矿井通风控制系统设计改造
矿井通风系统的与优化
0引言矿井通风系统是矿井生产系统的重要组成部分,它服务于生产系统,同时又制约着生产系统。
矿井通风系统的优劣,直接影响着矿井的安全生产、灾害防治和经济效益。
在实际生产中,往往由于矿井通风系统的不合理,影响了矿井的正常生产和矿井的抗灾能力,导致矿井经济效益的严重滑坡。
为确保矿井安全生产、稳产和高产,提高矿井的抗灾能力,最终提高矿井的经济效益,通风系统必须保持最佳运行状态。
因此,矿井通风系统的分析及优化改造具有重要意义,它是矿井设计过程和通风管理工作中的一项主要任务和内容。
1现有矿井通风系统存在的问题矿井通风网络在矿井开采过程中不断发生变化,新矿井投产初期,生产量尚未达到设计水平,通风阻力较小,通风系统如按设计参数投入运行,将造成风量过大,导致能源浪费。
投产后,矿井通风网络通风阻力的实际值与设计值偏差也较大,当设计值大于实际值时,则风量偏小,导致通风困难;当设计值小于实际值时,则风量偏大,导致能源浪费。
且随着近几年矿山形式好转,改扩建矿井日益增多,矿井通风系统问题日益突出,已严重影响矿井的安全生产,所以对矿井通风系统的分析与优化迫在眉睫。
2通风系统优化矿井通风系统的优化问题归纳起来主要包括如下几类:矿井通风系统阻力影响、矿井通风网络优化研究、矿井通风系统安全可靠性优化、矿井通风系统通风机优化。
2.1矿井通风系统阻力优化降低矿井通风阻力技术措施的研究对于矿井通风系统优化有着至关重要的作用,直接关系到矿井的安全生产和经济效益。
矿井通风阻力的影响因素较多,主要有三个方面:1)风量对阻力的影响;2)分支风阻对通风阻力的影响;3)网络结构对阻力的影响。
降低矿井通风阻力,对保证矿井安全生产和提高经济效益具有重要意义。
主要措施有:2.1.1并联通风根据并联风路阻力比串联网路阻力小得多的原理(风量相同),可以通过计算机通风系统模拟或实际通风阻力测定的方法,找出通风系统网络的高阻力区段,采取新掘巷道或者启封旧巷道的方法,实现并联通风,降低通风系统总阻力。
矿井通风系统的设计与优化
矿井通风系统的设计与优化矿井是人类开采矿藏的重要场所,其中矿井通风系统的设计与优化对确保安全生产至关重要。
本文将探讨矿井通风系统设计的关键要素以及如何进行优化,以提高矿工和设备的安全性和效率。
一、矿井通风系统的设计要素1. 矿井特征分析在进行通风系统设计之前,需要对矿井的地质条件、开采规模、矿井深度等进行全面的特征分析。
这些特征将决定通风系统的基本参数,如通风量、风速等。
2. 通风需求计算通过计算待设计矿井的通风需求,确定所需的通风量和风速。
通风需求计算需要考虑矿井的开采活动、作业区域的工作状况等因素,以确保室内的空气质量和温度。
3. 通风网络设计通风网络是通风系统的骨架,它由主风井、支风井、回风井等组成。
通过合理设计通风网络,可以实现矿井内空气的流动,将排放的有害气体及时排除。
4. 风机和风门选择风机是矿井通风系统的核心设备,其功率和性能直接影响通风系统的效果。
根据通风需求计算的结果选择合适的风机,并设置适当的风门控制通风量和风速。
二、矿井通风系统的优化方法1. 通风网络调整通过对通风网络进行调整来优化通风系统,可以改善矿井内的空气流动,提高通风效果。
例如,在主要开采区域增设支风井、回风井,以增加气流通道,优化气流分布。
2. 空气流动模拟利用计算流体力学(CFD)等模拟方法,对矿井内的空气流动进行模拟和分析。
通过模拟分析,可以发现通风系统中的瓶颈和不足之处,并提出相应的改进方案。
3. 智能控制系统应用利用智能控制系统对矿井通风系统进行自动化控制,可以实现对通风量、风速等参数的实时监测和调整。
智能控制系统可以根据矿井内的工况变化,自动调整通风系统以提高整体效率。
4. 设备的改进与优化通过对通风设备的改进和优化,如改进风机叶片设计,降低噪音和能耗;优化风门结构,提高调节精度和可靠性等,可以进一步提高通风系统的性能和效率。
三、矿井通风系统优化的效益矿井通风系统的设计与优化不仅可以提高矿工和设备的安全性,还能带来一系列经济和环境效益。
对于矿井通风设计及改造的研究
应分期选择 电动机。通风机 能力应 留有一定 的余量 , 年风 向频率指标 , 将其地点选定在煤尘 、 粉尘、 有害气体和高 能情况 ,
温 气 体 无 侵 入 的地 方 。而 且矿 井通 风 系 统 应 具 有较 强 的抗 灾 轴 流式 通 风 机 在 最 大 设 计 负压 和 风 量 时 , 轮 叶 运 转 角度 应 比 灾 害控 制 在 最 小 范 围 , 并 能迅 速 恢 复 正 常 生 产 。 2 矿 井 风 量计 算 点 实 际 需求 风量 的求 和 来 计 算 :
Q = ( ∑Q + ∑Q +∑Q I I +∑Q ) × k
mi a r
。 :离心式通风机 的选型设计转速 不宜大于允许 能力,当井下一旦发生灾害性事故后所选择的通风系统 能将 允许范围小 5 最 高转 速 的 9 0 %。 进、 } j J 风 井井 L ] 的高 差 在 1 5 0 m 以_ L , 或进 、
出 风 井井 口标 高 相 同 , 但井深 4 0 0 m 以上 时 , 宜计算矿外的 白 ( 1 ) 计 算 通 风机 风 量 Q 由于外 部 漏 风 (  ̄ l J J - F 口防爆 门及 主 要 通 风 机 附 近 的 反 风
Qt = k Q
矿 井 的 总进 风 量 , 需 要 通 过 对采 煤 、 掘进、 硐 室 及其 他 地 然 风压 。下 面 详 细 介 绍 主 要通 风 机 电设 备 的 选 择 方 法 。
行局部通风 。当两个井筒贯通后 , 主要通风机安装完毕, 便可 系统 总 阻 力 最 大 时称 为通 风 困难 时 期 。对 于通 风 容 易和 困难 用主要通风机对 己开凿的井巷 实行全压通风,从而可缩短其 时期 ,要 分 别 画 出通 风 系统 图。 按 照 采掘 工作 面 及 俐 室 的需 余井巷与硐室掘进时局部通风 的距离 。矿井生产时期 的通风 要 分配 风 量 , 再 由各 段 风 路 的 阻力 汁算 矿 井 总 压 力 。 是指矿井投产后 , 包括全矿开拓、 采准和采煤工作面 以及其他 4 矿 井 通 风 设 备 的 选择 井巷 的通风 。设备选取都需要根据矿井整个生产时期 的技术 矿井通风设备是指主要通风机和 叱动机。矿井 必须装 改
