基于铷—氙气室原子磁力仪装置的磁场测量研究
铷原子光泵磁共振实验报告
1 ~ H 扫(右 2
图);继续增大水平电流,当三角波的中央刚好对应 H 时,总磁场与所加的水平方向磁场( H 1 )满足
H H1 H 地水 H 扫 (中图);再继续增大水平电流,当三角波的波谷刚好对应 H 时,总磁场与所加的
水平方向磁场( H 1 )满足 H H 1 H 地水 H 扫
一
引言
光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级及塞曼子能级间粒子数的非平衡分 布的实验方法。光泵磁共振技术于1955年由法国科学家卡斯特勒发明,它是将光抽运技术和射频或微波磁 共振技术相结合的一种实验技术,这种技术最早实现了粒子数反转。 气体原子塞曼子能级之间的磁共振信号非常弱,普通方法很难探测。本实验利用光泵磁共振方法克服 了磁共振信号弱的特点,将探测灵敏度提高了七八个数量级,能在弱磁场下精确检测原子能级的超精细结 构。本实验研究Rb原子的光泵磁共振现象,天然Rb有两种同位素: 85 Rb (丰度为72.15%)、 87 Rb (丰度 为27.85%)。
1 ~ H 扫 (左图)。 2
图 4 磁共振信号
而当三角波的波峰、波谷对应 H 时,判断共振信号时刻的误差较大,且总磁场 H 中含有 H 扫 项,计算 H 需较多组的数据。因此,实验中测量中图(即 H 对应三角波中央)所对应情况,也更容易判断共振信号 出现时刻。 实验中分别测量了扫场、水平场不同组合下,满足中图(H 对应三角波中央)情况的水平磁场电流, 计算时仅需要前三组即可。实验数据见表 1。三组情况分别对应
m F 1 的跃迁,所以处于 5 2 S1 / 2 的 m F 2 子能级上的粒子不能被激发至 5 2 P1 / 2 态。
2 当原子经历自发辐射和无辐射跃迁从 5 2 P 1 / 2 回到 5 S1 / 2 时,粒子返回到基态各子能级的概率相等。这
高灵敏度铷原子磁力仪研制
2 部件设计
2 . 1 光源 系统
信号 幅度 , 图 2为弱磁信号处理 系统技术原理
图。光电转换器得到的原始信号将经过高精度 数据采集卡进行 A D转换 , 采用 L a b V I E W 软件
编程 能 够 实 现 这 一 功 能 , 采 用快 速 的傅 里 叶 变
激光通过偏振分束棱镜分成泵浦光和探测
2 . 2 磁探 头 系统
图 2 弱磁信 号处理系统技术原理 图
O O O
= 兮 ∞
3 主要性能测试 与讨论
3 . 1 磁 光共 振 信号
为了提高加热的均匀性 , 同时能够使得温 度相对稳定, 采用无磁加热架并选用精密可控 加热方式 , 利用功率放大器提高输 出功率 , 使得 加热系统可以正常稳定 工作在 1 0 0 q C 左右。将 原子气室放置在的磁屏蔽筒 内部 , 屏蔽系数优 于l 0 , 屏蔽了外界无关磁场 的干扰 , 保证 了原 子 磁力仪 能够处 于指 定 的磁 场 中。设 计 了精 密
作者简介 : 杨世宇( 1 9 7 9 一) , 男, 甘肃靖 远人 , 高级 工
程师, 博士, 主要从事高灵敏度原子磁力仪及量子频 标技术研究工作。
1 9 8
处于待测对象产生 的磁场 中的原子气体相互作
用, 获得包含磁场信息的调制光学信号, 通过光 电探测器和相应的差分放大 电路得到含有磁场
子光学磁力仪 , 它可以作为标量磁力仪使用 , 灵 敏度高 , 结构简单 , 并测试了它的主要性能。
图1 激光抽运铷原 子磁力仪原 理图
收稿 日期 : 2 0 1 6一l 0—2 8
铷原子磁力仪系统对抽运激光 和探测激光 分别独立控制 , 经过稳频 的谐振窄线宽激光束 对腔内原子气体进行高度极化 。用探测激光与
抽运-检测型非线性磁光旋转铷原子磁力仪的研究
抽运-检测型非线性磁光旋转铷原子磁力仪的研究缪培贤;杨世宇;王剑祥;廉吉庆;涂建辉;杨炜;崔敬忠【摘要】报道了一种抽运-检测型的非线性磁光旋转铷原子磁力仪.其原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致光的偏振方向会产生与磁场相关的转动.分析了该磁力仪的工作原理,并测试了它对不同磁场大小的响应.测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT.进一步研究了不同磁场下原子系综极化态的横向弛豫时间,讨论了原子磁力仪高磁场采样率的获得方法.本文的原子磁力仪在5000—100000 nT的磁场测量范围内磁场采样率可实现1—1000 Hz范围内可调,能够测量低频的微弱交变磁场.本文的研究内容为大磁场测量范围、高灵敏度、高磁场采样率的原子磁力仪研制提供了重要参考.%We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubid-ium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a π/2 pulse of oscillating magnetic fiel d for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the mag-netic field. The linearly polarized probingbeam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula: B =(2π/γ)f , where γ and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. Theatomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.【期刊名称】《物理学报》【年(卷),期】2017(066)016【总页数】11页(P47-57)【关键词】原子磁力仪;非线性磁光旋转;灵敏度;磁场采样率【作者】缪培贤;杨世宇;王剑祥;廉吉庆;涂建辉;杨炜;崔敬忠【作者单位】兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州730000【正文语种】中文报道了一种抽运-检测型的非线性磁光旋转铷原子磁力仪.其原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致光的偏振方向会产生与磁场相关的转动.分析了该磁力仪的工作原理,并测试了它对不同磁场大小的响应.测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT.进一步研究了不同磁场下原子系综极化态的横向弛豫时间,讨论了原子磁力仪高磁场采样率的获得方法.