,视线最佳,通过计算说明此时光线是否为最佳.(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,√3=1.73.)【分析】(1)过点D作DN⊥AB于点N,过E作EM⊥AB于点M,过点D作DF∥AB,交EM于F,得到四边形DNMF是矩形,进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DN⊥AB于点N,过E作EM⊥AB于点M,过点D作DF∥AB,交EM于F,故四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,∴AC=12AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°=EFDE=EF15=0.26,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末复习 学习目标 1.整合知识结构,进一步巩固、深化所学知识.2.掌握解三角形的基本类型,并能在几何计算、测量应用中灵活分解组合.3.能解决三角形与三角变换的综合问题.1.正弦定理及其推论设△ABC 的外接圆半径为R ,则(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin A ,b =2R sin B ,c =2R sin C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R. (4)在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos A ,b 2= c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .(2)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab. (3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角.3.三角形面积公式(1)S =12ah a =12bh b =12ch c ; (2)S =12ab sin C =12bc sin A =12ca sin B . 4.应用举例(1)测量距离问题;(2)测量高度问题;(3)测量角度问题.题型一 利用正弦、余弦定理解三角形例1 (1)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC = . 答案 7解析 由题意知12×5×8×sin A =103,即sin A =32, 又△ABC 为锐角三角形,所以A =60°,cos A =12, 所以BC =52+82-2×5×8×12=7. (2)已知△ABC 中,若cos B =35,C =π4,BC =2,则△ABC 的面积为 . 答案 87反思感悟 利用正弦、余弦定理寻求三角形各元素之间的关系来解决三角形及其面积问题. 跟踪训练1 (1)在△ABC 中,∠A =45°,AB =1,AC =2,则S △ABC 的值为( )A.12B.22C.32D .2 3 答案 B(2)已知锐角△ABC 的面积为3,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30°答案 D解析 S =12BC ·AC ·sin C =12×4×3×sin C =3, ∴sin C =12,∵三角形为锐角三角形. ∴C =30°.题型二 几何计算例2 如图,在矩形ABCD 中,AB =3,BC =3,E 在AC 上,若BE ⊥AC ,求ED 的长.解 在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.因为BE ⊥AC ,AB =3,所以AE =32. 在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =212. 反思感悟 正确挖掘图形中的几何条件简化运算是解题要点,善于应用正弦定理、余弦定理,只需通过解三角形,一般问题便能很快解决.跟踪训练2 在△ABC 中,∠B =120°,AB =2,∠A 的平分线AD =3,求AC 的长. 解 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB, ∴sin ∠ADB =22. 由题意知0°<∠ADB <60°,∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,∠C =30°,BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BC sin ∠BAC, ∴AC = 6.题型三 实际应用例3 如图,已知在东西走向上有AM ,BN 两个发射塔,且AM =100 m ,BN =200 m ,一测量车在塔底M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了100 3 m 后到达点Q ,在点Q 处测得发射塔顶B 的仰角为θ,且∠BQA =θ,经计算,tan θ=2,求两发射塔顶A ,B 之间的距离.解 在Rt △AMP 中,∠APM =30°,AM =100 m ,所以PM=100 3 m,连接QM,在△PQM中,∠QPM=60°,又PQ=100 3 m,所以△PQM为等边三角形,所以QM=100 3 m.在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200 m. 在Rt△BNQ中,因为tan θ=2,BN=200 m,所以BQ=100 5 m,cos θ=5 5.在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ,所以BA=100 5 m.故两发射塔顶A,B之间的距离是100 5 m.反思感悟实际应用问题的解决过程实质上就是抽象成几何计算模型,在此过程中注意术语如“北偏西60°”、“仰角”的准确翻译,并转换为解三角形所需边、角元素.跟踪训练3如图,从无人机A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时无人机的高是60 m,则河流的宽度BC等于()A.240(3-1)m B.180(2-1)mC.120(3-1)m D.30(3+1)m答案 C解析如图,在△ADC中,∠CAD=90°-30°=60°,AD=60 m,所以CD=AD·tan 60°=603(m).在△ABD中,∠BAD=90°-75°=15°,所以BD =AD ·tan 15°=60(2-3)(m).所以BC =CD -BD =603-60(2-3)=120(3-1)(m).故选C.题型四 三角形中的综合问题例4 a ,b ,c 分别是锐角△ABC 的内角A ,B ,C 的对边,向量p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),且p ∥q ,已知a =7,△ABC 的面积为332,求b ,c 的大小. 解 p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),又p ∥q ,∴(2-2sin A )(1+sin A )-(cos A +sin A )·(sin A -cos A )=0,即4sin 2A -3=0,又∠A 为锐角,则sin A =32,∠A =60°, ∵△ABC 的面积为332,∴12bc sin A =332,即bc =6,① 又a =7,∴7=b 2+c 2-2bc cos A ,∴b 2+c 2=13,②①②联立解得⎩⎪⎨⎪⎧ b =3,c =2或⎩⎪⎨⎪⎧ b =2,c =3.反思感悟 解三角形综合问题的方法(1)三角形中的综合应用问题常常把正弦定理、余弦定理、三角形面积公式、三角恒等变换等知识联系在一起,要注意选择合适的方法、知识进行求解.(2)解三角形常与向量、三角函数及三角恒等变换知识综合考查,解答此类题目,首先要正确应用所学知识“翻译”题目条件,然后根据题目条件和要求选择正弦或余弦定理求解. 跟踪训练4 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,4sin 2B +C 2-cos 2A =72. (1)求A 的度数;(2)若a =3,b +c =3,求b 和c 的值.解 (1)由4sin 2 B +C 2-cos 2A =72及A +B +C =180°,得2[1-cos(B +C )]-2cos 2 A +1=72, 4(1+cos A )-4cos 2A =5,即4cos 2A -4cos A +1=0,∴(2cos A -1)2=0,解得cos A =12. ∵0°<A <180°,∴A =60°.(2)由余弦定理,得cos A =b 2+c 2-a 22bc. ∵cos A =12,∴b 2+c 2-a 22bc =12, 化简并整理,得(b +c )2-a 2=3bc ,将a =3,b +c =3代入上式,得bc =2.则由⎩⎪⎨⎪⎧ b +c =3,bc =2,解得⎩⎪⎨⎪⎧ b =1,c =2或⎩⎪⎨⎪⎧b =2,c =1.1.若△ABC 的周长等于20,面积是103,A =60°,则角A 的对边长为( )A .5B .6C .7D .8答案 C解析 设角A ,B ,C 的对边分别为a ,b ,c ,∵a +b +c =20,∴b +c =20-a ,即b 2+c 2+2bc =400+a 2-40a ,∴b 2+c 2-a 2=400-40a -2bc ,①又cos A =b 2+c 2-a 22bc =12, ∴b 2+c 2-a 2=bc .②又S △ABC =12bc sin A =103, ∴bc =40.③由①②③可知a =7.2.在△ABC 中,已知cos A =35,cos B =513,b =3,则c = . 答案 145解析 在△ABC 中,∵cos A =35>0,∴sin A =45. ∵cos B =513>0,∴sin B =1213. ∴sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =c sin C ,∴c =b sin C sin B =3×56651213=145. 3.在△ABC 中,cos A 2=1+cos B 2,判断△ABC 的形状. 解 由已知得cos 2A 2=1+cos B 2, ∴2cos 2A 2-1=cos B ,∴cos A =cos B , 又0<A <π,0<B <π,∴A =B ,∴△ABC 为等腰三角形.4.设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223.故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26.。

相关文档
最新文档