煤矿通风系统调整方案及安全技术措施
煤矿通风系统调整方案及安全技术措施第一,定期检查和维护通风设备。
通风设备包括风机、通风管道和通风了望等。
定期检查和维护这些设备可以确保其正常运行。
如果有任何故障或老化现象,应及时修理或更换设备,以确保通风系统的稳定和可靠运行。
第二,合理布置通风系统。
通风系统的布置应根据矿井的地质条件、矿井的采矿方法和矿井的载体形状等因素进行合理设计。
通风系统应能覆盖整个矿区,并确保通风风流的均匀分布。
风机的位置和数量应根据矿井的大小和通风需求进行合理布置,以确保矿井内部的空气流动和清新。
第三,采取适当的通风方式。
根据矿井的具体情况,选择合适的正、负压通风或双向通风方式。
正压通风适用于排风需求大的场所,如采煤工作面;负压通风适用于需要排除有害气体和放射性气体的场所,如爆炸作业区;双向通风适用于需要同时进行采煤和通风的场所,如走向连续采煤工作面等。
第四,严格控制通风系统的风量和风速。
通风系统的风量和风速直接影响矿井内的气流分布和矿工的舒适度。
通风系统的风量应根据矿井的规模、采煤强度和工作面的数量进行合理调整,以确保足够的气流量满足矿井的通风需求。
通风系统的风速应根据矿井的地质条件和矿工工作环境的要求进行合理控制,以确保矿工工作时不会因风速过大或过小而造成危险。
第五,加强瓦斯检测和粉尘防治。
在矿井通风系统中加装瓦斯检测装置,可以及时发现和排除矿井内的可燃气体,以防止矿井瓦斯爆炸事故的发生。
在矿井通风系统中加装粉尘防爆装置,可以有效地防止矿井内的粉尘引发火灾或爆炸事故。
同时,矿井通风系统应配备粉尘监测设备,及时掌握矿井内粉尘浓度的变化,以确保矿井内的粉尘不超过安全范围。
总之,煤矿通风系统调整方案和安全技术措施是确保矿井安全运营的重要环节。
通过定期检查和维护通风设备、合理布置通风系统、采取适当的通风方式、严格控制通风系统的风量和风速以及加强瓦斯检测和粉尘防治措施,可以保障矿井的通风系统的稳定运行和矿井工作环境的安全。
基于PLC的矿井通风控制系统设计的改造设计
[5]陈仕玮.矿井主要用通风机在线监测监控现状及展望[J].煤矿 安全,1999,(12):39~41.
(上接第 2 1 7 页)
3、通球扫线时应注意的事项
(1)在实际情况许可时, 每个管段的长度应相差不大,这样可节约 气量, 减少设备消耗。
图4 P L C 与变频器通信电路图
图3 PLC输入/ 输出接线图
机, 通过调速来驱动风机工作, 从而提高了风机的传动效率, 另外变频器 加减速时间可以任意设定,避免了风机全负荷启动时的大电流冲击,有利 于延长设备使用寿命。此系统操作方便, 控制精度高, 响应速度快, 使整 个系统工作平稳。而且节电率在20%~70%之间,具有巨大的节效益。
参考文献
[1]梁治齐.实用清洗技术手册[M].北京:化学工业出版社,2000.Biblioteka 2012. 1219
5 、结束语
管道的通球、试压是XS1-XS9集气干线工程和XS9至双合段输气管道 工程建设中的重要工序。施工运行的好坏对整个长输管道的投产起到 了决定性的作用。我们应在清管过程中, 发射多只不同功能的清管器, 可 达到更好的清扫效果, 提高通球清管的效率。通过对提高通球试压方法 的研究和实际应用, 为我们气田基本工程建设提供了重要的技术支撑。
风机组 1 输出 风机组 2 输出 工频输出 压力下限指示灯 风机组 1 运行指示灯 风机组 2 运行指示灯 风机组 1 温度上限指示灯 风机组 2 温度上限指示灯 蜂鸣器 1 急停指示灯 风机组 1 机械故障指示灯 风机组 2 机械故障指示灯 手动自动指示灯 瓦斯上限指示灯 压力模拟量输出
(1)本系统采用手动/自动两种工作模式,具有状态显示以及故障 报警等功能。
矿井通风系统改造的方法07
划分“三带”的标准(指标)有三种:
①采空区漏风风速V V>0.9m/s为散热带; 0.9≥V≥0.02m/s为自燃带; ∨<0.02m/s为自窒息带。 ②采空区氧浓度(C)分布 认为C<8%为窒息带,C≥8%为自燃带 ③采空区遗煤温升速度
Ⅰ W Ⅱ Ⅲ
L1 L2
dt>1℃/d为自燃带
(4)开采自然发火严重的采区或通风系统(一进一回)的采空区,按漏风风速、 采空区氧气浓度、采空区遗煤温升速度和遗煤发生自燃 的可能性采空区可分为三带。 散热带:L1=5-20m,由于自由堆积,空隙漏风大,Q生<Q 散; 自燃带:L=20-70m,空隙、漏风小,Q生>Q散; 窒息(不自燃)带Ⅲ:漏风小,氧气浓度低。
1200 1200
2.6 20 12.0 4 0 0 2.66 20 4.02 0 0
1600
3.88 25 3.28 0 0
1600
3.76 25 2.28 0 0
2750
3.62 35 2.1 1
2760
3.88 35 2.09 2
2810
3.5 35 1.72 5 2.65
2800
2.0 30 1.41 3 1.83
自燃矿井的通风系统必须满足的条件:
(1)根据兖州矿务局经验,自燃矿井的主扇风压不得超过
1500Pa;
(2)开采自燃煤层的采区和回采工作面必须采用分区通风, 并保持足够的通风断面采区和回采工作面进、回风两端压 差不宜超过200Pa; (3)开采有自燃煤层的矿井中,风门、风窗等通风设施均应 按防灭火的要求正确地势位置,应避免增加采空区、煤柱 裂隙、火区的漏风压差,每种设施的压差不宜超过100Pa;
煤矿主通风机通风控制系统的改造