本文的原子磁力仪在5000—100000 nT的磁场测量范围内磁场采样率可实现1—1000 Hz范围内可调,能够测量低频的微弱交变磁场.本文的研究内容为大磁场测量范围、高灵敏度、高磁场采样率的原子磁力仪研制提供了重要参考.高灵敏度的原子磁力仪在生物医学[1,2]、惯性导航[3,4]、军事磁异反潜[5]、基础物理研究等[6−9]领域具有重要的应用.目前国际上出现了Mz和Mx模式的光泵磁力仪、相干布居囚禁磁力仪、非线性磁光旋转(nonlinear magneto-optical rotation,NMOR)磁力仪、无自旋交换弛豫(spin-exchange relaxation free,SERF)磁力仪等多种原子磁力仪[10],其中SERF磁力仪灵敏度已达到fT/Hz1/2量级[11−13].近年来,国内有多家单位开展了原子磁力仪的研究.例如浙江大学研制了铷光泵磁力仪,零磁场附近灵敏度达到0.5 pT/Hz1/2[14];北京大学详细讨论了铯光泵磁力仪的参数优化问题,得到最优的灵敏度为2.5 pT/Hz1/2[15];国防科学技术大学研制了NMOR铷原子磁力仪,测量范围为±60 nT,灵敏度达到1 pT/Hz1/2[16],后来经过进一步优化实验条件,灵敏度达到0.2 pT/Hz1/2[17].总体而言,国内原子磁力仪的研制还处于起步阶段,在灵敏度、测量范围、磁场采样率等指标上还有很大的提升空间[18].本文系统地研究了抽运-检测型的NMOR铷原子磁力仪,测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT,磁场采样率最高可达1000 Hz.研究的NMOR铷原子磁力仪用两束激光完成外磁场中原子系综极化态的制备与探测,圆偏振抽运光与外磁场平行,线偏振探测光与外磁场垂直.铷原子磁力仪采用87Rb原子D1线跃迁制备极化态原子介质,即基态52S1/2到第一激发态的52P1/2的跃迁,对应波长为795 nm.基态52S1/2的两个精细能级分别是52S1/2(Mj=−1/2)和52S1/2(Mj=+1/2),795 nm的左旋圆偏振光(σ+光子)可被处于52S1/2(Mj= −1/2)基态的87Rb原子吸收,使得87Rb原子跃迁到52P1/2(Mj=+1/2)激发态上,激发态87Rb原子通过辐射光子后跃迁到52S1/2(Mj=−1/2)或52S1/2(Mj=+1/2)基态上,左旋圆偏振光持续作用将使铷泡内绝大部分87Rb原子最终处于52S1/2(Mj=+1/2)基态上.同理,右旋圆偏振光(σ−光子)持续作用将使铷泡内绝大部分87Rb原子最终处于52S1/2(Mj=−1/2)态上.这样,圆偏振的抽运光完成了原子系综极化态的制备.这里引入二能级磁共振的经典物理图像来解释NMOR铷原子磁力仪的工作原理[19].经过抽运光作用后,极化态的87Rb原子磁矩与外磁场B近似平行或反平行.在与外磁场垂直的平面内施加角频率ω约等于拉莫尔进动频率ω0的激励磁场B′[19],原子磁矩将在实验室坐标系中做复杂的运动,而在以角频率ω旋转的转动坐标系中,原子磁矩绕B′做进动.由于铷泡内原子间频繁的碰撞,在激励磁场的作用下使大部分铷原子磁矩绕外磁场进动的相位角趋于一致,原子系综呈现出绕外磁场进动的宏观磁化强度[20].原子磁矩在旋转坐标系中进动π角度时,相当于在外磁场B量子化轴方向上原子发生了磁共振跃迁.如果激励磁场持续作用,87Rb原子将在两个基态能级间来回跃迁.本文NMOR铷原子磁力仪要求原子磁矩在旋转坐标系中进动π/2角度,即原子系综宏观磁化强度进动到与外磁场B垂直的平面内,然后关闭激励磁场.线偏振光可以看作是左、右圆偏振光的矢量叠加,当线偏振的探测光穿过铷泡时,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致线偏振光的偏振方向会随着原子磁矩绕外磁场的拉莫尔进动而相对原来偏振方向做摆动,用差分探测方式探测偏振光偏振方向的摆动即可获得原子磁矩拉莫尔进动自由弛豫信号,并由此信号傅里叶变换出拉莫尔进动频率.由外磁场B与拉莫尔进动频率f的依赖关系可获得外磁场大小[18]:其中γ是旋磁比.对于87Rb原子,γ/2π的值为6.99583 Hz/nT[18].NMOR铷原子磁力仪要求探测光不能过于破坏原子系综的极化态,显然探测光的频率不能等于87Rb原子的D1线跃迁频率.我们在实验中设定探测光频率相对于87Rb原子的D1线跃迁频率红失谐4 GHz.研制的NMOR铷原子磁力仪如图1所示.铷泡为Φ25 mm×50 mm的圆柱型气室,气室中充有100 Torr的氮气缓冲气体,采用交流无磁加热使铷泡工作在100◦C.待测外磁场B方向与抽运光方向平行,与探测光方向垂直.实验时抽运激光被扩束为10 mm×30 mm的长方形光斑,光强为20µW/mm2;探测光为直径2mm的圆斑,进入铷泡前光功率为100µW.原子磁力仪具体工作过程是:795 nm抽运激光经过声光调制器AOM和1/4玻片形成圆偏振光,扩束后作用在铷泡上,将87Rb原子磁矩抽运在与外磁场平行的方向上;抽运激光作用一段时间后关闭,用信号源给亥姆霍兹线圈输入特定时长的正弦交变信号以产生原理部分描述的激励磁场,驱动87Rb原子磁矩在与外磁场垂直的平面内绕外磁场B做拉莫尔进动;红失谐的探测激光经过偏振片,成为线偏振光穿过铷泡,用偏振分光棱镜(PBS)、光电探测器、差分放大电路、美国NI公司的PCI-5922数据采集卡和计算机中编写的Labview程序实现铷原子拉莫尔进动信号的提取及处理,得到外磁场大小.计算机可设定数字信号处理(DSP)模块的时序组合,实现磁场采样率的设定.DSP给声光调制器AOM、信号源和PCI-5922数据采集卡输入电平触发信号,分别控制作用于铷泡的抽运激光开或关、正弦交变磁场开或关以及PCI-5922数据采集卡的采集触发.图1中铷泡、铷泡加热模块、亥姆霍兹线圈被置于五层坡莫合金的磁屏蔽筒内,磁屏蔽筒内含有可产生精密待测磁场的线圈.本文系统地研究了NMOR铷原子磁力仪的测量范围、灵敏度、分辨率、磁场采样率这些性能指标.在具体介绍这些内容之前,有必要先描述原子磁力仪的时序控制过程及跟踪式锁频过程.首先介绍原子磁力仪时序控制过程.图2显示了NMOR铷原子磁力仪在关闭抽运光后不同时长激励磁场的作用效果,外磁场环境为10000 nT.在原理部分描述到,如果抽运光作用结束后激励磁场持续作用,87Rb原子将在两个基态能级间来回跃迁.图2(a)激励磁场作用10 ms,反映了该物理过程.图2(a)中插图显示了0.5 Ms时间内的测试结果,一个包络终止代表着87Rb原子在外磁场量子化轴方向上两个基态能级间的一次跃迁.将激励磁场作用时间设定为0.1 Ms,即原子系综的宏观磁化强度进动到与外磁场垂直的平面内,测试结果如图2(b)所示,由自由弛豫过程中的正弦信号可傅里叶变换出拉莫尔进动频率.图3(a)显示了NMOR铷原子磁力仪工作时的时序示意图;图3(b)显示在10000 nT磁场环境下获得的实测数据,原子磁力仪的工作周期T=10ms,抽运激光作用时长t1=3 ms,激励磁场作用时长t2=0.1Ms,该时序磁场采样率为100 Hz;图3(c)是图3(b)中的部分曲线的放大.其次介绍原子磁力仪跟踪式锁频过程,该过程在Labview程序中完成.Labview程序在每一个原子磁力仪工作周期内能够获得拉莫尔进动频率和外磁场数值,将前一个工作周期中获得的拉莫尔进动频率设定为下一个工作周期中信号源的输出频率,即实现了跟踪式锁频.本文描述的原子磁力仪跟踪式锁频方法与Mz光泵磁力仪不同,即使激励磁场振荡频率偏离拉莫尔进动频率很远,只要特定时长激励磁场的作用能够使原子系综横向磁化强度矢量不为零,本文描述的原子磁力仪就能够实现跟踪式锁频.为了验证跟踪式锁频能力,设计这样的实验:设定原子磁力仪工作时序为T=100Ms,t1=30ms,t2=0.1Ms.设定激励磁场振荡频率为70 kHz,对应约10000 nT的测量磁场.保持激励磁场振荡频率不改变,改变线圈电流,使测量磁场从5000nT增加至15000 nT.图4(a)显示激励磁场关闭后磁力仪获得的自由弛豫正弦信号最大振幅随着扫描磁场的变化,可以看出在10000 nT附近自由弛豫正弦信号振幅最大.从原理上讲,只要横向磁化矢量不为零,铷泡中的铷原子就能够对线偏振光中左、右圆偏成分实现吸收和色散,通过差分探测获得与磁场相关的自由弛豫正弦振荡信号.横向磁化矢量越大,会使自由弛豫正弦振荡信号的振幅越大.在工作原理部分我们重点描述了激励磁场振荡角频率ω约等于拉莫尔进动角频率ω0的情况,实际上当ω与ω0相差较大时,在转动坐标系中原子磁矩会感受一有效磁场(有效磁场的描述详见参考文献[19])的作用,且在转动坐标系中磁矩进动角频率ω1为[19]可以分析,设定ω0=ω时特定时长的激励磁场作用满足π/2的脉冲效果,使横向磁化矢量最大;而后因外界磁场改变导致ω0与ω相差较大时,在特定时长内激励磁场的作用效果ω1t2可能会出现3π/2+δ,5π/2+δ′等脉冲效果,其中δ或δ′的绝对值小于等于π/2,在转动坐标系中该脉冲效果使原子磁矩在与外磁场垂直平面内的投影矢量的模达到最大值,即横向磁化矢量达到极大值,因此图4(a)中在10000 nT两侧出现若干峰值也不难理解.图4(b)显示在上述扫描磁场过程中磁力仪输出的磁场值,在自由弛豫正弦信号振幅最小时易出现与外磁场无关的数据,图4(b)中若干跳点输出磁场值用(1)式换算成频率,发现该频率正好等于铷泡交流无磁加热的输出频率.图4(b)的实验结果表明,如果该原子磁力仪在跟踪式锁频模式下工作,在很宽的磁场范围内磁力仪能够实现瞬时锁定.设定磁场线圈电流使磁屏蔽筒内磁场在10000 nT 和9000 nT,或者50000 nT和40000 nT之间来回跃变,采用跟踪式锁频模式,实验结果如图4(c)和图4(d)所示,表明该原子磁力仪对1000 nT或10000 nT的跃变磁场能够实现瞬时锁定,分别对应着7 kHz或70 kHz的频率跃变.上述实验结果表明本文描述的原子磁力仪跟踪式闭环锁定可行,而且具有很强的闭环锁定能力.接下来详细介绍NMOR铷原子磁力仪的各项性能指标.1)磁场测量范围本文的NMOR铷原子磁力仪用精密电流源给磁屏蔽筒中的磁场线圈通入逐渐增加的电流I来检验磁场测量范围,采用跟踪式锁频模式测量外磁场B的大小,测试结果如图5所示.原子磁力仪可响应100—100000 nT范围内的磁场.图5中数据线性拟合结果为从表达式(3)可知,当线圈电流I为零时,磁屏蔽筒内有约27 nT的剩余磁场.2)灵敏度和分辨率本文采用磁场噪声功率谱密度(@1 Hz)来表征原子磁力仪的灵敏度.值得注意的是,目前一些文献采用功率谱或者均方根幅度谱来表征原子磁力仪的灵敏度,从物理意义上来说是不准确的.功率谱密度使测量独立于信号持续时间和采样数量,通过功率谱密度测量可检测信号的本底噪声.若采用功率谱或均方根幅度谱,我们在实验中发现随着采样时间的延长会得到更优的灵敏度指标,显然用于表征原子磁力仪的灵敏度指标不合理.首先分析500 nT外磁场环境下如何获得磁力仪的灵敏度指标.图6(a)显示了截取的自由弛豫正弦信号,代表经过铷泡的线偏振探测光偏振方向的摆动.图6(b)是图6(a)中数据的快速傅里叶变换(FFT),分析出的拉莫尔进动频率为3.5 kHz,对应着约500 nT的外磁场.图6(c)表示300 s时间内采集的磁场数据,磁场采样频率为10 Hz,磁场波动小于10 pT.图6(c)中插图部分显示了4 s时间内的磁场数据,原子磁力仪的磁场分辨率为0.1 pT.图6(d)是由图6(c)中磁场数据处理得到的噪声功率谱密度,用1 Hz频点附近11个数据的平均值代表原子磁力仪的灵敏度,得到灵敏度指标为0.2 pT/Hz1/2.本研究采用美国安捷伦科技公司的B2912 A型精密电流源产生待测磁场,电流源精度为10−6,当电流源输出的量程值分别为1MA,10MA,100MA,1 A时,分别对应着1 nA,10 nA,100 nA,1µA的电流分辨率.原子磁力仪测量的磁场由电流源产生,因此电流源的噪声将反映在磁力仪灵敏度指标测试中.图7显示了磁力仪灵敏度指标和线圈电流与外磁场大小的依赖关系.当I>100 MA时,磁力仪灵敏度约为12pT/Hz1/2,对应电流分辨率为1µA;当10 MA<I<100 MA时(图中阴影部分),磁力仪灵敏度约为1 pT/Hz1/2,对应电流分辨率为100 nA;当1MA<I<10 MA时,磁力仪灵敏度约为0.2 pT/Hz1/2,对应电流分辨率为10 nA;特殊地,当I<1 MA时,在50 nT磁场环境中磁力仪的灵敏度依旧为0.2 pT/Hz1/2,此时对应电流分辨率为1 nA.综上所述,本文的NMOR铷原子磁力仪的极限灵敏度为0.2 pT/Hz1/2.图7中线圈电流I与外磁场B在1 MA附近呈现非严格的线性关系,这是由磁屏蔽筒内的剩余磁场导致的,可参考表达式(3).3)横向弛豫时间对磁场大小的依赖关系原子系综宏观磁化强度被激励磁场作用至与外磁场垂直的平面内,该横向磁化强度将呈指数形式衰减,衰减函数的时间常数为横向弛豫时间T2,即信号幅度衰减至e−1倍所需的时间[20].本文中用y=A exp(−t/T2)函数来拟合出T2.图8(a)显示了500 nT磁场下的弛豫信号,此时原子磁力仪的工作周期T=100ms,抽运激光作用时长t1=30 Ms,激励磁场作用时长t2=5 Ms.以激励磁场关闭时为时间零点,将弛豫信号中的波峰随时间的变化曲线绘制在图8(b)中,通过指数拟合得到横向弛豫时间T2为5.946 Ms.图8(c)显示了横向弛豫时间随磁场的变化,可以看出随着磁场的增加,横向弛豫时间逐渐减小,这是由于铷泡所在区域磁场梯度的增加导致了原子系综宏观磁化强度的弛豫加快.图8(c)的实验结果对Labview程序编写时自由弛豫信号截取时长的设定具有重要参考意义.4)磁场采样率磁场采样率S是原子磁力仪的一项重要指标.目前国内光泵磁力仪磁场采样率大都小于20 Hz,而国外已出现磁场采样率为100 Hz、甚至1000 Hz的原子磁力仪[18].例如美国Geometrics公司推出的G-824 A型航空铯磁力仪的采样率达到了1000 Hz,而美国限制出口该磁力仪[18].本文的NMOR铷原子磁力仪通过设定工作周期T、抽运激光作用时长t1、激励磁场作用时长t2,可实现磁场采样率S在1—1000 Hz范围内可调.实验中当以1000 Hz磁场采样率测量10000 nT附近的恒磁场时,90%的数据落在(10000±0.1)nT以内.高磁场采样率的磁力仪可用于测量环境中低频的交变磁场,图9显示了原子磁力仪测量(10000±100)nT范围内频率为100 Hz交变磁场的实验结果,测量时激励磁场振荡频率固定为70 kHz.图9(a)是原子磁力仪采集的原始数据,随着磁场的波动原始信号的最大振幅也跟着波动;图9(b)是原子磁力仪时序示意图,设定工作周期T=1 Ms,抽运激光作用时长t1=0.3 ms,激励磁场作用时长t2=0.1 ms;图9(c)显示了测量的磁场数据.NMOR铷原子磁力仪的拉莫尔进动频率是由自由弛豫正弦信号的快速傅里叶变换曲线拟合得到,因此磁场采样率S的设定需要考虑与拉莫尔进动频率相适应,必须保证有足够多的数据能够精确拟合出拉莫尔进动频率.本文原子磁力仪在5000—100000 nT待测磁场范围内实现磁场采样率S在1—1000 Hz范围内可调,在100—5000 nT待测磁场范围内可设定S≤20 Hz.另外,本文描述的原子磁力仪在高磁场采样率条件下无法使用跟踪式锁频,这是因为跟踪式锁频步骤是在Labview程序中实现,而在程序流程中计算机与信号源通讯需要时间,采用跟踪式锁频测量时S≤20 Hz.信号源输出频率为定值时磁场采样率S可在1—1000 Hz范围内可调,参考图4(a)的实验结果,适用于测量稳定磁场附近小于1000 nT的磁场波动.本文详细地描述了NMOR铷原子磁力仪的工作原理和测量方法,系统地研究了测量范围、灵敏度、分辨率、横向弛豫时间、磁场采样率等性能指标.实验结果表明原子磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT,制备的铷原子极化态横向弛豫时间在毫秒量级,磁场采样率最高可达1000 Hz.本文用噪声功率谱密度讨论原子磁力仪的灵敏度指标时考虑了精密电流源的电流噪声,该做法对磁力仪的灵敏度指标标定具有借鉴意义.本文原子磁力仪的若干性能指标在国内以及国际上都具有先进性.除了上述列出的性能指标外,磁力仪的空间分辨率也是磁力仪的一项重要指标,而本研究采用Φ25 mm×50 mm的圆柱型气室,体积较大,下一步可研究微型原子气室的原子磁力仪.本研究的原子磁力仪在生物医学、基础物理研究方面具有潜在的应用前景.本文所描述的原子磁力仪实验装置是在浙江工业大学林强教授及其团队老师吴彬、郑文强、程冰,以及浙江科技学院李曙光副教授的帮助下搭建完成的,上述研究人员在作者搭建原子磁力仪过程中给予了诸多技术资料、技术协助和有益讨论.作者本人现场参观了浙江工业大学的原子磁力仪装置,从中获得启发,完成了本文的研究内容.作者对林强教授团队表示由衷的感谢.We report a rubidiuMatoMicMagnetoMeter based on puMp-probe nonlinearMagneto-op tical rotation.The rubidiuMvapor cell is p laced in a five-layer Magnetic shield With inner coils that can generate uniforMMagnetic fields along the direction of puMp beam,and the cell is also p laced in the center of a Helmholtz coil that can generate an oscillating Magnetic field perpendicular to the direction of puMp beam.The atoMs are op tically puMped by circularly polarized puMp beaMalong a constant magnetic field in a period of time,then the puMp beaMis turned off and aπ/2 pulse of oscillating magnetic field for87Rb atoMs is app lied.A fter the above p rocess,the individual atoMic magnetic moments becoMe phase coherent,resu lting in AtransverseMagnetization vector precessing at the LarMor frequency in theMagnetic field.The linearly polarized probing beaMis perpendicular to the direction ofmagnetic field,and can be seen as a superposition of the left and right circularly polarized light.Because of the diff erent absorptions and dispersions of the left and right circularly polarized light by rubidiuMatoMs,the polarization direction of p robing beaMrotateswhen probing beaMpasses through rubidiuMvapor cell.The rotation of the polarization is subsequently converted into an electric signal through a polarizing beaMsplitter.Finally,the decay signal related to the transverseMagnetization vector isMeasured.The LarMor frequency p roportional to Magnetic field isobtained by the Fourier transforMof the decay signal.The value ofmagnetic field is calculated froMthe formula:B=(2π/γ)f,where γ and f are the gyromagnetic ratio and LarMor frequency,respectively.In order toMeasure theMagnetic field in a Wide range,the tracking lock Mode is p roposed and tested.The atoMicMagnetoMeter can track themagnetic field juMp of 1000 nT or 10000 nT,indicating that the atoMicmagnetometer has strong locking ability and can be easily locked after start-up.The Main perforMances in diff erent Magnetic fields are tested.The results shoWthat the MeasureMent range of the atoMic magnetometer isfroM100 nT to 100000 nT,the extreme sensitivity is 0.2 pT/Hz1/2,and the magnetic field resolution is 0.1 pT.The transverse relaxation tiMes of the transverse Magnetization vector in diff erent Magnetic fields are obtained,and the relaxation tiMe decreases With the increase of the Magnetic field.When the MeasureMent range is froM5000 nT to 100000 nT,themagnetic field saMp ling rate of the atoMicmagnetometer can be ad justed in a range froM1 Hz to 1000 Hz.The atoMic MagnetoMeter in high saMp ling rate can Measure weak alternating Magnetic field at loWfrequency.This paper provides an iMportant reference for developing the atoMic MagnetoMeter With large measurement range,high sensitivity and high saMp ling rate.【相关文献】[1]Xu S,C raWford C W,Rochester S,Yashchuk V,Budker D,Pines A 2008 Phys.Rev.A 78 013404[2]Maser D,Pandey S,Ring H,Ledbetter MP,Knappe S,K itching J,Budker D 2011Rev.Sci.Instrum.82 086112[3]Kornack T W,Ghosh R K,RoMalis MV 2005 Phys.Rev.Lett.95 230801[4]Meyer D,Larsen M2014 Gyroscopy and Navigation 5 75[5]C leMT R 1998 Nav.Eng.J.110 139[6]Savukov IM,Seltzer S J,RoMalis MV 2005 Phys.Rev.Lett.95 063004[7]Budker D,RoMalis MV 2007 Nat.Phys.3 227[8]Savukov I M,RoMalis MV 2005 Phys.Rev.Lett.94 123001[9]Yashchuk V V,G ranwehr J,K iMball D F,Rochester S M,Trabesinger A H,U rban JT,Budker D,Pines A 2004 Phys.Rev.Lett.93 160801[10]Liu G B,Sun X P,Gu S H,Feng JW,Zhou X 2012 Physics 41 803(in Chinese)[刘国宾,孙献平,顾思洪,冯继文,周欣2012物理41 803][11]A llred J C,LyMan R N,Kornack T W,RoMalis MV 2002 Phys.Rev.Lett.89 130801[12]KoMinis I K,Kornack T W,A llred J C,RoMalis MV 2003 Nature 422 596[13]Dang H B,Maloof A C,RoMalis MV 2010 Appl.Phys.Lett.97 151110[14]Li S G,Zhou X,Cao X C,Sheng J T,Xu Y F,Wang Z Y,Lin Q 2010 Acta Phys.Sin.59 877(in Chinese)[李曙光,周翔,曹晓超,盛继腾,徐云飞,王兆英,林强2010物理学报59 877][15]Gu Y,Shi R Y,Wang Y H 2014 Acta Phys.Sin.63 110701(in Chinese)[顾源,石荣晔,王延辉2014物理学报63 110701][16]D ing Z C,Li Y Y,Wang Z G,Yang K Y,Yuan J 2015 sers 42 0408003(in Chinese)[丁志超,李莹颖,汪之国,杨开勇,袁杰2015中国激光42 0408003][17]Wang Z G,Luo H,Fan Z F,Xie Y P 2016 Acta Phys.Sin.65 210702(in Chinese)[汪之国,罗晖,樊振方,谢元平2016物理学报65 210702][18]Dong H B,Zhang C D 2010 Chin.J.Eng.Geophys.7 460(in Chinese)[董浩斌,张昌达2010工程地球物理学报7 460][19]Wang Y Q,Wang Q J,Fu J S,Dong T Q 1986 The Theory of FrequencyStandards(Beijing:Science Press)pp168–173(in Chinese)[王义遒,王庆吉,傅济时,董太乾1986量子频标原理 (北京:科学出版社)第168—173页][20]Ek lund E J 2008 Ph.D.D issertation(USA:University of California Irvine)PACS:07.55.Ge,32.60.+i,32.80.Xx,42.50.Gy DOI:10.7498/aps.66.160701†Corresponding author.E-Mail:*******************。
基于原子磁力计的磁共振样品微弱磁场测量
VS
高精度的原子磁力计可以测量微弱 磁场,如地磁场,其灵敏度可达 10^-10 T。
原子磁力计在磁共振测量中的应用前景
原子磁力计在磁共振测量中具有重要应用,可以用于测量磁共振样品中的微弱磁场,如生物组织中的 磁场。
未来随着技术的进步,原子磁力计可能在生物医学、地球物理学等领域发挥更大的作用。
03
基于原子磁力计的磁共振 样品微弱磁场测量系统设
计
测量系统的整体架构设计
01
02
03
原子磁力计模块
该模块包括原子磁力计的 腔体、光学系统、温度控 制系统等,用于测量微弱 磁场。
信号处理模块
该模块包括放大器、滤波 器、ADC等,用于对原子 磁力计输出的信号进行处 理。
采集与处理模块
该模块包括数据采集卡、 计算机等,用于对磁共振 样品的信号进行采集和处 理。
支持。
感谢您的观看
THANKS
基于原子磁力计的磁共振样 品微弱磁场测量
2023-10-27
目录
• 引言 • 原子磁力计的工作原理 • 基于原子磁力计的磁共振样品微
弱磁场测量系统设计 • 测量系统的性能测试与实验验证
目录
• 基于原子磁力计的磁共振样品微 弱磁场测量的优势与局限性分析
• 结论与展望
01
引言Байду номын сангаас
研究背景与意义
原子磁力计是一种高灵敏度的磁场测量技术,在磁共振成像、生物医学研究、材 料科学等领域具有广泛的应用前景。
定量分析
原子磁力计的测量结果可以实现定量分析,为 磁共振样品的性质研究提供了更准确的数据支 持。
研究不足与展望
• 样品适用性限制:目前基于原子磁力计的磁共振样品微弱磁场测量方法还局限于某些特定的样品类型,对 于其他类型的样品还需要进一步探索适用性。
铷原子磁力仪最佳抽运光强的研究
铷原子磁力仪最佳抽运光强的研究李佳佳;丁志超;汪之国;肖光宗;胡绍民【摘要】In order to obtain the optimal pump light intensity of a rubidium atomic magnetometer and improve its sensitivity , the relationships among the polarization , signal to noise ratio , sensitivity of magnetometer and pump light intensity were analyzed . An experimental system was designed .Transverse relaxation time and longitudinal relaxation time of a 20mm diameter spherical vapor cell with different pump light intensity were measured by using free induction decay method .The corresponding polarization data was calculated and the fitting curves of polarization , signal to noise ratio , sensitivity influenced by pump light intensity were received.The results show that the optimal pump light intensity is optimum in the rubidium atomic magnetometer under the pump light intensity of about 10mW/cm2 .It will be helpful for using the pump light effectively and optimizing sensitivity of the rubidium atomic magnetometers further .%为了得到铷原子磁力仪的最佳抽运光强,进而优化原子磁力仪的灵敏度,理论分析了抽运光强与磁力仪的极化率、信噪比以及灵敏度之间的关系,设计了实验装置。
铷原子的光泵磁共振
铷原子的光泵磁共振摘要:本实验我们利用DH807型光泵磁共振的实验装置研究了铷原子的光泵磁共振现象。
通过示波器我们观察了光抽运信号和光泵磁共振信号,根据实验所得的数值,算出了87Rb 的F g ,85Rb 的F g ,并与理论值做了比较,其误差在实验误差范围内,实验中我们还根据所测得数据算得了地磁场的大小。
关键词: 光抽运、磁共振、偏振。
一.引言在磁场中,塞曼分裂导致的磁能级间距通常比较小,因此,产生磁共振现象所需的能量通常位于射频或微波波段。
此波段的电磁波能量要比光频段的能量小得多,普通的光谱仪器根本无法分辨,所以对于那些磁共振信号很微弱的样品(比如气体样品)很难探测。
光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级或塞曼子能级间粒子数的非热平衡分布的实验方法。
光泵磁共振技术实际上是将上述光抽运技术和射频或微波磁共振技术相结合的一种实验技术,它是1955年法国科学家卡斯特勒发明的。
在光泵磁共振技术中,一方面光抽运改变了磁能级上的粒子数分布,使更多的粒子参与磁共振。
另一方面采取光探测的方法而不直接测量射频量子,从而克服了磁共振信号弱的缺点,把探测灵敏度提高了七八个数量级.如今,光泵磁共振已广泛应用于基础物理研究,比如原子的磁矩、能级结构和屠因子测量。
此外,在原子频标、激光及弱磁场测量等方面,这一方法也是极为有力的实验手段。
本实验研究铷(Rb)原子的光泵磁共振现象,并测量Rb 的朗德里因子和地磁场的大小。
天然Rb 有两种同位素,丰度为72.15%的85Rb 和丰度为27.85%的87Rb 。
二. 实验原理1.Rb 原子基态及最低激发态的能级如图1所示,在第一激发能级5P 与基态5S 之间产生的跃迁是铷原子主线系的第一条谱线,谱线为双线。
2/12P 5到2/12S 5的跃迁产生的谱线为D1 线,波长是794nm ;2/12P 5 到2/12S 5的跃迁产生的谱线为D2 线,波长是780nm 。
铷原子光泵磁共振实验报告
四
4.1
数据分析
光抽运信号
扫场电压为 1.92V, 从 0 开始增大水平电流, 当 电流为 0.20 时开始出现光抽运信号。调节垂直场电 流,当电流为 0.062A 时,抽运信号最大,此时垂直 场与地磁场垂直分量抵消。 观察到的光抽运信号波形及扫场波形如图 3 实 线所示。 各过程分析: (1)将方波加到水平扫场线圈上,此时水平方向总
2.3
弛豫过程
热平衡时, 基态各子能级上的粒子数遵从玻尔兹曼分布:
N N 0 exp(
E ) kT
(7)
由于在弱磁场条件下,各塞曼子能级能量差极小,可近似认为各子能级上的粒子数相等。光抽运使能 级之间的粒子数之差大大增加,使系统处于非热平衡分布状态。系统由偏离热平衡分布状态趋向热平衡分 布状态的过程称为弛豫过程。Rb系统中几个主要弛豫过程有: 1、铷原子与容器器壁的碰撞:导致子能级之间的跃迁,使原子恢复到热平衡分布,失去光抽运造成的偏 极化。 2、铷原子之间的碰撞:导致自旋-自旋交换弛豫,使粒子的磁矩发生改变而失去偏极化。
J 1 / 2,F 2或3 。由量子数 F 标定的能级称为原子的超精细结构能级。原子总角动量 PF 与原子总磁
矩 F 的关系为:
e PF 2me F ( F 1) J ( J 1) I ( I 1) gF gJ 2 F ( F 1)
F -g F
(2)Βιβλιοθήκη 在磁场中原子的超精细结构能级产生塞曼分裂(弱场时为反常塞曼效应),磁量子数
二
2.1
实验原理
铷原子基态及最低激发态能级
Rb 是碱金属原子,原子序数为 47,最外层有一个价电子,位于 5s 能级上,因此 Rb 原子的轨道角动 量量子数 L=0,自旋角动量量子数 S=1/2。经过轨道角动量与自旋角动量间的 L-S 耦合后,其总角动量量 子数为 J | L S |, , L S 。因此 Rb 原子的基态: L 0, S 1 / 2,J 1 / 2 ,记作 5 2 S1 / 2 。离基态最
铷原子的光泵磁共振实验0
铷原子的光泵磁共振实验摘要:利用光抽运效应研究铷原子超精细结构塞曼子能级的磁共振,测定金属铷原子的朗德因子F g 、地磁场强度及其倾角。
关键词:光泵、光抽运、超精细结构、塞曼子能级、朗德因子、磁共振引言:气体原子塞曼子能级之间的磁共振信号非常弱,利用磁共振的方法难于观察。
本实验利用光泵磁共振方法既保持了磁共振分辨率高的优点,同时将探测灵敏度提高了十几个数量级,能在弱磁场下(0.1-1mT)精确检测气体原子能级的超精细结构。
一、原理部分(一)铷原子基态及最低激发态的能级铷原子基态为2/12S 5,即电子的轨道量子数L=0,自旋量子数S=1/2,总角动量J= 1/2。
最低激发态2/12P 5 及2/32P 5是由L-S 耦合产生的双重态,轨道量子数L=1,自旋量子S=1/2。
2/12P 5态J=1/2;2/32P 5 态J=3/2。
在能级5P 与5S 之间产生的跃迁是铷原子主线系的第一条线,为双线。
2/12P 5到2/12S 5的跃迁产生的谱线为D1 线,波长是7948Å;2/32P 5 到2/12S 5的跃迁产生的谱线为D2 线,波长是7800Å。
核自旋 I = 0 的原子的价电子L-S 耦合后总角动量J P与原子总磁矩J μ的关系为I ≠0时,Rb 87I = 3/2,Rb 85I = 5/2。
设核自旋角动量为I P ,核磁矩为I μ,I P 与J P 耦合成F P ,有F P =I P +J P 。
耦合后的总量子数F= I+J,…,| I-J |。
Rb 87基态F 有两个值,F = 2 及F = 1;Rb 85基态有F = 3 及F = 2。
由F 量子数表征的能级称为超精细结构能级。
原子总角动量F P 与总磁矩F μ之间的关系为:在磁场中原子的超精细结构能级产生塞曼分裂(弱场时为反常塞曼效应),磁量子数F m =F, F-1, … ,-F ,即分裂成2F +1 个能量间隔基本相等的塞曼子能级,如图一所示。
铷原子的光泵磁共振实验
铷原子的光泵磁共振实验【摘要】通过光抽运技术和磁共振技术相结合,研究了铷原子的光泵磁共振现象。
实验中,通过示波器显示波形,采用扫场法测量磁共振信号,测量了Rb 的朗德因子g F 以及地磁场的强度和磁倾角。
【关键词】超精细结构 塞曼子能级 光抽运 磁共振 朗德因子一、引言光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级及塞曼子能级间粒子数的非热平衡分布的实验方法。
气体原子塞曼子能级之间的磁共振信号非常弱,利用磁共振的方法难于观察。
实验中使用的光泵磁共振技术,一方面光抽运改变了磁能级上粒子数的分布,另一方面采用光探测的方法克服了磁共振信号弱的缺点,所以光磁共振技术既保持了磁共振的高分辨率,又将探测灵敏度提高了约七八个量级,能在弱磁场下(0.1-1mT)精确检测气体原子能级的超精细结构。
二、 实验原理2.1铷原子基态和最低激发态的能级铷Rb 是碱金属原子,其最外层有一个价电子,位于5S 能级上。
天然铷中含量大的同位素有两种:87Rb 和85Rb 。
它们的基态都是52S 1/2。
在L —S 耦合下,形成双重态:52P 1/2和52P 3/2,这两个状态的能量不相等,产生精细分裂。
因此,从5P 到5S 的跃迁产生双线,分别称为D 1和D 2线,它们的波长分别是794.76nm 和780.0nm 。
通过L —S 耦合形成了电子的总角动量P J ,考虑原子核也有自旋和磁矩,核自旋量子数用I 表示。
耦合后的总量子数为F 。
角动量相关的原子总磁矩为2F FF eeg P m μ=- (1) )1(2)1()1()1(++-+++=F F I I J J F F g g JF (2)其中,F g 是对应于F μ与F P 关系的朗德因子。
在磁场中原子的超精细结构能级产生塞曼分裂,当磁场较弱时为反常塞曼分裂,磁量子数m F =F ,F-1,…,-F ,所以会产生2F+1个能级间距基本相等的塞曼子能级。
如图1所示。
铷原子频率标准装置测量不确定度的评定
铷原子频率标准装置测量不确定度的评定
王德群
【期刊名称】《计量与测试技术》
【年(卷),期】2007(034)012
【摘要】铷原子频率标准在时间、频率计量领域中有着较为广泛的应用.本文介绍了铷原子频率标准装置的测量不确定度的来源并给出了评定的详细过程.
