解二元一次方程组练习题:代入消元法

合集下载

代入消元法解二元一次方程组的步骤

代入消元法解二元一次方程组的步骤

代入消元法解二元一次方程组的步骤代入消元法是解二元一次方程组的一种有效方法,下面将介绍具体的步骤:1. 确定两个方程中要消去的未知量通过观察两个方程,找到其中一个未知量的系数相同的两项,以此为目标要消去的未知量。

例如,方程组2x + 3y = 74x - y = 1要消去的未知量可以是y,因为第一条方程的系数为3,而第二条方程中的系数为-1。

2. 将其中一个方程针对目标未知量进行变形以要消去的未知量为目标,将其中一个方程进行变形,使其系数与另一个方程中的系数相同。

例如,对于上述方程组,可将第一条方程变形为:6x + 9y = 21使其y的系数和第二条方程中的一致。

3. 将变形后的方程和另一个方程组成新的方程组将变形后的方程和另一个方程组成新的方程组,例如:4x - y = 16x + 9y = 214. 将新方程组中的一个方程中的目标未知量代入到另一个方程中将新方程组中的一个方程中的要消去的未知量按照目标未知量的系数代入到另一个方程中。

例如,将第一条方程中y的代入到第二条方程中,有:6x + 9(4x-1) = 215. 解方程得到目标未知量的值根据新的方程,可以解出目标未知量的值,例如:6x + 36x - 9 = 2142x = 30x = 30/42 = 5/76. 将求得的未知量的值代入到原方程中求出另一个未知量将求得的未知量的值代入到任意一个原方程中,求出另一个未知量的值,例如:2x + 3y = 72×(5/7) + 3y = 73y = 49/7 - 10/7y = 39/217. 检验解的正确性将求得的两个未知量的值代入到原方程组中,检验解的正确性。

如果两个方程都成立,那么该解就是正确的。

通过以上步骤,可以使用代入消元法解二元一次方程组。

8.2.1代入消元法解二元一次方程组

8.2.1代入消元法解二元一次方程组
8.2.1代入法解二元一次方程组
y=ax+b或x=my+n
1、用含x的代数式表示y: x + y = 22 y = 22-x 2、用含y的代数式表示x: 2x - 7y = 8 2x = 8+7y
8 7y x 2
篮球联赛中每场比赛都要分出胜负,每队胜 一场得2分,负一场得1分.如果某队为了争取较 好名次,想在全部22场比赛中得40分,那么这个 队胜、负场数应分别是多少? 解:设胜x场,负y场. x y 22 ① 2 x y 40 ② 解:设胜x场. 2 x (22 x) 40 ③
解:设这些消毒液应该分装x大瓶、y小瓶. ① 5 x 2 y 由题意得 ② 500 x 250 y 22500000
由①,得
5 y x 2

5 500 x 250 x 22500000 2
把③代入②,得 解得 x=20000 把x=20000代入③,得
x 20000 y 50000
x=13 – 4y

把③代入① ,得 2(13 – 4y)+ 3y=16 26 –8y +3y =16 13-4y+4y=13 把y=2代入① 或②可以吗? – 5y= – 10 0y=0 y=2 把求出的解 把y=2代入③ ,得 x=5
x 5 ∴原方程组的解是 y 2
代入原方程 组,可以知 道你解得对 不对。
① ②
4 x 5 y 460 2 x 3 y 240


由②, 得 2x=240-3y

把③代入①,得 2(240-3y)+5y=460 480-6y+5y=460 -y=-20 y=20. 把y=20代入③,得 2x+3×20=240 x=90.

8.2《消元——解二元一次方程组》同步练习题(2)及答案

8.2《消元——解二元一次方程组》同步练习题(2)及答案


二. 选择题 10. 若 y=kx+b中,当 x=-1 时,y=1;当 x=2 时,y=-2,则 k 与 b 为( )
k 1 A. b 1
k 1 B. b 0
k 1 C. b 2
k 1 D. b 4
x 1
ax by 0
8.2《消元——解二元一次方程组》同步练习题(2)
知识点:
1、代入法:用代入消元法解二元一次方程组的步骤: (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用 含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
13. 对于方程组 4x 5y 17 ,用加减法消去 x,得到的方程是(

A. 2y=-2
B. 2y=-36 C. 12y=-2 D. 12y=- 36
14.
将方程-
1 2
x+y=1中
x
的系数变为
5,则以下正确的是(

A. 5x+y=7
B. 5x+10y=10 C. 5x-10y=10 D. 5x-10y=-10
∴原方程组解为 x 2 y 2
(4)解:由②得:x=3y-7……③ ③代入① :2(3y-7)+5y=8 11y=22 y=2
把 y=2代入③得 x=-1 ∴原方程组解为
x 1 y 2
16. (1)解:②×4-①×3 得:11y=-33 ∴y=-3 把 y=-3 代入①得:4x-9=3 x=3
7. 二元一次方程组 kx 2 y 5 的解是方程 x-y=1的解,则 k=