能 的严 重 浪 费 。 当 设 备 出 现 故 障 时 ,会 出现 风 流 短 路 ,严 重 影 响 矿 井 的 安 全 。 另 外 主 通 风 机 在启 动过 程 中采 取 直 接 启 动 的 方 式 ,启 动 时 间 长 、启 动 电 流 大 , 对 电动 机 的 绝 缘 性 有很 大影 响 ,严 重 时 甚至 会烧 毁 电动机 。 煤 矿 主通 风机 系统 改 造 过 程 中 中用 P L C来 控 制 变 频 器 ,采 用 变 频 调 速 的 方 式实 现风 机 风 压 和 风 量 的调 节 ,这 样 不 仅 能够 达 到节 电 的效 果 ,还 能 够 提 高 整 个 通 风 系统 的 自动 化 程 度 。 为 了 保 证 煤 矿 生 产 的安 全 性 ,主 通 风 机控 制 系 统要 实 现 以下功 能 : ( 1 )能够 实 现手 动 、上 位机 和 就地 三 种不 同的控制 模式 ; ( 2 ) 驱 动 主扇 的电机 要 能够 保 证通 风 机 的软启 动 , 并 且使 其处 于变 频模 式 。 当变 频 器 出现 故 障 时 ,要 能够 通 过 手 动 或 者 自动切 换到 工频模 式 。 ( 3 )当煤矿内发生火灾等突变情况 时 ,P L C能 够 迅 速 向 变 频 器 发 送 质 量 , 驱 动 主 通 风 机 主 扇 电 机反 转 ,使 风 流 反 向流动 。 ( 4) 能 够 实现 对风 机运 行 参数 和拖 动 电 动 机 电气 参 数 的检 测 ,并 且 实 现 对 通风 机及 其辅 助设 备 的远程 控 制 。 3 P L C控制 系统 的硬 件 和软件 设计 目前 市 场 上 P L C的种 类 非 常多 ,但 其 核 心结 构 基 本 相 同 ,都 是 由 中央 处理 单 元 、存 储 器 、输 入 和 输 单 元 、I / O、 外 部设 备 和 电源等 几部 分组 成 。 ( 1 )硬件 设计 这次设计中 P L C选 择 了经 济 适 用 的 S 7 — 3 0 0 系 统 ,通 过 P L C的控 制 实 现 通风 机 系统 中的高低压供 电、风门位置 以及 通 风 机 运 行 状 态 的监 控 。s 7 ~ 3 0 0 P L C通 过 控 制 低 压 变 频 器来 实 现 风机 系统 的变 频 运行 ,P L C和变 频器 通过 R S 一 4 8 5串行 总 线 以 MO D B U S — R T U协 议 方 式 进 行 通 信 ,实 现 对 通 风 机 电机 运 行 数 据 和 运 行 状 态的采 集 , 实 现对 变频 器 的实 时控 制 。 在 进行 通风 系统 P L C改 造 时 ,首 先 要 根 据 其控 制 系 统 的要 求 ,配 置 相 应 的 硬 件 ,根 据 系 统 对 I / O点 数 和 信 号 性 质 的 需 求 ,最 终 确 定 其 硬 件 型 号 。在 S 7 — 3 0 0 P L C系统中 , 其模块总数超过 了8 块, 所 以 除 了 中 央机 架 外 还 需 要 配 置 相 应 的
煤矿局部通风机智能控制系统设计
煤矿局部通风机智能控制系统设计随着煤矿行业的快速发展,安全生产成为煤矿企业日常工作的重中之重。
煤矿局部通风机在煤矿生产中起着至关重要的作用,对于控制煤矿井下环境,降低事故风险具有重要意义。
随着科技的不断进步,研发智能控制系统可以提高煤矿局部通风机的性能和安全性。
本文将探讨煤矿局部通风机智能控制系统的设计。
一、介绍煤矿作为重要的能源产业,其安全生产一直备受关注。
局部通风机作为煤矿瓦斯抽采的重要装备之一,其稳定性和控制性能对煤矿安全生产至关重要。
传统的局部通风机只能通过人工调节控制,存在安全隐患和效率较低的问题。
因此,智能控制系统的设计能够提高局部通风机的性能,保障煤矿的安全生产。
二、智能控制系统设计原理智能控制系统的设计旨在实现自动化、精确控制。
该系统利用传感器、控制算法和执行器组成,实现对局部通风机的监控和控制。
其设计原理包括以下几个方面:1. 传感器:智能控制系统需要安装多种传感器,如瓦斯浓度传感器、温度传感器等,用于实时监测矿井环境参数。
2. 数据采集与处理:传感器采集到的数据通过数据采集模块传输给控制系统,系统进行数据处理、分析和预测,为后续的控制决策提供依据。
3. 控制算法:智能控制系统需要设计合理的控制算法,根据传感器监测到的数据,自动调节局部通风机的运行状态,实现自动控制。
4. 执行器:智能控制系统通过执行器控制局部通风机的运行,包括调节转速、控制程控风门等。
执行器的性能直接影响到系统的控制精度和稳定性。
三、智能控制系统设计要点在设计煤矿局部通风机智能控制系统时,需要注意以下要点:1. 可靠性:智能控制系统需要经受煤矿环境的考验,具备较高的可靠性。
设计时应充分考虑设备的稳定性和抗干扰能力,确保系统能在恶劣条件下正常运行。
2. 安全性:煤矿作为危险行业,安全性是设计智能控制系统的首要考虑因素。
系统应具备自动报警功能,能够及时检测到瓦斯浓度超标、温度异常等危险情况,确保工人的生命安全。
3. 灵活性:智能控制系统应具备一定的灵活性,能够适应不同矿井环境的需求。
矿山井下通风系统设计与优化
矿山井下通风系统设计与优化摘要矿山井下通风系统是保障矿山井下工作环境安全和提高作业效率的重要设施之一。
本文基于对矿山井下通风系统设计与优化的研究,探讨了通风系统设计的原理和方法,并对现有的通风系统进行了优化提升。
通过优化设计与改进,提高了井下通风系统的效率和安全性。
1. 引言矿山井下通风系统是矿业生产中必不可少的一个环节,它对保护矿工的生命安全、提高矿山生产效率具有重要作用。
井下通风系统能够有效地排除废气、降低井下工作环境温度、调节湿度,保证矿工的健康和生产的顺利进行。
2. 井下通风系统设计原理井下通风系统设计的基本原理是根据矿区井下空气流动特点和需求,通过合理设置通风设施和通风路线,使井下空气保持适宜温度、湿度和含氧量,降低有害气体浓度,确保矿工的健康和生产的平稳进行。
井下通风系统设计需要考虑以下几个方面的因素:2.1 矿井地质条件不同矿区的地质条件存在差异,如矿层结构、岩石性质、厚度等,这些因素会影响通风系统设计的选择和布置。
2.2 矿区单元细分矿区根据井下工作面的划分,需要将矿区划分为不同的单元,通过通风系统为每个单元提供独立的空气供应。
2.3 井下工作面布置井下工作面的布置涉及到通风系统的路径和风流分配问题,需要优化工作面布置以最大化通风效果。
