《简易方程》重难点 突 破
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简易方程》重难点突破
一、理解用字母表示数的意义和作用,掌握用字母表示数的一般方法
突破建议:
1.关注由具体到一般的抽象概括过程。本单元的知识大多数都比较抽象,教学时要充分利用学生原有的认知经验和基础,关注到由具体实例到一般意义的抽象概括过程。如爸爸比小红大30岁,当小红是1岁、2岁、3岁……时,学生会用“1+30,2+30,3+30…”这样的式子表示爸爸的年龄,然后在教师的引导下,学生用一个式子来表示任何一年爸爸的年龄
即“”。之后教师可以继续追问:这里的表示什么?又表示什么?让学生
明白“”既表示爸爸的年龄,还能反映出爸爸和小红年龄之间的关系,这样表示既
简明又高度概括了爸爸和小红的年龄情况。使学生体会由特殊到一般的认识需要,初步感知抽象的作用。
2.注意突显用字母表示数的意义和作用。在教学用字母表示运算定律和计算公式时,教师可以用对比的方法让学生深切体会用字母表示简明易记、便于运用。以乘法分配律为例,先让学生用语言表述:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把
所得的积相加。再让学生用字母表示为,这样形成鲜明、强烈的对比,使
学生感悟到用字母表示数的意义和作用。
3.适当加强用含有字母的式子表示数量的训练。用含有字母的式子表示数量的训练,也就是写代数式的训练。如:“一本书有页,张华每天看8页,看了天,用式子表示还
没有看的页数”“商店原有120 kg苹果,又运来10箱,每箱重kg。用式子表示出商店一共有多少箱苹果”等,这是列方程的基础。加强这方面的训练可以是书面作业的形式,也可以采用口答方式(个别口答、集体口答、小组互说、同桌互说均可),以提高练习的效率。
4.注意渗透函数思想。在归纳数量关系用字母表示时,可适当渗透变量间的对应关系、依存关系。如爸爸的年龄随小红的年龄变化而变化,两个量之间具有一一对应的关系。在说明字母取值范围时,可适当渗透函数的定义域思想。可以追问:式子中的字母还可以表示哪些数?可不可以是200?为什么?使学生初步认识到式子中的字母还可以是许多其他的数,但是在这里是有一定的范围的,这个范围要根据具体问题进行具体分析的,不可一概而论。
二、初步理解方程的意义和作用,掌握列方程的一般方法
突破建议:
1.可由分类揭示方程的意义。对于方程的概念的建立,教师可以引导学生通过观察下面的式子:50+50=100,,,等,让学生自己分类,从中获得像这样……这样含有未知数的等式就是方程。
2.注意引导学生经历由生活语言到用数学语言,逐步数学化的过程。当学生看到天平平衡时会用生活语言:“空杯子和水共重250克”来表述他们所看到的。教师引导:谁能用一个式子来表示?学生可能用“100 g+水的质量=250 g”来表示。教师进一步引导:你能用
一个含有字母的式子来表示吗?学生可能用“”也可能用“”
等来表示。在教学“3本练习本共用2.4元”时,也可以采用这样的方法。让学生经历数学化的过程,可以更好地帮助学生理解方程的意义和作用。
3.适当增加一些列方程的练习。如“小明家有一些橘子,吃了5个,又买回8个,这时还有17个,小明家原有橘子多少个?请用方程表示题中的数量关系”。当学生列出方程
“”之后,建议教师再让学生说说这个方程的含义,这样不仅可以加深学生
对方程意义的理解,同时让学生感受到用方程表示数量关系简单明了,感知方程的作用和学习方程的必要性。像这样用纯文字表述的题在教材中比较少,建议教师在教学的过程中适当增加一点,以帮助学生更好地掌握列方程的方法,为后面学习用方程解决实际问题做一些铺垫。
三、理解等式的基本性质,学会用等式的基本性质解方程
突破建议:
1.通过天平游戏,让学生充分感知天平等值变换过程。关于天平游戏教师可以用实物进行演示,让学生真真切切地看到天平游戏中平衡的天平两边加上(或减去)同样重量的物品,天平保持平衡。如果受到条件的限制,建议也要用动画来进行游戏,将这一过程让学生有充分的感知,从而确认这一事实。教材中是两边加上的是杯子,教师也可改变一下物体(如两边同时加上一把茶壶等)。这样便于概括出:平衡的天平两边加上(或减去)同样重量的物品,天平保持平衡。等式的性质2的教学也建议如此。
2.适当增加具体的等式等值变换的例子,帮助学生理解等式的基本性质。在经过天平游戏感知到天平的等值变换后,教师可引导学生举例子说说等式有没有同样的性质。如:
;
;
;
;
。
或者设一把茶壶重克,1个茶杯重克,就会有:
;
;
;
。
对于含有字母的式子,如果学生还有疑问,教师可以引导学生将字母具体成一个数进行验证,让学生确信不疑。
这样增加一个环节,更加便于学生自己概括出等式的基本性质,理解更加深刻。
3.教学解方程时,可以由方程的意义入手,先让学生看图列出方程“”。再
让学生明确所谓解方程实际上是这样一个问题:求的值是多少时,方程左右两边才能相等?明确解题目标之后,可以先让学生自己思考、探索的值,也可以组织小组讨论并交流。学生介绍自己的想法时,教师要注意引导学生不仅说出自己是怎样推算的,还要启发他们说出推算的依据,同时利用书上的图进行演示加以论证。在学生确信的值是6时,教师可以引出解方程的概念,明确指出:方程的解是一个数,而解方程是一个推算的过程。随后教师一定要追问:为什么要减去3?而不是其他的数呢?让学生明确解方程的一般思路。
4.要重视解题步骤和书写格式的指导,促进学生规范书写和自觉检验的良好学习习惯的形成。解方程实际上是在进行一个方程的同解变形的过程,因此教师要强调解方程时一定
要在原有的方程下面再写出一个方程来,不能连着写等号(如),或者是
解:。
学习解方程一定要强调解方程之后要进行检验,一方面为后期继续学习打下坚实基础,另一方面在此培养学生良好的学习习惯。
关于解题步骤,开始一般要求写出解题全过程,之后熟练了可以适当省略一些。
5.对于稍复杂的方程,解答时可以采用化繁为简的策略,引导学生自主探索。例4的教学,首先要关注学生列方程的练习,根据数量关系列方程是本单元的教学重点,也是教学的难点。在方程的意义教学时要注意加强这方面的训练,随后的学习中要不断训练,这里的
教学是一个很好的契机。解答时,应先把看成一个整体。至于为什么要把
看成一个整体?这是教学的难点。
建议一:可以借助直观图加以说明:
建议二:可以把看作“”,原方程就可以看成“”了。这样引导学生先把这个方程的解求出来,再把“”还原成即可推算出的值了。这样化繁为简,引
导学生自主探究出这类稍复杂的方程解法。
建议三:可利用运算顺序的事实说明。由于要先算二级运算,后算一级运算,即先要算
是多少,后算加法,也就是说是求3与的积与4的和是多少。所以可以把先看成一个整体。解答方程“”时,要先把看作一个整体,也是同样的
道理。
四、掌握列方程解决问题的基本思路和一般方法,学会用方程解决实际问题
突破建议: