全等三角形全章学案
(精)人教版数学八年级上册《全等三角形》全单元教案
第十二章《全等三角形》单元备课一、教课剖析1、内容剖析:本章主要内容是学习全等三角形的观点、性质以及判断方法,应用全等三角形的性质和判断研究角均分线的性质,能够应用全等三等三角形的性质和判断以及角均分线的性质解决简单的几何老是,初步掌握推理证明的方法。
2、教材剖析:学生已经学过线段、角、订交线、平行线、相关三角形的一些知识,经过本章的学习能够丰富和加深学生对已学图形的认识,同时为学习其余图形打好基础,教材力争创建与生活场景邻近的、风趣的问题情境引入,使学生经历了从现实生活研究并抽象出几何模型,并应用几何模型解决实质问题的过程,在内容上重点研究三角形全等的判断方法经及应用,至于角均分线的改天换地的两上互逆定理,只需修业生认识其条件与结论之间的关系,不用介绍互逆定理的观点,经过联合详细问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培育学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.认识全等三角形的观点和性质,能够正确地辨识全等三角形中的对应元素。
2.研究三角形全等的判断方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图作一个角等于已知角、作一个角的角均分线。
4、经历角均分线的性质和判断方法的研究过程,灵巧应用角均分线的性质和判断解决问题 .三、本章教课建议(一)着重研究结论(二)着重推理能力的培育1.注意减缓坡度,顺序渐进。
2.在不一样的阶段,安排不一样的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.着重剖析思路,让学生学会思虑问题,着重书写格式,让学生学会清楚地表达思虑的过程。
(三)着重联系实质三、几个值得关注的问题(一)对于内容之间的联系(二)对于证明一般状况下,证明一个几何中的命题有以下步骤:(1 )明确命题中的已知和求证;(2 )依据题意,画出图形,并用数学符号表示已知和求证;(3 )经过剖析,找出由已知推出求证的门路,写出证明过程。
《第12章 全等三角形》全章教案
课题§12.1 全等三角形序号12备课时间8.27 授课时间主备人王暖清授课班级8.1 8.2课标要求理解全等三角形的概念,能识别全等三角形中的对应边、对应角.1.理解全等形和全等三角形的概念,能识别全等三角形中的对应边、对应角.教学目标2.掌握全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.教学重点全等三角形的性质.掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角教学难点形的对应元素.课型新授课教学准备PPT课件教学过程(一)观察实践,得到概念问题1:观察下列图案,找出这些图案中形状、大小相同的图形.师生活动:学生说出图案中形状、大小相同的图形.追问1:你能再举出一些类似的例子吗?师生活动:学生根据生活实际举出类似的例子.追问2:如果把这些形状、大小相同的图形放在一起,能够完全重合吗?问题2:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?师生活动:学生动手操作,通过实践说明形状、大小相同的图形放在一起是完全重合的.教师顺势说出概念:能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(板书课题)【设计意图】学生通过生活经验判断、猜想,进而动手实际操作,得到这些图形是能够完全重合的.培养学生观察、动手能力.(二)图形变换,加深理解图1 图2 图3问题3:(如图1)把△ABC平移,得到△DEF.(如图2)把△ABC沿直线BC翻折180°,得到△DBC.(如图3)把△ABC绕点A旋转,得到△ADE.追问:平移、翻折、旋转前后的图形,什么变化了,什么没有变化?它们全等吗?师生活动:学生分组根据要求操作,小组讨论得到平移、翻折、旋转前后的图形位置变化了,形状和大小没变,它们依然全等.教师巡回指导,并利用多媒体动画展示给学生看,加深印象.问题4:全等用符号“≌”表示,读作“全等于”.如,△ABC≌△DEF.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.追问1:你能把图2和图3中全等三角形用符号表示出来,并说出它们的对应顶点、对应边和对应角吗?师生活动:教师讲解两个三角形全等的符号表示,结合图1讲解找两个全等三角形的对应顶点、对应边、对应角的方法.学生完成图2、图3中全等三角形的符号表示,并说出它们的对应顶点、对应边和对应角.追问2:上述几对全等三角形,它们的对应边和对应角有什么关系?为什么?师生活动:学生很容易得到全等三角形的对应边相等,全等三角形的对应角相等.教师板书指出这是全等三角形的性质.追问3:全等三角形的性质怎样用几何语言表示?因为△ABC≌△DEF所以 AB=DE,AC=DF,BC=EF (全等三角形的对应边相等)∠A=∠D,∠C=∠F,∠B=∠E (全等三角形的对应角相等)【设计意图】利用三角形的平移、翻折、旋转的不变性,让学生通过具体操作直观感知,进一步理解全等三角形的概念.