3. 井下通风系统设计方法井下通风系统的设计方法包括计算法、经验法和仿真模拟等几种不同的途径。
3.1 计算法计算法是通过分析井下各个通风终点的通风需求,结合空气流动的物理规律,计算得出通风系统的风量和风压。
计算法需要准确的输入数据,如矿井地质条件、工作面布置、岩石气体含量等。
3.2 经验法经验法是基于以往的通风系统设计经验和实践,根据矿井特点和数据,通过经验公式和统计方法估算通风系统的风量和风压。
经验法建立在大量实验和实际应用的基础上,能够快速给出初步的设计结果。
3.3 仿真模拟仿真模拟是通过计算机软件模拟井下通风系统的流动和分布情况,通过调整参数和变量,达到最佳的通风效果。
矿井通风系统的设计与优化方案
矿井通风系统的设计与优化方案矿井通风系统在矿山生产中扮演着至关重要的角色,它不仅关乎矿工的健康和安全,也直接影响到矿山的生产效率和经济效益。
因此,合理设计和优化通风系统对于矿山的可持续发展至关重要。
本文将针对矿井通风系统的设计与优化方案进行探讨。
一、矿井通风系统的设计1. 矿井通风系统的结构矿井通风系统可分为主风机系统、辅助风机系统和通风道路系统。
主风机系统是通风系统的核心,负责为矿井提供主要的通风动力;辅助风机系统则为主风机系统提供支持,保证矿井通风的全面和充分;通风道路系统则是通风气流的传输通道,要求通风道路布局合理,通风阻力小。
2. 矿井通风系统的参数设计在设计矿井通风系统时,需要确定一系列参数,包括通风量、风速、阻力损失、风机数量和位置等。
通风量决定了煤矿内部的空气流通情况,风速影响矿工的舒适度和安全性,阻力损失直接影响通风系统的能效,合理确定这些参数是通风系统设计的核心。
3. 矿井通风系统的控制设计矿井通风系统的控制设计包括采用智能控制系统实现通风系统的自动化控制、通过监测设备实时监测通风系统运行状态以及建立预警机制,确保通风系统的可靠性和稳定性。
同时,合理设置通风系统的运行模式和运行参数,以适应矿山生产的不同需求。
二、矿井通风系统的优化方案1. 优化风机配置根据煤矿的实际情况和通风需求,合理配置风机数量和位置,避免盲目增加风机数量,提高通风系统的能效。
可以采用CFD仿真技术对矿井通风系统进行模拟,找出通风系统中的瓶颈和不足,优化通风系统的布局和结构。
2. 优化风门和风堰设计通过合理设置风门和风堰,控制通风系统中的气流分布,避免气流短路和死角,提高通风系统的通风效率。
在设计风门和风堰时,考虑通风系统的整体结构和气流传输路径,保证通风系统的全面、均匀通风。
3. 优化通风道路设计通风道路是通风系统的重要组成部分,通风道路的设计直接关系到通风系统的通风效果和能效。
在设计通风道路时,应考虑通风道路的长度、截面形状、材料和阻力损失,合理设计通风道路的曲线和分岔,降低通风道路的阻力损失,提高通风系统的通风效率。
矿井通风系统优化调节分析
矿井通风系统优化调节分析矿井通风系统在矿山生产中起着至关重要的作用,它不仅影响到矿工的健康和安全,还直接影响到矿井内部的气氛和工作环境。
对矿井通风系统进行优化调节分析是经济效益和安全生产的必然要求。
本文将从通风系统的结构、优化调节方法及其影响因素等方面展开论述,为矿山企业提供一些有益的参考。
一、通风系统的结构矿井通风系统是由风井、采风、回风、分支风管、主风管、副风机、管道泵站及配套设备等组成的。
在煤矿开采中,通风系统主要通过抽排瓦斯、调节矿井内部温度和氧气含量、净化矿井空气等功能来保证矿工的健康和安全。
风井是通风系统的核心部分,它通过主风机将新鲜空气送入矿井,让空气流动起来,将瓦斯、粉尘、有害气体以及工业粉尘排出矿井外。
采风口是输送新鲜空气和排放废气的通道,回风井则是将矿井内的废气排出去的通道,分支风管、主风管、副风机和管道泵站则构成了通风系统的骨架和基础设施。
二、优化调节方法1. 系统设计优化:在矿井通风系统设计阶段,应根据矿井深度、瓦斯含量、矿岩岩层、气压等因素,科学合理地设计通风系统的结构和布局。
通过合理地设置主风井、回风井及采风口位置,保证矿井内部的空气流通畅通,有效排除废气和有害气体。
2. 风量调节优化:通过对主风机和副风机的风量进行控制和调节,合理分配风压和风量,保证各个采掘面的通风充足,并在不同的矿井工作状态下进行自动调节和变频控制,以保证通风系统的高效运行。
3. 瓦斯抽采优化:对煤层中的瓦斯进行有效地抽采和利用是通风系统优化调节的关键环节。
通过对矿井内瓦斯含量的监测和分析,采用适当的瓦斯抽采设备和技术手段,保证矿井内部瓦斯达到安全浓度以下的水平。
4. 保护设备优化:通风系统中的保护设备如风流监测仪、瓦斯浓度监测仪、风压监测仪等也需要进行优化调节,保证其精度和灵敏度,提高设备自动报警的准确率,确保矿井内部的环境监控工作。
5. 运行管理优化:对矿井通风系统的运行管理进行优化调节,建立科学合理的通风系统运行管理制度和流程,提高设备和人员的运行效率和管理水平,确保通风系统的高效运行。
矿井通风系统优化改良分析
矿井通风系统优化改良分析摘要:矿井通风系统在煤矿安全开采中发挥着重要作用,其正常运行对于煤矿的安全高效开采具有重要意义。
在矿井生产后期,由于矿井通风条件相对于建井初期已发生了重大改变,矿井通风变得极为困难。
矿井通风条件的改变主要表现为矿井通风阻力的增加,需要风量大幅度增加,这不利于矿井的经济安全运行。
在这种情况下,对矿井通风系统优化显得十分重要。
由于矿井系统是一个庞大的生产系统,需要了解通风系统运行的关键参数,然后采取合适的方法进行优化。
本文分析了矿井通风系统的主要评价指标,并重点探讨了优化改良矿井通风系统的措施。
关键词:矿井通风;高通风阻力;矿井通风系统引言矿井生产后期,矿井通风进入困难时期,矿井通风阻力增加。
为了保证矿井通风系统的安全,需要对矿井通风系统进行优化改良。
通过分析矿井通风系统的主要评价指标,重点探讨了优化改良矿井通风系统的措施,可以为改善矿井通风效果提供一定的参考。
1矿井通风系统的主要评价指标分析一般情况下,矿井通风系统主要由矿井通风机、矿井通风网络及通风设施组成。