二元一次方程组代入消元法

二元一次方程组代入消元法

步骤四:检查所求解是否符合 原方程组
最后,我们应该验证得到的解是否符合原方程组,确保解是正确的。
实例演示
通过一个实际的例子,我们可以更好地理解二元一次方程组代入消元法的应 用。
练习题和解答
通过一些练习题和详细的解答,我们可以进一步巩固代入消元法的理解和应用。
结论和要点
通过代入消元法,我们可以解决二元一次方程组,并得到准确的未知数的值。 这种方法简单且易于理解,是解决方程组的重要工具。
步骤一:选择一个方程解出其 中一个变量
通过选择一个方程,将其中一个未知数解出,得到一个关于另一个未知数的 表达式。
步骤二:将得到的解代入到另 一个方程中
将步骤一中得到的解代入到另一个方程中,这样我们就得到了一个只包含一 个未知数的方程。
步骤三:将代入后的方程求解 得到另一个变量的值
通过求解步骤二中得到的方程,我们可以得到另一个未知数的代入消元法可以帮助我们解决两个未知数的方程组。
什么是二元一次方程组
二元一次方程组是包含两个未知数的方程组。代入消元法是一种解决这种方 程组的有效方法。
代入消元法的定义和原理
代入消元法是通过选择一个方程,将其中一个变量解出,并将解代入到另一 个方程中,进而求解另一个变量的值。

专题 解二元一次方程组(计算题50题)(原卷版)

专题 解二元一次方程组(计算题50题)(原卷版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。

代入消元法解二元一次方程组

代入消元法解二元一次方程组

代入消元法解二元一次方程组
解决二元一次方程组的方法有很多,其中最常用的有两种:一项式消元法和代入消元法。

一项式消元法:
1.将解的变量以相同的方式乘以系数;
2.将乘积加到另一个方程;
3.根据等式简化系统;
4.重写并求解方程;
5.最后,回答问题的根即是方程的解。

代入消元法:
1.从一个方程开始,找到另一个方程中包含的一个变量;
2.令该变量等于步骤1中得到的表达式;
3.将该表达式代入替换步骤2中得到的变量;
4.重写方程,得到另一个方程;
5.如果任意一个方程已经有两个变量,将解的变量带入方程,并求解;
6.最后,回答问题的根即是方程的解。

代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题1.已知$x-y=1$,用含有$x$的代数式表示$y$为:$y=x-1$;用含有$y$的代数式表示$x$为:$x=y+1$。

2.已知$x-2y=1$,用含有$x$的代数式表示$y$为:$y=\frac{x-1}{2}$;用含有$y$的代数式表示$x$为:$x=2y+1$。

3.已知$4x+5y=3$,用含有$x$的代数式表示$y$为:$y=\frac{3-4x}{5}$;用含有$y$的代数式表示$x$为:$x=\frac{3-5y}{4}$。

4.用代入法解下列方程组:1)$\begin{cases}y=4x\\2x+y=5\end{cases}$解:将$y=4x$代入$2x+y=5$得:2x+4x=5$,解方程得:$x=\frac{5}{6}$,将$x=\frac{5}{6}$代入$y=4x$得:$y=2\frac{2}{3}$,所以,原方程组的解为:$(x,y)=(\frac{5}{6},2\frac{2}{3})$。

2)$\begin{cases}x-y=4\\2x+y=5\end{cases}$解:将$x-y=4$解出$y$得:$y=x-4$,将$y=x-4$代入$2x+y=5$得:2x+x-4=5$,解方程得:$x=3$,将$x=3$代入$y=x-4$得:$y=-1$,所以,原方程组的解为:$(x,y)=(3,-1)$。

3)$\begin{cases}3m+2n=6\\4m-3n=1\end{cases}$解:将$3m+2n=6$解出$3m$得:$3m=6-2n$,即$m=2-\frac{2}{3}n$,将$m=2-\frac{2}{3}n$代入$4m-3n=1$得:4(2-\frac{2}{3}n)-3n=1$,解方程得:$n=-\frac{5}{2}$,将$n=-\frac{5}{2}$代入$m=2-\frac{2}{3}n$得:$m=4$,所以,原方程组的解为:$(m,n)=(4,-\frac{5}{2})$。