通过观察,猜测并验证全等三角形的性质,这种效果是抽象的讲授难以达到的.利用基本三角形变换出各种图形,然后观察它们的对应边、对应角的变化,有利于提高学生识别图形的能力.(三)习题练习,巩固新知问题5:练习:教科书第32页练习第2题.如图4,△OCA≌△OBD,点C和点B,点A和点D是对应顶点.说出这两个三角形中相等的边和角.解:AC=DB, OA=OD, OC=OB;∠A=∠D, ∠C=∠B, ∠AOC=∠DOB.师生活动:学生回答图中相等的边和角.问题6:如图5,将△ABC沿直线BC平移,得到△DEF,说出图中相等的量.解:可能的结论有:对应角方面:∠A=∠D, ∠B =∠DEF, ∠ACB=∠F;对应边方面:AB=DE, AC=DF, BC=EF;间接的其他结论:AB∥DE, AC∥DF, BE=CF, 四边形ABEG与四边形FDGC面积相等.师生活动:学生独立完成后,分组讨论答案,教师巡回指导.【设计意图】通过练习,加强学生找全等三角形中对应边和对应角的能力,提高学生识别图形的能力.(四)小结与反思1.什么是全等形?什么是全等三角形?2.什么是全等三角形的对应顶点、对应边和对应角?3.全等三角形的性质是什么?4.怎样找全等三角形的对应边和对应角?【设计意图】通过小结,梳理本节课所学内容,总结方法,体会找全等三角形的对应边和对应角的一些具体方法.(五)布置作业A类:教科书第33页习题12.1第1题,B类:教科书第33页习题12.1第2题.板书设计§12.1 全等三角形1.全等形:能够完全重合的两个图形叫做全等形.例:2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点、对应边、对应角3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.(二)构建三角形全等判定的探索思路追问1:如果两个三角形满足上述六个条件中的一个可以判定两个三角形全等吗?(1)一条边相等.(2)一个角相等.追问2:如果两个三角形满足上述六个条件中的两个可以判定两个三角形全等吗?(1)一条边和一个角相等.(2)两个角相等.(3)两条边相等.追问3:如果两个三角形满足上述六个条件中的三个可以判定两个三角形全等吗?满足三个条件又有哪些情况呢?师生活动:教师引导学生分析,满足一个条件、两个条件分别有哪些情况.学生通过画图说明均不能判定两个三角形全等,接着分析满足三个条件有哪几种情况.【设计意图】让学生通过思考、实践形成认知,渗透分类讨论的思想.(三)尺规作图,探究“边边边”判定方法问题2我们先研究两个三角形满足三边分别相等的情况.任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′= BC,A′C′= AC,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?画法:(1)画B′C′= BC;(2)分别以B′、C′为圆心,线段AB、AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′、A′C′.追问:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?文字语言:三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).符号语言:在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SSS).师生活动:师生共同进行尺规作图,学生操作、观察是否全等.然后引导学生得出“边边边”判定方法,掌握文字和符号语言.【设计意图】通过作图、剪图、比较图的过程让学生感悟到基本事实的正确性,获得“边边边”的判定方法,培养学生发现问题的能力,锻炼学生使用数学语言的能力.(四)应用新知,解决问题问题3如图:AB=AD,BC=DC,△ABC与△ADC全等吗?为什么?师生活动:学生先口述理由,然后写出完整的证明过程,教师规范步骤.【设计意图】让学生初步掌握证明两个三角形全等的一般程序,并善于从具体问题中发现隐含条件,比如公共边等.问题4例1 在如图所示的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD.师生活动:学生分析解题思路,然后写出完整的证明过程.【设计意图】巩固新知,培养学生规范的解题步骤.问题5:作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.师生活动:学生在教师的指导下进行作图,并掌握画法.学生思考:为什么画出的角等于已知角?【设计意图】为了作一个角等于已知角,实际上是先作出了一对全等的三角形,由全等三角形的对应角相等可知所作出的角等于已知角,这也启发学生:如果得到了全等的三角形,就能得到相等的角,当然也能得到相等的边,这为证明角相等、线段相等提供了全新的思路.师生活动:教师画一个△ABC,学生先讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等.简写成“边角边”或“SAS”.【设计意图】坚持让学生动手发现,在学习三角形画法的基础上探索全等条件.三、实际应用例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C不经过池塘可以直接到达A和B。
北师大版数学八年级上册第1章全等三角形学案
12.1 全等三角形学习目标1、了解全等三角形的有关概念,理解并掌握全等三角形的性质;2、能够准确辩认全等三角形的对应元素(对应顶点、对应边、对应角)学习重点:全等三角形性质的应用及准确辩认全等三角形的对应边、对应角.学习难点:理解全等三角形边、角之间的对应关系学法指导:观察思考,动手操作,参与概念的形成过程学习过程一、学前准备1、对于两条线段或两个角来说:如果它们的大小相等,那么放在一起能够;如果它们放在一起能够重合,那么它们的大小 .2、生活中的图片讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?二、合作探究1、全等形、全等三角形的有关概念(1)观察思考:每组中的两个图形有什么特点?(形状,大小 .)①②③(2)请再举出类似的例子(至少3个).(3)由此,你发现上述图形的共同特征是:完全相同——放在一起能够 .(4)进而得出概念:叫做全等形.类似的,叫做全等三角形.2. 对应顶点,对应边和对应角用半透明的纸描绘下图中左边的△ABC,然后按要求在三个图中依次操作.体验“平移、翻折、旋转前后的两个图形全等”.你发现变换前后的两个三角形有什么关系?结论:一个图形经过平移、翻折、旋转后,变化了,但、都没有改变,即平移、翻折、旋转前后的图形。
(1)把两个全等三角形重合在一起,叫做对应顶点,叫做对应边,叫做对应角.(2)△ABC与△DEF全等,记作△ABC △DEF,读作△ABC △DEF.(注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置.)3、全等三角形的性质(1)把你自制的一对全等三角形纸片重合,你发现对应边、对应角有什么关系?(2)全等三角形的性质.全等三角形的相等;全等三角形的相等(3)如图,△ABC与△ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.AC4、确定全等三角形的对应边、对应角(1)如图,将△ABC沿直线BC平移得到△DEF.B C E F那么,对应顶点是,对应边是,对应角是 .(3)确定全等三角形的对应边、对应角还有哪些规律?三、巩固练习1、教科书P32练习1.2、教科书P32练习2.四、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?五、当堂清1、下列说法:①全等三角形的对应边相等,对应角相等;②全等三角形的周长相等,面积也相等;③面积相等的三角形是全等三角形;④周长相等的三角形是全等三角形,正确的说法是()A ②③B ③④C ①②D ①②③2、△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与_______是对应角;AB与_______是对应边,BC与_______是对应边,AC与_______是对应边.3、如图△ ABD ≌△CDB,若AB=4,AD=5,BD=6,求BC、CD的长.参考答案:1.C 2. ∠F,DE,EF,DF 3.5,4六、学习反思12.2.1 利用三边判定三角形全等学习目标1、理解三角形全等的“边边边”的条件,并利用其解决问题;2、理解作一个角等于已知角的理由. 学习重点:三角形全等条件的探索过程. 学习难点:寻找判定三角形全等的条件. 学习过程: 一、学习准备 1.全等三角形的定义2.全等三角形的性质.3.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.C 'B 'A 'C BA二、合作探究探究一:先任意画一个△ABC ,再画一个△A'B'C',使△ABC 与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC 一定全等吗?1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗? 只给定一条边时:只给定一个角时:2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.探究二:给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有种可能.即:.先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?三、例题讲解例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.ADB C尺规作图:已知:∠BAC.求作:∠B'A'C' ,使∠B'A'C'=∠BAC.四、巩固练习教科书P37练习1教科书P37练习2五、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?六、当堂清1.如图,ABC △中,AB AC =,EB EC =, 则由“SSS ”可以判定( ) A.ABD ACD △≌△ B.ABE ACE △≌△ C.BDE CDE △≌△ D.以上答案都不对2.下列结论错误的是( ) A.全等三角形对应角所对的边是对应边 B.全等三角形两条对应边所夹的角是对应角 C.全等三角形是一种特殊三角形D.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等3.小明用四根竹棒扎成如图所示的风筝框架,已知AB CD =,AD CB =,下列判断不正确的是( )(第3题) (第4题)A .A C ∠=∠B .ABC CDA ∠=∠ C .ABD CDB ∠=∠ D . ABD C ∠=∠4.如图,ABC △中,AB AC =,AE CF =,BE AF =,则E ∠=∠________,CAF ∠=∠__________. 5.如图,在△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE 的度数为__________.A CDBA EB D CABCDE6.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.参考答案:1.B 2.C 3.D 4.F ABE 5. 100° 6.全等七、学习反思利用两边夹角判定三角形全等【学习目标】1、理解三角形全等“边角边”的内容.2、会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3、经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.【重点】掌握一般三角形全等的判定方法SAS【难点】运用全等三角形的判定方法解决证明线段或角相等的问题一,学前准备1. 回顾判定三角形全等的方法”SSS”二,探究活动活动1:探索三角形全等的条件1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动2 :(全等三角形判定的简单应用)1、如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2、如图,已知AB=AC,AD=AE,∠1=∠2.求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)课堂练习1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:AB∥CD3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?利用两角一边判定三角形全等通过学生动手操作动脑思考等活动主动探索,发现规律;互动合作,解决问题学生动手画图、剪贴探索三角形全等的“角边角”判定方法及“角角边使用说明【学习目标】1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角”“角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.【教学重点】已知两角一边的三角形全等探究.【教学难点】灵活运用三角形全等条件证明.【学习过程】一、复习回顾1、三角形全等的判定Ⅰ、三角形全等的判定II的内容是什么?2、判断两个三角形全等的推理过程,叫做________________.3、证明三角形全等的步骤:①准备条件:证全等时要用的间接条件要先证好;②书写证明三角形全等三步骤:⑴写出在哪两个三角形中⑵摆出三个条件用大括号括起来⑶写出全等结论③写出最终要证得的结论此步骤不是一成不变的,同学们应根据做题经验灵活掌握4、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.二、活动探究思考探究5的结果反映了什么规律?我们可以得出一个判定两个三角形全等的方法:__________________________________________(可以简写成“边角边”或者“________”[例1]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.DCABE利用斜边、直角边判定直角三角形全等学习目标:掌握三角形全等的判定(5)HL 学习方法:自我学习,小组合作学习 一、自主学习 (一)复习小测1、如图,在□ABCD 中,BD 是对角线,AE⊥BD于E,CF⊥BD于F ,求证BE=DF.(二)阅读书本P35-P37,并思考下列几个问题.1、如图,已知Rt △ABC ,∠C=90°,求作Rt △C B A ''',使∠C '=90°, AB C B ='',AB B A ='',那么C B A Rt ABC Rt '''△与△全等吗?得出判定直角三角形全等的方法: 的两个直角三角形全等.2、如图,已知AC ⊥BC,BD ⊥AD,AC=BD.求证BC=AD.二、研学释疑1、如图,BE,CD 是△ABC 的高,要证明△BCD ≌△CBE,还需增加一个条件 ,理由是 ,或增加一个条件 ,理由是 .2、书本P37,练习23、要将图中的∠MON 平分,小明设计了如下方案:在射线OM,ON 上分别取OA=OB,过点A 作DA ⊥OM 交ON 于D,过点B 作EB ⊥ON 交OM 于E,AD,EB 交于C,过点O,C 作射线OC,即为∠MON 的平分线,试说明这样做的理由.CBABACD三、实践探究1、在C B A Rt ABC Rt '''△与△中,∠C=∠C '=90°,下列条件中能判定两三角形全等的有( ) ①C A AC ''=,∠A=∠A '; ②C A AC ''=,B A AB ''=; ③C A AC''=,C B BC ''= ; ④B A AB ''=,∠A=∠A '.A. 1个B. 2个C. 3个D. 4个2、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:(1)△BFD ≌△ACD ;(2)BE ⊥AC.四、拓展延伸如图,在△ABC中,已知D 是BC 的中点,DE⊥AC,DF⊥AB ,垂足非别是E ,F ,DE=DF ,求证AB=AC.五、小结:HLFE DCBACOEDBNMA。
全等三角形复习导学案
全等三角形复习导学案一、学习目标1、理解全等三角形的概念,掌握全等三角形的性质和判定方法。
2、能够运用全等三角形的性质和判定解决相关的几何问题。
3、通过复习,提高逻辑推理能力和空间想象能力。
二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应线段(角平分线、中线、高线)相等;(4)全等三角形的面积相等,周长相等。
3、全等三角形的判定方法(1)“SSS”(边边边):三边对应相等的两个三角形全等。
(2)“SAS”(边角边):两边和它们的夹角对应相等的两个三角形全等。
(3)“ASA”(角边角):两角和它们的夹边对应相等的两个三角形全等。
(4)“AAS”(角角边):两角和其中一角的对边对应相等的两个三角形全等。
(5)“HL”(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
三、典型例题例 1:已知:如图,△ABC ≌△DEF,∠A = 70°,∠B = 50°,BF = 4,求∠DFE 的度数和 EC 的长。
解:因为△ABC ≌△DEF,所以∠DFE =∠ACB。
在△ABC 中,∠ACB = 180°∠A ∠B = 180° 70° 50°= 60°,所以∠DFE = 60°。
因为△ABC ≌△DEF,所以 BC = EF。
又因为 BF = 4,所以 EC = BC BF = EF BF = 0。
例 2:如图,在△ABC 中,AD 是中线,BE 交 AD 于点 F,且 AE = EF,求证:AC = BF。
证明:延长 AD 至点 G,使 DG = AD,连接 BG。
因为 AD 是中线,所以 BD = CD。
在△ADC 和△GDB 中,AD = GD,∠ADC =∠GDB,CD = BD,所以△ADC ≌△GDB(SAS),所以 AC = GB,∠CAD =∠G。
第十二章全等三角形12.1全等三角形教案
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形的复习课教学设计
课题:全等三角形复习课一、教材分析:本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;掌握角的平分线的性质和判定的证明及运用。
其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以及展望中考的习题训练,提高学生综合运用全等三角形解决问题的能力,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。
在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯.二、学情分析在知识上,学生经历全等三角形全章的学习,对全等三角形和角平分线的概念、性质、判定以及应用基本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。
对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形的概念及角平分线的性质,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定及角平线的性质解决有关问题.2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重难点重点:全等三角形及角平分线的性质与判定的应用.难点:能理解运用三角形全等解题的基本过程,灵活应用角平分线的判定的证明及运用.五、教法与学法以“尝试指导效果回授”为主,以自学、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的.六、教具准备多媒体课件,三角尺,圆规.七、课时安排1课时八、教学过程问题与情境活动1创设情境,引出课题.1、某同学把一块三角形玻璃打碎成三片,现在他只需带上第块就可配到与原来一样的三角形玻璃.师:上述问题实质是判断三角形全等需要什么条件的问题.2.有一个简易平分角的仪器(如图),其中AB二AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是NBAD的平分线,为什么?◊E今天我们这节课来复习全等三角形章节.(引出课题)师生互动设计理念【教师活动】1.创设情境,引出课题.2.板书课题.【学生活动】独立思考,并小组交流意见.1、让学生在情境中明白这节课学习的重点.2、复习旧知识,回忆全等三角形的概念、性质及判定方法和实际应用的解决;3、角的平分线的定义,让学生体验利用证明三角形全等的方法来对画法角形;已知两角及两边作三角形;作一个角等于已知角;作角的平分线。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案(精选3篇)
全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
全等三角形教学学案
全等三角形学案(一)初二数学张子顺孙金义同步辅导:全等三角形1、概念理解:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形,而两个三角形全等的判定是几何证明的有力工具。
2、三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3、全等三角形的性质:全等三角形的对应角相等、对应边相等。
注意:1)性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2)利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
例题分析:例1,如图△ABC≌△DEF,AB和DE,AC和DF是对应边,说出对应角和另一组对应边。
解:∵AB和DE,AC和DF分别为对应边,∴另一组对应边是BC和EF。
∴对应角为:∠A和∠D,∠B和∠E,∠ACB和∠DFE例2,如图,△ABE≌△ACD,AB=AC,写出两个全等三角形的对应角与对应边,并问图中是否存在其它的全等三角形。
分析:由AB=AC,则AB和AC是对应边,可找AB的对角∠AEB,AC的对角∠ADC,则∠AEB和∠ADC为对应角。
由∠A是这两个三角形的公共角,它与其自身对应,因而∠A的对边为BE、DC为对应边,于是剩下的∠B、∠C是对应角。
AE和AD是对应边。
解:对应边:AB和AC,BE和DC,AE和AD对应角:∠A和∠A、∠B和∠C、∠AEB和∠ADC∵AB=AC,AD=AE,∴AB-AD=AC-AE,即BD=CE又由∠B=∠C,∠DFB=∠EFC(对顶角相等)于是构成一对全等三角形为△BFD 和△CFE。
1、找全等三角形的对应边,对应角的方法是:(1)若给出对应顶点即可找出对应边和对应角。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
第十二章全等三角形全章导学案
课题(内容)12.1全等三角形 课时数 1 第 1 课时课型新授课 三维目标!知识与能力:1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。
2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。
3、积极投入,激情展示,做最佳自己。
过程与方法:学练结合、小组合作情感态度与价值观:培养学生良好的品德和学习数学的兴趣爱好 重难点1.重点:全等三角形的性质及寻找全等三角形的对应边、对应角。
2.难点:寻找全等三角形的对应边、对应角。
.?资源准备直尺、三角板、课件学案 导 案一、自主学习1、全等形。
回忆:举出现实生活中能够完全重合的图形的例子? 同一张底片洗出的同大小照片是能够完全重合的(如图);、能够完全重合的两个图形叫做 .(1) 一个图形经过平移,翻转,旋转后,位置变化了,但 和 都没有改变,即平移,翻转,旋转前后的图形 。
(2) 如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是 和 $2、全等三角形。
能够完全重合的两个三角形叫做 (如下图)。
C 1B 1CABA 1“全等”用符号“≌”来表示,读作“全等于”,如上图记作△ABC ≌△A1B1C1叫对应顶点,A ←→A1,B ←→B1,C ←→C1 叫对应边,AB ←→A1B1,AC ←→ , 叫对应角,∠A ←→∠A1,∠B ←→∠ ,∠C ←→∠注意:书写全等式时要求把对应顶点字母放在 的位置上。
一、教师导学 】?C 1B 1C A B A 1PA BD ?BD ACF3、全等三角形的性质。
全等三角形的 相等, 相等。
:用符号表示为∵△ABC ≌△A1B1C1 ∴ AB=A1B1, BC=B1C1, AC=A1C1 (全等三角形的 )∴ ∠ A= ∠ A1, ∠ B= ∠B1 , ∠ C= ∠C1(全等三角形的 )二、合作探究1、在找全等三角形的对应元素时一般有什么规律? |?有公共边的,公共边是对应边;有公共角的,公共角是对应角;有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边; 一对最大的角是对应角,一对最小的角是对应角。