矿井通风机是煤矿井下风量循环的主要动力。
现在的矿井埋藏都比较深,依靠自然通风不能较好地解决风量的循环,需要采用机械式通风。
日常生产中经常采用负压式通风机,即抽出式通风机。
在进行矿井通风系统优化之前,需要对矿井通风系统进行整体评价。
可以用于评价矿井通风系统的指标有很多种,比较重要的是等积孔和通风网络的复杂程度。
1.1等积孔评价矿井通风的难易程度是矿井通风系统优化的一个重要工作。
矿井的通风阻力虽然可以确定,但是并不能直接用来评价矿井通风系统的运行状况,这是因为矿井通风阻力是一个相对的指标。
为此,现在多采用等积孔来评价矿井的通风难易程度。
1.2通风网络的复杂程度通风网络是矿井通风的主要通道,其主要表示各条巷道之间的连接形式,常见的有串联型、并联型和角联型。
一般地,在矿井生产后期,矿井通风网络多是角联型,如图1所示。
由图1可知,在矿井通风网络中有许多的节点和支路。
矿井通风系统的优化改进措施
矿井通风系统的优化改进措施为保证通风不断地进行,风机要安装两台,一台工作,一台备用,万一风机出故障,另一台马上接替运行。
同是要求具有双回路电源,如果一条回路断电,能迅速使用另一回路,这样,始终保持风机的运转。
要坚决消灭独眼井,即每对矿井,必须至少有两个能行人通到地面的安全出口,一个井进风,另一个出风。
开动局扇前,要检查局扇附近20米范围内的瓦施浓度,严格防止出现循环风。
1、矿井采取分区通风2、通风系统力求简单,无用的巷道要及时封闭,贯通进、出风井和总进、总回风流的巷道,都必须砌筑两道挡风墙,以防止瓦施爆炸时风流短路.3、装有主要扇风机或分扇风机的出井的出风井口,必须安装防爆门,防止爆炸波冲毁扇风机,给救灾和恢复生产造成困难.4、主要扇风机应装有反风装置,并保证能在规定的时间内改变巷道里的风流方向。
矿井通风设计的要求将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件;通风系统简单、风流稳定,易于管理,具有抗灾能力;发生事故时,风流易于控制,人员便于撤出;有符合规定的井下环境及安全监测系统或检测措施;通风系统的基建投资省,运营费用低,综合经济效益好。
150801工作面有一台光学甲烷检测仪电量不足,3道风门不合格,(1)—250m北巷有5道风门,第一道吊脚,第五道关不严,风门下端流水处漏风,有200mm间隙,应加小帘;(2)—450m水平联络巷风门反向风门关不严,扣3分. 发现有6道永久密闭质量不合格;发现有3处联锁风门质量不合格。
1)加强主扇风机的巡视检查,使通风机辅助装置齐全可靠。
2)永久密闭和风门部分没有编号,建议加强通风设施的管理。
3)通风科测风员只有一人,按规程105条规定:测风员每旬对全矿进行一次全面测风,尤其是进入回风巷测风巡视时,单独一人行走不安全,建议增加一名测风员.对所使用的甲烷传感器定期进行校正,保证每台传感器都能正常使用。
如CQ市一个3万吨300人的矿井,因事故死亡4人,赔款+罚款+停产整顿少卖一年的煤+工人照发工资等的经济总损失约1000万元,可见一年的通风费用肯定小于处理事故的费用.第四项矿井通风通风组对朔里矿井下5110综采面、南526风巷、西三538机巷、621煤巷的通风进行了检查,共检查了3台局扇、5组风门、2道密闭、便携式甲烷检测仪的配带使用。
矿井通风系统优化调节分析
矿井通风系统优化调节分析【摘要】矿井通风系统在矿井生产中扮演着至关重要的角色,保障了矿井内部空气质量和工作人员的安全。
通风系统在运行过程中常常存在着各种问题,如通风不畅、风量不足等,影响了矿井的生产效率和安全性。
为了解决这些问题,需要对通风系统进行优化调节。
本文对通风系统的重要性、存在的问题进行分析,探讨了优化调节方法和运行参数的优化策略,并提出了通风系统的监测与维护策略。
通过对矿井通风系统进行全面的优化调节分析,可以提高矿井生产效率,保障工作人员的安全。
【关键词】矿井通风系统、优化调节、问题分析、方法探讨、运行参数、监测、维护、结论1. 引言1.1 矿井通风系统优化调节分析矿井通风系统是煤矿生产中非常重要的一环,它直接影响到矿井内空气品质的好坏,保障矿工的安全生产。
矿井通风系统的优化调节分析是对通风系统进行全面评估和优化,以提高通风系统的效率和安全性,降低矿井生产中的风险。
在矿井通风系统的优化调节过程中,首先需要对通风系统的工作原理和重要性进行深入理解。
通风系统在矿井中的作用主要包括排放有害气体、保持矿工呼吸空气、调节矿井温度和湿度等。
只有通风系统工作正常,才能保障矿井内空气品质的良好。
通风系统在实际运行中也存在一些问题,比如通风量不足、通风阻力大、通风系统分布不合理等。
这些问题可能导致通风系统的效率下降,影响矿工的工作环境和生产效率。
在优化调节矿井通风系统时,需要从通风系统的设计、设备选择、管道布局、运行参数等方面进行分析和调整,以提高通风系统的效率和稳定性。
对通风系统的监测和维护也至关重要,只有保持通风系统的长期稳定运行,才能确保矿工的安全生产。
的工作是矿山企业保障生产安全和提高生产效率的重要环节,值得高度重视和深入研究。
2. 正文2.1 矿井通风系统的重要性矿井通风系统是矿山安全生产的重要保障措施,其作用不可替代。
通风系统能够有效地排除矿井内的有害气体,如一氧化碳、二氧化碳等,保障矿工的生命安全。
矿井通风系统优化改造措施
矿井通风系统优化改造措施摘要:矿井通风是矿井安全的重要组成部分,而一个合理、稳定、可靠的矿井通风系统是确保矿井安全的前提条件。
由于矿井开采深度的加大,开采强度的加大,以及综合机械化程度的不断提升,瓦斯压力、瓦斯含量以及瓦斯的渗出量都在不断增加,而由于矿井通风线路较长,通风阻力较大,地温较高,这就导致了矿井对空气的需求大大增加,因此,必须对矿井通风系统进行适时的调整,并对一些无法达到安全要求的矿井通风系统进行优化。
本文着重介绍了煤矿井下通风设备优化改造的必要性,并对其进行了初步的探讨。
关键词:矿井;通风系统;优化改造措施煤矿安全生产的一个重要条件,就是要确保井下空气质量达到生产要求。