(完整版)代入消元法解方程及答案

(完整版)代入消元法解方程及答案

8.2消元——解二元一次方程组第1课时用代入消元法解方程组基础题知识点1用一个未知数表示另一个未知数1.在方程2x-3y=6中,用含有x的代数式表示y,得()A.y=23x-6 B.y=-23x-6C.y=23x-2 D.y=-23x+22.用含有x或y的式子表示y或x:(1)已知x+y=5,则y=(2)已知x-2y=1,则y=(3)已知x+2(y-3)=5,则x=(4)已知2(3y-7)=5x-4,则x=知识点2用代入法解二元一次方程3.用代入法解方程组x=2y,y-x=3,①②下列说法正确的是() A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x4.用代入法解方程组y=1-x,x-2y=4时,代入正确的是() A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=45.(丹东中考)二元一次方程组x+y=5,2x-y=4的解为()A.x=1y=4B.x=2y=3C.x=3y=2D.x=4y=16.(贵阳中考)方程组x+y=12,y=2的解为x=7.用代入法解下列方程组:(1)(重庆中考)①y=2x-4,②3x+y=1;(2) y=3-x,①2x+3y=7;②(3)3m=5n,①2m-3n=1;②(4)3x+2y=19,①2x-y=1.②知识点3代入法解二元一次方程组的简单应用8.(柳州中考)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?中档题9.用代入法解方程组2x-5y=0,①3x+5y-1=0②时,最简单的方法是()A.先将①变形为x=52y,再代入②B.先将①变形为y=25x,再代入②C.先将②变形为x=1-5y3,再代入①D.先将①变形为5y=2x,再代入②10.方程组x=y+5,2x-y=5的解满足x+y+a=0,则a的值是()A.5 B.-5 C.3 D.-311.在二元一次方程4x-3y=14中,若x,y互为相反数,则x=2,y=-2.12.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.13.用代入法解下列方程组:(1)5x+2y=15,①8x+3y=-1;②(2)3(y-2)=x-17,2(x-1)=5y-8;(3) x+y3+x-y2=6,3(x+y)-2(x-y)=28.14.已知x=2,y=-1是方程组ax+y=b,4x-by=a+5的解,求a,b的值.15.(日照中考)已知关于x,y的二元一次方程组x+2y=3,3x+5y=m+2的解满足x+y=0,求实数m的值.综合题16.先阅读材料,然后解方程组.材料:解方程组x-y-1=0①,4(x-y)-y=5.①答案:8.2消元——解二元一次方程组第1课时用代入消元法解方程组基础题知识点1用一个未知数表示另一个未知数1.在方程2x-3y=6中,用含有x的代数式表示y,得(C)A.y=23x-6 B.y=-23x-6C.y=23x-2 D.y=-23x+22.用含有x或y的式子表示y或x:(1)已知x+y=5,则y=5-x;(2)已知x-2y=1,则y=12(x-1);(3)已知x+2(y-3)=5,则x=11-2y;(4)已知2(3y-7)=5x-4,则x=6y5-2.知识点2用代入法解二元一次方程3.用代入法解方程组x=2y,y-x=3,①②下列说法正确的是(B)A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x4.用代入法解方程组y=1-x,x-2y=4时,代入正确的是(C)A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=45.(丹东中考)二元一次方程组x+y=5,2x-y=4的解为(C)A.x=1y=4B.x=2y=3C.x=3y=2D.x=4y=16.(贵阳中考)方程组x+y=12,y=2的解为x=10y=2.7.用代入法解下列方程组:(1)(重庆中考)y=2x-4,①3x+y=1;②解:把方程①代入方程②,得3x+2x-4=1.解得x=1.把x=1代入①,得y=-2.∴原方程组的解为x=1,y=-2.(2)y=3-x,①2x+3y=7;②解:把①代入②,得2x+3(3-x)=7.解得x=2.把x=2代入①,得y=1.∴原方程组的解是x=2,y=1.(3)3m=5n,①2m-3n=1;②解:将①变形为m=5n3.③把③代入②,得2×5n3-3n=1.解得n=3.把n=3代入③,得m=5×33=5.∴原方程组的解为m=5,n=3.(4)3x+2y=19,①2x-y=1.②解:由②,得y=2x-1.③将③代入①,得3x+4x-2=19.解得x=3.将x=3代入③,得y=5.∴原方程组的解为x=3,y=5.知识点3代入法解二元一次方程组的简单应用8.(柳州中考)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?解:根据题意,得x=y+50,x+y=300+50,解得x=200,y=150.答:大苹果的重量为200 g,小苹果的重量为150 g.中档题9.用代入法解方程组2x-5y=0,①3x+5y-1=0②时,最简单的方法是(D)A.先将①变形为x=52y,再代入②B.先将①变形为y=25x,再代入②C.先将②变形为x=1-5y3,再代入①D.先将①变形为5y=2x,再代入②10.方程组x=y+5,2x-y=5的解满足x+y+a=0,则a的值是(A)A.5 B.-5 C.3 D.-311.在二元一次方程4x-3y=14中,若x,y互为相反数,则x=2,y=-2.12.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有69幅.13.用代入法解下列方程组:(1)5x+2y=15,①8x+3y=-1;②解:由①,得x=3-25y.③把③代入②,得8(3-25y)+3y+1=0.解得y=125.把y=125代入③,得x=-47.∴原方程组的解是x=-47,y=125.(2)3(y-2)=x-17,2(x-1)=5y-8;解:原方程组变形为x=3y+11,①2x-5y=-6.②将①代入②,得2(3y+11)-5y=-6,6y+22-5y=-6.解得y=-28.把y=-28代入①,得x=3×(-28)+11=-73.∴原方程组的解是x=-73,y=-28.(3)x+y3+x-y2=6,3(x+y)-2(x-y)=28.解:原方程组可化为5x-y=36,①x+5y=28,②由①,得y=5x-36,③把③代入②,得x+5(5x-36)=28,解得x=8.把x=8代入③,得y=4.∴这个方程组的解是x=8y=4.14.已知x=2,y=-1是方程组ax+y=b,4x-by=a+5的解,求a,b的值.解:把x=2,y=-1代入ax+y=b,4x-by=a+5得2a-1=b,①8+b=a+5.②把①代入②,得8+(2a-1)=a+5,解得a=-2.把a=-2代入①,得2×(-2)-1=b,解得b=-5.∴a=-2,b=-5.15.(日照中考)已知关于x,y的二元一次方程组x+2y=3,3x+5y=m+2的解满足x+y=0,求实数m的值.解:解关于x,y的二元一次方程组x+2y=3,3x+5y=m+2.得x=2m-11,y=7-m.∵x+y=0,∴2m-11+7-m=0,解得m=4.综合题16.先阅读材料,然后解方程组.材料:解方程组x-y-1=0,4(x-y)-y=5.①②由①,得x-y=1.③把③代入②,得4×1-y=5,解得y=-1.把y=-1代入③,得x=0.∴原方程组的解为x=0,y=-1.这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组:2x-3y-2=0,①2x-3y+57+2y=9.②解:由①,得2x-3y=2.③把③代入②,得2+57+2y=9,解得y=4.把y=4代入③,得2x-3×4=2,解得x=7.∴原方程组的解为x=7,y=4.。

七年级数学(下)_二元一次方程练习题(代入消元法和加减消元法)之欧阳德创编

七年级数学(下)_二元一次方程练习题(代入消元法和加减消元法)之欧阳德创编

二元一次方程组一、选择:1.方程-x+4y=-15用含y的代数式表示,x是()A.-x=4y-15 B.x=-15+4y C.x=4y+15 D.x=-4y+152.将y=-2x-4代入3x-y=5可得()A.3x-2x+4=5 B.3x+2x+4=5 C.3x+2x-4=5 D.3x-2x-4=53.二元一次方程组941611x yx y+=⎧⎨+=-⎩的解满足2x-ky=10,则k的值等于( )A.4 B.-4 C.8 D.-84.解方程组35123156x yx y+=⎧⎨-=-⎩比较简便的方法为( )A.代入法 B.加减法 C.换元法 D.三种方法都一样5.若二元一次方程2x+y=3,3x-y=2和2x-my=-1有公共解,则m取值为( )A.-2 B.-1 C.3 D.46.甲、乙两人同求方程ax -by=7的整数解,甲正确的求出一个解为11x y =⎧⎨=-⎩,•乙把ax -by=7看成ax -by=1,求得一个解为12x y =⎧⎨=⎩,则a 、b 的值分别为( ) A . 25a b =⎧⎨=⎩ B . 52a b =⎧⎨=⎩ C . 35a b =⎧⎨=⎩ D . 53a b =⎧⎨=⎩7.用代入法解方程组252138x y x y +=-⎧⎨+=⎩较为简便的方法是( ) A .先把①变形 B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形8.把方程7x-2y=15写成用含x 的代数式表示y 的形式,得( )A .x=215152715157 (7722)x x yx x B x C y D y ----=== 二、填空:1.在方程2x+3y-6=0中,用含x 的代数式表示y ,则y=_______,用含y 的代数式表示x ,则x=_______.2.用代入法解方程组59224x y x y -=⎧⎨-=⎩最好是先把方程______•变形为________,•再代入方_______求得_______的值,最后再求______的值,最后写出方程组的解.3.方程4(3x-y )=x-3y ,用含x 的代数式表示,则y=________.4.将y=12x+3代入2x+4y=-1后,化简的结果是________,从而求得x 的值是_____.5.当a=3时,方程组122ax y x y +=⎧⎨+=⎩的解是_________. 6.已知方程2x+3y=2,当x 与y 互为相反数时,x=______,y=_______.7.若方程组431(1)3x y kx k y +=⎧⎨+-=⎩的解x 和y 的值相等,则k=________.8.已知x=-1,y=2是方程组的1311ax by bx ay +=⎧⎨+=-⎩解,则ab=________.9.如果12x y =⎧⎨=⎩是方程2mx-7y=10的解,则m=_______.10.用加减法解下列方程组34152410x y x y +=⎧⎨-=⎩较简便的消元方法是:将两个方程_______,消去未知数_______.11.已知方程组234321x y x y -=⎧⎨+=⎩ ,用加减法消x 的方法是__________;用加减法消y 的方法是________.12.方程组241x y x y +=⎧⎨+=⎩ 的解_________.13.方程2353x y x -+==3的解是_________.14.已知方程342--n m x -5143-+n m y =8是关于x 、y 的二元一次方程,则m=_____,n=_______.15.已知方程组51mx n my m +=⎧⎨-=⎩的解是12x y =⎧⎨=⎩,则m=________,n=________.16.已知(3x+2y -5)2与│5x+3y-8│互为相反数,则x=______,y=________.17.若方程组22ax by ax by +=⎧⎨-=⎩与234456x y x y +=⎧⎨-=-⎩的解相同,则a=________,b=_________.18.若x-3y=2x+y-15=1,则x=______,y=_______.19.在y=kx+b 中,当x=1时,y=2;当x=2时,y=4,那么k=_______,b=_______.①②20.已知1331024x ax y y x by =--=⎧⎧⎨⎨=+=⎩⎩是方程组的解,求a 、b 的值. 21.若│x+y-2│+(x-y )2=0,那么x=________,y=________.22.已知x=5-t ,y-3=2t ,则x 与y 之间的关系式是_______.三、计算1.(1)23328y x x y =-⎧⎨-=⎩3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩356(4)415x y x y -=⎧⎨+=-⎩(5)用代入法解方程组1235x y x y -=⎧⎨+=⎩ (6)23123417x y x y +=⎧⎨+=⎩2.把下列方程写成用含x 的代数式表示y 的形式: ①3x+5y=21 ②2x-3y=-11③4x+3y=x-y+1 ④2(x+y )=3(x-y )-13.若方程组23352x y m x y m +=⎧⎨+=+⎩的解满足x+y=12,求m 的值.4.已知方程组25264x y ax by +=-⎧⎨-=-⎩和方程组35368x y bx ay -=⎧⎨+=-⎩的解相同,求(2a+b)2005的值.5.已知方程组82x yx y+∆=⎧⎨∆-=⎩中,x、y的系数部已经模糊不清,但知道其中□表示同一个数, △也表示同一个数,11xy=⎧⎨-⎩是这个方程组的解,你能求出原方程组吗?。

解二元一次方程组练习题:代入消元法

解二元一次方程组练习题:代入消元法

解二元一次方程组练习题:代入消元法题目一已知二元一次方程组如下:方程一:2x + 3y = 7方程二:5x - 2y = 1要求使用代入消元法解这个方程组。

解题步骤步骤一:选择其中一个方程,将另一个方程的未知数表示出来。

我们选择方程一,将方程二的未知数表示为:5x - 2y = 1=> 5x = 2y + 1=> x = (2y + 1) / 5步骤二:将步骤一中得到的表达式代入方程一,得到一个只有一个未知数的方程。

将我们得到的x值代入方程一中:2((2y + 1) / 5) + 3y = 7=> (4y + 2) / 5 + 3y = 7步骤三:解得方程中的未知数,求解上一步得到的方程,得到y的值:(4y + 2) / 5 + 3y = 7=> 4y + 2 + 15y = 35=> 19y + 2 = 35=> 19y = 33=> y = 33/19 (将不可简化的分数保留)步骤四:将得到的y的值代入步骤一中的表达式,求解x的值:x = (2(33/19) + 1) / 5结果根据代入消元法,我们求解得到方程组的解为:x ≈ 1.34y ≈ 1.74题目二请使用代入消元法解下列二元一次方程组:方程一:3x + 4y = 5方程二:2x - y = 1解题步骤步骤一:选择其中一个方程,将另一个方程的未知数表示出来。

我们选择方程二,将方程一的未知数表示为:3x + 4y = 5=> 3x = 5 - 4y=> x = (5 - 4y) / 3步骤二:将步骤一中得到的表达式代入方程二,得到一个只有一个未知数的方程。

将我们得到的x值代入方程二中:2((5 - 4y) / 3) - y = 1=> (10 - 8y) / 3 - y = 1步骤三:解得方程中的未知数,求解上一步得到的方程,得到y的值:(10 - 8y) / 3 - y = 1=> 10 - 8y - 3y = 3=> 10 - 11y = 3=> -11y = -7=> y = -7 / -11 (将不可简化的分数保留)步骤四:将得到的y的值代入步骤一中的表达式,求解x的值:x = (5 - 4(-7/11)) / 3结果根据代入消元法,我们求解得到方程组的解为:x ≈ 1.03y ≈ 0.64。

2.3.1 代入消元法 浙教版七年级数学下册同步练习(含解析)

2.3.1 代入消元法 浙教版七年级数学下册同步练习(含解析)