【总页数】2页(P56-57)
【作者】王德群
【作者单位】海军91550部队,辽宁大连116023
【正文语种】中文
【中图分类】O6
【相关文献】
1.用频差比对法评定与验证铷原子频率标准的不确定度 [J], 孙丽华;赵刚;范洪志
2.铷原子频率标准装置测量不确定度的分析 [J], 沈世科
3.铷原子频率标准频率稳定度测量方法及不确定度评定 [J], 韩海林;孙杰
4.铷原子频率标准装置频率校准结果的不确定度评定 [J], 肖凤云;王占军
5.铷原子频率标准频率偏差的不确定度评定 [J], 龙波;王菊凤;黄徐瑞晗;黎洪;韩锋因版权原因,仅展示原文概要,查看原文内容请购买。
铷原子能级探测综合实验装置及电路研究的开题报告
铷原子能级探测综合实验装置及电路研究的开题报告开题报告:一、研究背景原子能级是原子内部能量状态的量子描述,它是原子物理学、量子力学和核物理学等领域的重要基础和研究对象。
在原子物理实验中,通过探测原子能级的变化可以研究原子中电子的能级跃迁、原子核的衰变、原子中电子云的结构等重要问题。
因此,开展铷原子能级探测综合实验装置及电路研究具有重要意义。
二、研究目的本研究的目的在于,设计开发一种铷原子能级探测综合实验装置及电路,能够实现铷原子的激发、发射、探测及能级跃迁等操作,进而研究铷原子的能级结构和性质。
三、研究方法本研究将采用以下方法:1. 设计铷原子能级探测综合实验装置的结构和电路,包括激光发射、驱动电路、能级跃迁探测等功能模块。
2. 制造实验装置,并搭建实验平台进行测试和调试。
3. 通过实验测试,获取铷原子能级结构和性质的数据,并进行分析和研究。
四、研究内容本研究的主要内容包括:1. 铷原子能级探测综合实验装置的设计和制造。
本研究将设计一种铷原子能级探测综合实验装置,实现铷原子的激发、发射、探测及能级跃迁等操作,并通过实验测试,研究铷原子的能级结构和性质。
2. 实验平台的搭建和测试。
本研究将搭建一套完整的实验平台,进行实验测试和数据采集,并对实验结果进行分析和研究。
3. 数据分析和研究。
本研究将通过实验测试获取铷原子能级结构和性质的数据,对实验结果进行分析和研究,探讨铷原子的能级结构和性质的规律和特点。
五、论文结构本研究将按照以下结构撰写论文:1. 绪论:介绍本研究的研究背景、研究目的和研究方法。
2. 铷原子能级探测综合实验装置及电路的设计与制造:介绍实验装置的组成部分、电路设计原理和制造流程。
3. 实验平台的搭建和测试:介绍实验平台的构造和测试方法。
4. 数据分析和研究:介绍通过实验测试获取的数据分析和研究结果。
5. 结论与展望:总结本研究的研究成果和发现,并对未来的研究方向进行展望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于铷—氙气室原子磁力仪装置的磁场测量研究磁场广泛存在于自然界中,对于微弱磁场的精密测量不仅应用广泛,还推动多个研究领域的进步与发展。
随着量子调控与光电检测技术的快速发展,利用原子自旋进行超灵敏磁场探测的实验装置研究已成为热点。
其中,无自旋交换弛豫(Spin Exchange Relaxation Free,SERF)碱金属原子磁力仪成为目前灵敏度最高的磁场测量装置,已实现的灵敏度达到0.16 fT/(?),但受限于其工作条件与磁场测量的特点,其使用范围有限。
对不同类型原子磁力仪磁场测量能力的研究有助于满足不同的磁场测量要求。
本文针对微弱磁场精密测量问题,参与自主搭建了铷-氙气室原子磁力仪实验装置,并对其基本特点展开研究,内容包括以下两个方面:1)实验装置基本参数测试。
通过实验定标给出数据采集卡四通道噪声水平、屏蔽筒装置内匀场与脉冲线圈的线圈系数定标值、129Xe的π/2脉冲施加方法及其旋磁比,并通过实验测量给出超极化129Xe的横向与纵向弛豫时间分别约为20.6 s与21.5 s,对装置后期实验方案的设计、评估与实施具有重要的参考作用。
2)实验装置磁场测量能力标定。
实验标定了铷-氙气室原子磁力仪两种磁场测量方式的磁场测量能力。
第一种是通过测量外磁场对87Rb原子极化的影响来测量磁场,实验标定结果给出在2100 Hz频率范围内交流磁场测量的灵敏度约为1.5 pT/(?),带宽约为2.8 kHz。
第二种则是通过测量铷-氙气室内超极化129Xe的拉莫进动频率来测量外磁场,实验标定结果给出静磁场与超低频交流磁场测量能力:静磁场测量精度约为9.4 pT,测量范围超过50 μT;超低频交流磁场测量的频率上限为3.93 mHz,在频率为1 mHz和2 mHz的位置,磁场测量极限为0.392 nT与0.474 nT,频率分辨率值分别低于0.026 mHz与0.039 mHz。
铷-氙气室原子磁力仪实现了对静磁场、超低频交流磁场与较高频(相比SERF原子磁力仪带宽)交流磁场的测量,具有与SERF碱金属原子磁力仪不同的磁场测量特点,具有广泛的应用前景。