在煤炭资源进行整合时,在煤炭资源整合前后,矿山的生产系统和通风系统都发生了改变,资源整合后的通风系统的通风量和系统服务范围都与以前有了很大的改变。
由于整合后的煤矿通风线路变长,通风需求量增加,通风系统阻力增大,其通风系统的通风能力已不能满足煤矿生产的日常工作需求。
为此,为了保证矿井的正常、安全地进行综合通风,需要对其进行全面的综合通风进行优化和改造。
1.矿井通风系统现状某矿山的井下通风系统由北辅斜井、主斜井、胶带斜井以及南、北两个回风井构成。
矿通风从主斜坡向下流动,经北辅斜井,运输平巷,盘区斜井,流入分层平巷,穿过采场,将煤粉从煤粉中抽离出来,穿过采场空区,流入前面的风道,最终流入回风井。
矿井中受污染的空气通过对转轴向气流排放至地面。
通过对该矿山的通风系统的实地调研与测量,发现胶带斜井矿石提升和主斜坡道较多的重型汽车运行,使得矿山的进风量中有57%的新鲜风流被污染,并且漏风量很大,从而造成了有效风量低、风机装置运行效率低、漏风量严重的问题。
以专家、学者们对矿山资源生产的实际经验为依据,对其进行了总结和分析,因此,必须要对矿井通风系统展开最优的设计,才能避免目前存在的通风系统问题,从而让通风系统的通风量可以满足安全生产的需要,从而达到矿井对通风系统风量需求的标准要求。
矿井通风方案
矿井通风方案矿井通风是保障矿工安全和维持正常生产的关键环节。
在矿井作业中,通过良好的通风系统,可以减少有害气体积聚、控制温度、降低尘埃浓度,并且为作业区域提供足够的新鲜空气。
因此,制定合理的矿井通风方案至关重要。
本文将以一个煤矿的通风方案为例进行探讨,旨在提供一个全面且可行的通风方案。
一、矿井通风系统设计1. 矿井结构设计首先,需要对矿井进行结构设计,在矿井开采过程中确保通风系统的合理布局。
矿井结构设计需要考虑以下几个因素:- 通风维度:根据矿井的规模和使用需求,确定通风系统所需的容积和面积。
- 矿井开口设计:在矿井的入口和出口设置合适的开口,以便空气流动。
- 矿井分区划定:将矿井划分为不同的区域,根据各个区域的需求进行通风调控。
2. 风井布置在矿井的通风系统中,需设置合理的风井布置。
风井的位置通常选择在矿井入口附近,以便于新鲜空气的进入。
同时,在矿井深处,通常设置排风井,将有害气体排出。
风井布置的合理性可以有效提高通风效果。
3. 风机选择风机在通风系统中起到关键作用,负责提供必要的空气流动。
在选择风机时,需要考虑以下几个因素:- 风量要求:根据矿井的规模和通风需求,确定所需的风量。
- 压力需求:根据矿井的深度和通风管道的长度,选择适当的风机以满足所需的压力。
二、矿井通风系统操作1. 监测与控制矿井通风系统的监测与控制是确保系统正常运行的关键。
需要安装合适的监测设备,实时监测矿井内的气体浓度、温度和湿度等参数,并及时采取措施进行调控。
当检测到有害气体超标时,应及时切断进风,关闭相应通风道路,确保矿井内的空气质量。
2. 部分抽排通风在实际的矿井通风操作中,可以采用部分抽排通风方式。
这种方式通过在矿井不同位置设置不同风机进行通风,以达到最佳通风效果。
其中,主抽风机负责排出有害气体,而辅助风机负责提供新鲜空气。
三、矿井通风系统维护1. 定期检查定期检查矿井通风系统的运行状况非常重要。
通过对通风系统的定期检查,可以及时发现并修复可能存在的故障或漏风问题。
矿井通风系统设计和优化
而 通 设 计 。 无 论 新 建 、 建 或 扩建 矿 井 的通 风 设 计 , 必须 贯 彻 党 的技 术 外部 漏风 率 超 过 规 定 , 由于 原 设 计 不 合理 , 风 构筑 物 位 置与 结 构 改 都 欠 佳 , 使 内 部 漏 风 率 提高 。 此 , 逐 个调 查 其 漏 风点 , 出 改 善措 也 为 应 提 经 济 政 策 , 照 国 家 颁 布 的 矿 山安 全规 程 、 术 操作 规 程 、 计规 范 遵 技 设
矿 井通风 系统设计和优化
李 良松 田浩 ( 投新集 国 能源股份公司口 矿) 孜东
3通风 系统优化
矿 井通 风 系 统 是 组 成 矿 井 生产 的一 个 重 要 环 节。 故 生 产 矿 井 的 挖潜 、 术 改造 和 优 化 , 技 也应 包括 通 风 的 内 容 。 经过 优 化 后 的矿 井 通 风 系统 , 与 矿 井 的生 产 相 适 应 , 术 上 先 进 、 应 技 合理 、 靠 : 证 生 产 可 保 所 需 的充 足 、 定 的风 量 , 较 好 的经 济 效 果基 础 上 具 备 较 强 的 抗 灾 稳 在
施, 为改 造 设 计 提 供依 据 。 和 有 关 的 规定 。 313 由于 通风 机 长 期 运 转 , 有 时 附属 装 置 阻 力 大 , 硐 断面 .. 且 风 2 生 产 矿 井通 风 设 计 的基 本 内容 和 步 骤 过小 , 硐短 , 风 曲率 半 径 小 , 散 器 的 扩 散 角 和 导 流 设 备 不 合 理 等原 扩 要根 据在 通 风 设计 的服 务 期 限以 内 ,通 风 困难 和 通 风 容 易 两 个 因 , 成 通 风 机 装 置 的 综合 效 率 降 低 。 为 此 , 须 查 明 通风 机 的 运 转 造 必 时期 , 分别 按 以下 内 容 和 步 骤 进行 具 体 设计 。 实 际 特性 及 其 工 况 。 21 拟定 矿 井 通 风 系统 . 32 编 制 方 案 的 注 意 事项 . 在 生 产矿 井 的通 风 设计 中 , 风 系统 的 变 化 幅 度 很 不相 同。 如 通 例 321 矿 井 通 风 系 统 的布 置是 紧 密结 合 开 拓布 置 的。在 生 产 中 , .. 需 要 增 加 新 采 区 , 瓦斯 变 化 不 大 、 产 任 务 不 大 时 , 井 的通 风 系 但 增 矿 由于 地 质 条 件 和 生 产 部 署 , 常会 出现 两 翼 生 产 不平 衡 的 现 象 , 时产 有 统 不 会 有 太 大 的 变化 , 不致 增 开 新 风 井 。 也 而 但如 果 新开 的采 区在 边 远 地 区 或 在较 深 的水 平 ,而 且 产 量 和 瓦 量 集 中于 某 一 翼 或 某 一 采 区 , 造 成 一 翼 或一 个 采 区通 风 能 力 不 足 , 斯 量 有较 大 的增 加 , 有 的通 风 能力 不 能满 足 时 , 者 因为 井 田重 新 而 另 一翼 或另 几 个 采 区 的 通 风 能力 过 剩 。 这 对 矿 井 的 风量 分配 很 难 现 或 通 为 矿 要 划 分 、 型 变 化 时 , 井 通 风 系统 往 往 发 生 较 大 的 变 化 , 由 中 央 并 管理 , 风 能 量 消 耗很 不经 济 。 此 , 井 在 安排 生 产时 , 尽 可 能 考 井 矿 可 在 尽 或 列 式 变 为 中 央 并列 和 中央 分 列 混 合 式 ,或 由 中 央并 列 式 变为 中央 并 虑 各 个 系 统 的 通 风 要 求 , 采 掘 布 置 中 , 量 达 到 均 衡 生 产 , 使 改