2.3 解二元一次方程组第1课时 代入消元法基础过关全练知识点 代入消元法1.(2022湖南株洲中考)对于二元一次方程组{y =x −1,①x +2y =7,②将①式代入②式,消去y 可以得到( ) A.x+2x-1=7 B.x+2x-2=7C.x+x-1=7D.x+2x+2=72.四名学生利用代入法解二元一次方程组{3x −4y =5,①x −2y =3②时,提出四种不同的解法,其中解法不正确的是( ) A.由①得x=5+4y 3③,将③代入② B.由①得y=3x−54③,将③代入② C.由②得y=-x−32③,将③代入①D.由②得x=3+2y ③,将③代入①3.(2022江苏无锡中考)二元一次方程组{3x +2y =12,2x −y =1的解为 .4.【新独家原创】 已知关于a,b 的二元一次方程组{a +m =3,b −3=m,则-a-b 的值为 .5.(2021浙江丽水中考)解方程组:{x =2y,x −y =6.6.【易错题】下面是老师在铭铭的数学作业本上截取的部分内容:解方程组{2x −y =3,①x +y =−12.②解:方程①变形,得y=2x-3③, 第一步把方程③代入方程①,得2x-(2x-3)=3, 第二步整理,得3=3, 第三步因为x 可以取任意实数,所以原方程组有无数个解.问题:这种解方程组的方法叫 ;铭铭的解法正确吗?如果不正确,错在哪一步?并求出正确的解.能力提升全练7.已知单项式-3x m-1y 3与52x n y m+n 是同类项,那么m,n 的值分别是 ( )A.2,1B.1,2C.0,-1D.-1,28.小明说{x =−1,y =2为方程ax+by=10的解,小惠说{x =2,y =−1为方程ax+by=10的解,两人谁也不能说服对方.若他们的说法都正确,则a,b 的值分别为 ( )A.12,10B.9,10C.10,11D.10,109.(2022浙江杭州西湖期中,9,)在解关于x,y 的方程组{ax −2by =8①,2x =by +2②时,小明将方程①中的“-”看成了“+”,得到的解为{x =2,y =1,则原方程组的解为 ( ) A.{a =2b =2 B.{x =2y =2 C.{x =−2y =−3 D.{x =2y =−110.如果|x-2y+1|+|x+y-5|=0,那么x= .11.(2022浙江杭州期中改编,15,)若 1 314x+17y=2y+x-5=2x-3,则2(x-2y)= .12.(2022浙江杭州萧山期中,14,)对于有理数x,y,定义一种新运算:x ⊕y=ax+by-5,其中a,b 为常数.已知1⊕2=9,(-3)⊕3=-2,则2a+b= .13.(2022浙江杭州余杭月考,15,)已知关于x,y 的二元一次方程(3x-2y+9)+m(2x+y-1)=0,无论m 取何值,方程总有一个固定不变的解,这个解是 .14.【一题多解】当关于x,y 的二元一次方程组{2x −y −4m =0,14x −3y −20=0中y 的值是x 值的3倍时,求x,y 的值.15.已知关于x,y 的二元一次方程组{ax +5y =4,5x +y =3与{x −2y =5,5x +by =1的解相同,求a,b 的值.素养探究全练16.【运算能力】材料:解方程组{x −y −1=0①,4(x −y)−y =5②时,可由①得x-y=1③,然后将③代入②得4×1-y=5,解得y=-1,将y=-1代入③,得x-(-1)=1,解得x=0,∴方程组的解为{x =0,y =−1,这种方法被称为“整体代入法”.请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.17.【运算能力】三个同学对问题“若关于x,y 的二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,求关于x,y 的二元一次方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决?”参考他们的讨论,解决上述问题.答案全解全析基础过关全练1.B 将①式代入②式,得x+2(x-1)=7,∴x+2x-2=7,故选B.2.C C 中,应该由②得y=x−32,故选项C 解法错误,符合题意,故选C.3.答案 {x =2y =3 解析 {3x +2y =12,①2x −y =1②,由②得y=2x-1③,将③代入①得3x+2(2x-1)=12,解得x=2,将x=2代入③得y=3,∴原方程组的解为{x =2,y =3. 4.答案 -6解析 {a +m =3①,b −3=m②,把②代入①,得a+b-3=3, ∴a+b=6,∴-a-b=-6.5.解析 {x =2y①,x −y =6②,把①代入②得,2y-y=6,解得y=6, 把y=6代入①得,x=12, 则原方程组的解为{x =12,y =6. 6.解析 代入消元法.铭铭的解法不正确,错在第二步,正确解法:将方程①变形,得y=2x-3③,把③代入②,得x+2x-3=-12,解得x=-3,把x=-3代入③,得y=-9,所以原方程组的解为{x =−3,y =−9.能力提升全练7.A 根据题意得{m −1=n,m +n =3,解得{m =2,n =1.故选A. 8.D 由{x =−1,y =2为方程ax+by=10的解,{x =2,y =−1为方程ax+by=10的解,得{−a +2b =10,2a −b =10,解得{a =10,b =10.故选D. 9.C 把{x =2,y =1代入{ax +2by =8,2x =by +2,得{2a +2b =8,4=b +2,解得{a =2,b =2, ∴原方程组为{2x −4y =8,2x =2y +2,解得{x =−2,y =−3.故选C. 10.答案 3解析 ∵|x-2y+1|+|x+y-5|=0,∴{x −2y +1=0,①x +y −5=0,②由①得x=2y-1③,把③代入②,得2y-1+y-5=0,解得y=2,把y=2代入③,得x=2×2-1=3,∴原方程组的解为{x =3,y =2.11.答案 -4解析 由2y+x-5=2x-3得2y+x-2x=-3+5,∴2y-x=2,∴x-2y=-2.∴2(x-2y)=2×(-2)=-4.12.答案 13解析 根据题中的新定义得{a +2b −5=9,−3a +3b −5=−2,整理得{a +2b =14,①−a +b =1,②由②得b=1+a ③,把③代入①,得a+2(1+a)=14,解得a=4,把a=4代入③,得b=1+4=5.则原方程组的解为{a =4,b =5,则2a+b=8+5=13.13.答案 {x =−1y =3解析 ∵无论m 取何值,方程总有一个固定不变的解,∴{2x +y −1=0,3x −2y +9=0,解得{x =−1,y =3. 14.解析 解法一:∵y 的值是x 值的3倍,∴y=3x,∴{2x −3x −4m =0,14x −9x −20=0,解得{x =4,m =−1, ∴y=3×4=12.故x 的值为4,y 的值为12.解法二:{2x −y −4m =0,①14x −3y −20=0,② 由①得,y=2x-4m,③把③代入②,得14x-3(2x-4m)-20=0,∴x=−3m+52,∴y=-7m+5,∵y 的值是x 值的3倍,∴y=3x,∴-7m+5=3×−3m+52,解得m=-1.∴x=4,y=12.故x 的值为4,y 的值为12.15.解析 ∵两个方程组的解相同,∴可用方程5x+y=3,x-2y=5组成新方程组,得{5x +y =3,①x −2y =5,②由①得,y=3-5x ③,把③代入②,得x-2(3-5x)=5,解得x=1,把x=1代入③得y=-2,∴此方程组的解为{x =1,y =−2,把{x =1,y =−2代入{ax +5y =4,5x +by =1,得{a −10=4,5−2b =1,解得{a =14,b =2.素养探究全练16.解析 {2x −y −2=0,①6x−3y+45+2y =12,② 由①得2x-y=2③,将③代入②得3×2+45+2y=12,解得y=5,把y=5代入③得2x-5=2,解得x=3.5.所以原方程组的解为{x =3.5,y =5.17.解析 方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2中的两个方程的两边都除以5,得{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2, 因为方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,所以{35x =3,25y =4,解得{x =5,y =10.所以方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解是{x =5,y =10.。

二元一次方程的代入消元法

二元一次方程的代入消元法

二元一次方程的代入消元法
假设我们有两个未知数x和y,可以表示为以下形式的方程组: ax + by = c.
dx + ey = f.
其中a、b、c、d、e、f为已知的系数。

我们的目标是找到x和
y的值,使得上述方程组成立。

首先,我们可以通过其中一个方程解出其中一个未知数,然后
将其代入另一个方程中,从而消除一个未知数。

接下来,我们可以
解出另一个未知数的值,从而得到整个方程组的解。

举个例子,假设我们有以下方程组:
2x + 3y = 8。

4x 2y = 10。

我们可以通过第一个方程解出x的值,然后将其代入第二个方程中:
2x = 8 3y.
4(8 3y) 2y = 10。

通过代入消元法,我们可以得到y的值,然后再将y的值代入第一个方程中,解出x的值。

最终,我们可以得到方程组的解。

通过代入消元法,我们可以有效地解决两个未知数的线性方程组,这种方法在实际问题中有着广泛的应用,例如在经济学、物理学和工程学等领域。

希望通过本文的介绍,读者能够更好地理解二元一次方程的代入消元法的原理和应用。

3.3.2代入消元法解二元一次方程组

3.3.2代入消元法解二元一次方程组
Βιβλιοθήκη 十分钟检测复习引入
篮球联赛中,每场比赛都要分出胜负, 每队胜一场得2分,负一场得1分,某队为了 争取较好的名次,想在全部20场比赛中的38 分,那么这个队胜负场数分别为多少?
3.3.2代入消元法解二元一次方程组
备课人:赵丽
把下列方程写成用含x的式子表示y的形式:
(1) (3)
x y
2 x 3 y 9(4) x 2 y 1 4
2、用代入法解下列方程组
3x 2 y 10 3m 4n 7 (3) (4) 9 m 10 n 23 0 2 x y 0
3、解问题2中的方程组:
x y 35 2 x 4 y 94
ax by 13 4、已知二元一次方程组 (a b) x ay 9 x 3 的解为 求a , b 的值. y 2
1 9 (2 ) x y 9 2
x y 20 解方程组 2 x y 38


代入消元法
从一个方程中求出某一个未知数 的表达式,再把它“代入”另一个方 程,进行求解,这种方法叫做代入消 元,简称代入法。
课本例题
2 x 3 y 7 解方程组: x 2 y 3
课后练习
1、把下列方程写成用含x的代数式表示y的形式
3x 2 y 4 (2) 5 x y 5
(1)
(3)
5x 2 y 1 0
x y 300 (1) x y 10
2、用代入法解下列方程组
x 3 y 1 (2) x 2 y 6


用代入消元法解二元一次方程组的步骤: (1)从方程中选一个系数比较简单的方程,把 其中的某个未知数用含有另一个未知数的式 子表示出来。 (2)把(1)中所得的一元一次方程代入另一 个方程中,消去一个未知数。 (3) 解所得到的一元一次方程,求出一个未知 数的值。 (4) 把所求得的一个未知数的值代入(1)中 所得的方程,求出另一个未知数的值,从而 确定方程的解。