矿井通风系统调整设计与安全技术措施
矿井通风系统调整设计与安全技术措施随着矿业的不断发展,矿井通风系统成为了矿井安全的关键设计之一。
矿井通风系统的正确调整设计与安全技术措施是确保矿工安全的关键因素之一。
一、矿井通风调整设计矿井通风设计的目的是实现合理的通风效果,以确保矿工在不断变化的工作环境中健康和安全。
矿井通风设计的重点是提高通风系统的运行效率和燃烧气体的排出速度,以确保工作场所的清洁和无尘状态。
1. 合理选取通风系统设备当进行矿井通风系统的设计时,需要根据矿井的特点合理选择并配备通风设备。
合理选取设备能够满足通风系统的需求,同时降低其使用成本,提高运行效率。
一般来说,通风系统设备应该满足几个方面的要求,首先,具有良好的操作性和安全性。
其次,设备必须耐用,其使用寿命越长越好。
同时,设备的功能也需要与矿井的物流要求和通风需求匹配,这样才能满足矿井工作的实际需求。
2. 合理安排巷道通风系统布局在矿井通风系统的设计中,不同巷道的通风布局应该合理选择,以确保充分通风和可靠运行。
从而保证煤气、烟气、粉尘等有害气体的快速排出,达到健康、安全的工作环境。
通风系统的重点是实现巷道通风布局的合理设置与连通,这样可以为矿工提供干净、通风良好的工作场所,同时确保通风系统的高效运行。
二、矿井通风系统的安全技术措施矿井通风系统的安全技术措施和规定有助于控制工作场所的风险,防止潜在的事故。
勤于维护巷道通风系统的安全,可以大大提高通风系统的安全性和运行效率。
1. 定期进行巷道通风系统检修和维护定期检查和维护通风系统能够帮助寻找潜在的隐患并及时解决。
在矿井内,由于矿井的工作环境有时会比较恶劣,所以通风系统的维护工作十分重要。
通过定期清洁通风管道和通风机,能够清楚煤气和粉尘等有害物质,提高通风系统的安全和稳定性。
2. 对通风系统有良好的标识在矿井内的通风管道和机器上标识灯是非常必要的,有助于指示内部的机器或构件的位置、用途和安装情况。
这样可以使人员在紧急情况下快速找到管道和机器,以避免事故发生。
井下通风控制改造工程方案
井下通风控制改造工程方案一、工程概况井下通风控制改造工程涉及矿井井下通风系统的改造和升级,旨在提高矿井井下通风系统的效率和安全性,保障矿工在井下作业的健康和安全。
本工程将对现有通风系统进行全面评估,对照国家相关标准和规范要求,制定科学合理的通风改造方案,并进行实施和验收。
二、工程目标1. 提高井下通风系统的效率和质量,确保通风系统能够达到国家相关标准和规范要求;2. 提高井下通风系统的安全性,减少通风系统对矿工健康的潜在影响;3. 优化通风系统的运行管理模式,提高通风系统的运行效率和稳定性;4. 减少能源消耗,降低通风系统的运行成本。
三、工程内容1. 现场勘查:对矿井现有的通风系统进行全面勘察和评估,包括通风设备、管道布局、风障设置等方面的情况,了解通风系统的运行情况和存在的问题;2. 技术分析:对照国家相关标准和规范要求,对通风系统进行系统分析和评估,找出通风系统存在的问题和改造的重点;3. 制定方案:根据技术分析的结果,制定通风系统的改造方案,包括设备更新、管道布局优化、风障设置调整等方面的具体改造方案;4. 实施改造:按照制定的改造方案,进行通风系统的改造和升级,包括设备更新、管道布局调整、风障设置优化等方面的工程实施;5. 调试验收:对改造后的通风系统进行系统调试和验收,确保通风系统的改造效果达到预期目标,并符合国家相关标准和规范要求。
四、技术方案1. 通风设备更新:对矿井现有的通风设备进行全面评估,针对老旧设备进行更新和更换,采用高效节能的通风设备,提高通风系统的效率和稳定性;2. 管道布局优化:对照国家相关标准和规范要求,对矿井现有的管道布局进行优化调整,减少管道阻力,提高通风系统的吹风效果;3. 风障设置调整:根据现场情况,对矿井现有的风障设置进行调整,减少风障的阻力,提高通风系统的送风效果;4. 通风系统运行管理模式优化:对矿井的通风系统运行管理模式进行优化调整,采用先进的通风系统管控技术,提高通风系统的运行效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安全管理编号:LX-FS-A83061 矿井通风控制系统设计改造
In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or
activity reaches the specified standard
编写:_________________________
审批:_________________________
时间:________年_____月_____日
A4打印/ 新修订/ 完整/ 内容可编辑
矿井通风控制系统设计改造
使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
针对矿井旧通风控制系统中存在的体积庞大、接线复杂、机械触点多、排除故障困难、可靠性差、自动化程度低等缺陷,设计了一种基于先进PLC控制技术的矿井通风安全控制系统。
该控制系统投入使用,运行结果表明,系统具有功能完善,运行稳定,节能效果明显等特点,提高了企业的生产效率和经济效益,具有很好的应用前景。
煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分,煤矿矿井通风系统能否正常工作与矿井内工作环境条件、生产效率、安全生产密切相关。
随着我国政府对各行各业安全生产监管力度的不断加强,尤
其对煤矿安全生产的要求越来越高,对煤矿矿井通风系统进行技术改造,提高其运行稳定性、节能降耗等势在必行。
本系统将PLC与变频器有机地结合起来,采用以矿井气压压力为主控参数,实现对电动机工作过程和运转速度的有效控制,使矿井通风机通风高效、安全,达到了明显的节能效果。
系统的设计功能
本控制系统具有通风机组的启动、互锁和过热保护等功能。
与常规继电器实施的通风系统相比,PLC 系统具有故障率低、可靠性高、接线简单、维护方便等诸多优点,PLC的控制功能使通风系统的自动化程度大大提高,减轻了岗位人员的劳动强度。
为满足矿井通风系统自动控制的要求,系统的具体设计要求如下:
2.1.本系统提供手动/自动两种工作模式,具有
状态显示以及故障报警等功能。
2.2.模拟量压力输入经PID运算,输出模拟量控制变频器。
2.3.在自动方式下,当井下压力低于设定压力下限时,两组风机将同时投入工作运行,同时并发出指示和报警信号。
2.4.模拟量瓦斯输入,当矿井瓦斯浓度大于设定报警上限时,发出指示和报警。
当瓦斯浓度大于设定断电上限时,PLC将切断工作面和风机组电源,防止瓦斯爆炸。
2.5.运用温度传感器测定风机组定子温度或轴承温度,当定子温度或轴承温度超过设定报警上线时,发出指示和报警信号。
当定子温度或轴承温度超过设定风机组转换温度界线时,PLC将切断指示和报警信号并自动切断当前运行风机组,在自动方式下并能自
动接入另一台风机组运行,若在手动方式下,工作人员手动切换。
系统硬件构成及各部分功能
本控制系统有可编程控制器(PLC)、A/D转换模块、D/A转换模块、变频器、传感器部分、监控对象和电控回路组成。
3.1.PLC可编程控制器部分可编程控制器部分
PLC概述概述PLC是以微处理器为核心的一种特殊的工业用计算机,其结构与一般的计算机相类似,由中央处理单元(CPU)、存储器(RAM、ROM、EPROM、EEPROM等)、输入接口、输出接口、I/O扩展接口、外部设备接口以及电源等组成。
CPU单元由微处理器、系统程序存储器、用户程序存储器以及工作数据存储器等组成,它是PLC 的核心部件,是由大规模或超大规模的集成电路微处
理芯片构成,主要完成运算和控制任务,可以接收并存储从编程器输入的用户程序和数据。
存储器单元按照物理性能分为两类,随机存储器(RAM)和只读存储器(ROM)。
输入输出单元由输入模块、输出模块和功能模块构成,是PLC与现场输入输出设备或其他外部设备之间的连接部件。
PLC通过输入模块把工业设备或生产过程的状态或信息读入中央处理单元,通过用户程序的运算与操作,把结果通过输出模块输出给执行单元。
输出模块用于把用户程序的逻辑运算结果输出到PLC外部,输出模块具有隔离PLC 内部电路和外部执行单元的作用,还具有功率放大的作用。
3.2.变频器部分
本系统选用的是西门子全新一代标准变频器MicroMaster440功能强大,应用广泛。
它采用高
性能的矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,以满足广泛的应用场合。
变频器的选用:变频器的选用应满足以下规则,变频器的容量应大于负载所需的输出;变频器的容量不低于电机的容量;变频器的电流大于电机的电流。
由于本设计以风机组2×30kW为例,因此可选用37kW,额定电流75A的变频器。
考虑到改进设计方案的可行性,调速系统的稳定性及性价比,我们采用西门子MM440、37kw,额定电流为75A的通用变频器。
该变频器采用高性能矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,可以控制电机从静止到平滑起动期间提供3S,有200%的过载能力。
变频器参数的设置:负载为一大惯性负载,在停车时,为防止因惯性而产生的回馈制动使泵升电压过高的现象,加入制动电
阻,斜坡下降时间设定长一些。
外接制动电阻的阻值和功率可按公式R≥2Ud/1P≥(0.3—0.5)选取。
式中:U为变频器直流侧电压,d为变频器的额定电流。
本次设计采用西门子与37kW电机配套的制动电阻响和对转速调整的要求,系统用模拟量输入作为附加给定,与固定频率设定相叠加以满足不同型号模具特殊要求。
软件设计
本控制系统的软件设计是分四部分实现的,主要包括手动自动控制部分、温度转换控制部分、瓦斯浓度控制部分和压力PID控制部分。
本文中所采用的PLC是西门子公司的产品S7-200系列,CPU的型号是CPU226。
主要包括手动/自动控制部分、温度转换控制部分、瓦斯浓度控制部分、压力PID控制部分、PLC与变频器通信和机械故障处理部分。
其中
手动和自动控制部分是在温度、瓦斯和压力控制中使用的。
所以下面仅对温度、瓦斯、压力进行分析。
温度控制部分本设计的风机组设有轴承温度和定子温度过热保护。
综合所选用的风机组自身特性和国家规定标准,设置了风机组轴承温度和定子温度报警温度和跳闸温度(本系统是风机组切换温度)。
瓦斯浓度传感器将连续变化的瓦斯浓度信号转换为4~20毫安的电流,然后经A/D转换模块EM235,通过其内部的采样、滤波,转换为PLC能识别的二进制信号存储到VD196中。
西门子PLC控制变频器在煤矿矿井通风系统中的应用,不仅简化了系统,提高了设备的可靠性和稳定性,设备的操作和维护方便,节省能耗,同时也大大地提高了煤矿生产的安全系数。
由于变频器直接控
制电机,通过调速来驱动风机工作,从而提高了风机的传动效率。
此系统操作方便,控制精度高,响应速度快,使整个系统工作平稳。
而且节电率在20%~70%之间,具有巨大的节效益。
请在该处输入组织/单位名称
Please Enter The Name Of Organization / Organization Here。