代入消元法解二元一次方程组

代入消元法解二元一次方程组

由① ,得 x=35-y. ③ 把③代入② ,得 2(35-y)+4y=94.
70-2y+4y=94 2y=24 y=12
把y=12代入③ ,得 x=23.
x 23
y
12
3、今有鸡兔同笼,上有三十五头, 下有九十四足,问鸡兔各几何.
解:设鸡有x只,兔有y只.
x+y=35 2x+4y=94
(4)回代:将求得的未知数的值代入到变形后的方程
中求出另一个未知数的值.
(5)写解:用
x a
y
bБайду номын сангаас
的形式写出方程组的解.
例4
二元一次方程组
3x 4x
y 12 ay 12
的解中
y与x互为相反数,求a的值.
解:由题意得 3xxyy012,
x y
6
6

x 6
y
6
代入4x+ay=12,
得 a=2.
例5
x 2
用代入法解方程组 3
y4 5

2 x 7 y 90 ②
解:由①,得 5(x-2)=3(y+4)
5x-10=3y+12
5x-3y=22
x 223y ③ 5
例5
用代入法解方程组
x 2
3
y4 5

2 x 7 y 90 ②
解:令 x2 y4 = k,则x=3k+2,③y=5k-4,④
4x 5y 460 ① 2x 3y 240 ②
由②, 得 2x=240-3y ③
把③代入①,得 2(240-3y)+5y=460 480-6y+5y=460 -y=-20 y=20.

二元一次方程的解法代入消元法

二元一次方程的解法代入消元法

二元一次方程的解法代入消元法
x
这是一篇关于二元一次方程的解法代入消元法的文章。

本文介绍了什么是二元一次方程以及它的解法,特别是介绍了代入消元法这一方法,并介绍了其解题步骤。

什么是二元一次方程?
二元一次方程是指一个形如aX+bY=c的方程,其中X和Y是未知量,a、b、c是实常数(a和b不能同时为0)。

它可以用来描述两个变量之间的关系,如一个等式所表示的二元关系,它的解就是两个变量的值。

代入消元法是什么?
代入消元法是一种将二元一次方程组转化为更简单的形式来求
解方程组的方法。

它通过将两个未知数中的一个值代入另一个方程来求出另一个未知数,把两个方程消去,使未知数减少。

代入消元法的步骤
1. 确定方程组的系数和常数项,将它们化为一般式:ax+by=c
2. 确定要消去的未知数,通常选择其一,将其代入另一方程中
3. 计算出被代入方程的解,然后代入到另一方程中
4. 解出系数和常数项的值,从而求得方程组的解
结论
代入消元法是一种求解二元一次方程的有效方法,它可以通过将一个未知量代入另一方程,把两个方程消去,从而减少未知量的数量,
从而求得方程的解。

用代入法解二元一次方程组.2.1代入消元法

用代入法解二元一次方程组.2.1代入消元法
n=1 因此原方程组的一个解是
m = 0 , n = 1.

中考 试题
例1
方程组

x+(2 x+2y)=4 x+2y=2 .

的解是
x = 0 ,

y
=1.
.
解析
x+(2 x+2 y)=4,


x+
2
y=2

由②得
x = 2-2y ③ . 把③代入①,得
答:(1)
y
=2x+1;
(2)
y
=
2- x 2
.
2. 用代入法解下列二元一次方程组:


1)


x+ y = 128 , x- y= 4;


2)


3x +2y= 5 y =2x-1 .
,


3)

5a+2b = 11 , 3a+b = 7;


4 )

这种解方程组的方法叫做代入消元法, 简称为代入法.
例2 用代入法解方程组:

2x-3y
=
0
,




5x
-7
y
=
1
.



2x-3y
=
0
,



5x
-7
y
=
1
.


由①式得,x
=
3 2
y

把③代入 ②式 ,得

二元一次方程的解法代入消元法

二元一次方程的解法代入消元法

二元一次方程的解法代入消元法
一、简介
消元法是一种解决二元一次方程的一种常用解法,它通过运算来将方程消除或变换,从而求出原方程的解。

它采用一系列的步骤对原方程进行消元,首先选定两边的系数,然后乘以相应的数,结果在方程的两边相加,接着消除俩边中的自由项,最后求出未知数的取值,即可得到该方程的解。

二、步骤
1. 写出方程:
首先,写出待求解的二元一次方程,例如:2x+3y=1。

2. 选定两边的系数:
在原方程中选定一边的系数,例如选定2,另一边的系数则是3,即2x+3y=1。

3. 乘以相应的数:
所选定的系数乘以相应的数,例如选定2,则2乘以3,即2×
3=6;而另一边的系数为3,则3乘以2,即3×2=6。

4. 消元:
将乘以相应数的结果在方程的两边相加,接着消去双边的自由项,即6x+6y=1-1,我们可以得到6x+6y=0。

5. 求出未知数的取值:
此时,未知数x和y的取值已经确定,将未知数带入得到,x=0,y=-1/3。

把求得的答案代回原方程中,可以得到:2×0+3×(-1/3)=1,
于是有:解为x=0,y=-1/3
三、总结
消元法是一种通用的解二元一次方程的方法,它可以有效地将方程消元求出方程的解,这是它的优点。

此外,它的操作简单,并且可以有效地求出方程的解,在解决方程的过程中比较实用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档