三角形全等复习学案
图6图7 第11章全等三角形复习学习目标:1.对本章知识系统化;2.推理更严密化,有逻辑性知识回顾:一、全等三角形1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪些性质?方法指引证明两个三角形全等的基本思路:(1):已知两边----已知一边和它的邻角(2):已知一边一角---已知一边和它的对角(3):已知两角---例题分析:例2如图2,AE=CF,AD∥BC,例3AD=CB,求证:已知△ADF≌△CBE例3已知:如图3,△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.求证:AD=A1D1用语言叙述此命题是:例5:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
已知:求证:证明:练习1、如图6,已知:△ABC中,DF=FE,BD=CE,AF⊥BC于F,则此图中全等三角形共有()A、5对B、4对C、3对D2对2、如图7,已知:在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F,求证:BF是△ABC中边上的高. (提示:关键证明△ADC≌△BFC)3、如图8,已知:∠A=90°,AB=BD,ED⊥BC于D.求证:AE=ED(提示:构造两个三角形,证明全等)图8例4、如图5ACEBDACEBD拓展题14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF拓展题25.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD(提示:要证明两条线段的和与一条线段相等时常用的两种方法:1、(用割的方法)可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。
2、(用补的方法)把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。
)二.角的平分线:角平分线的性质:练习1、如图:在△ABC中,∠C =900,AD平分∠BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE= 。
全等三角形教案【优秀7篇】
全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
初中数学人教版八年级上册:第12章《全等三角形》全章学案
初中数学人教版八年级上册实用资料第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图)3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO =DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC绕点A 旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC=EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A+∠ACB =90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,∴∠BAC=∠DCA,∴AB∥CD.2.如图,△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.解:对应边有AB与AC,AE与AD,BE与CD,对应角有∠BAE=∠CAD.(3分钟)找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)12.2三角形全等的判定(1)1.掌握三角形全等的判定(SSS),掌握简单的证明格式.2.初步体会尺规作图.重、难点:掌握三角形全等的判定(SSS).一、自学指导自学1:自学课本P35-36页“探究1,探究2及例1”,掌握三角形全等的判定条件SSS,并掌握简单的证明格式,了解三角形的稳定性,完成填空.(7分钟) 画△ABC:①使AB=3 cm;②使AB=3 cm,BC=4 cm;③使AB=3 cm,BC=4 cm,AC=5 cm;④使∠A=30°;⑤使∠A=30°,∠B=50°;⑥使∠A=30°,∠B=50°,∠C=100°.每画完一个,与同桌画的三角形对比一下,形状与大小是一样的吗?总结归纳:(1)已知三角形的一个或两个元素,三角形的形状和大小不能确定,三个角相等的三角形形状确定,但大小不确定.(2)三边分别相等的两个三角形全等,简写成边边边或SSS.(3)三角形三边的长度确定了,这个三角形的形状、大小也就确定了.自学2:自学课本P36-37页“探究与例题”,利用尺规作图画一个角等于已知角,初步体会尺规作图.(3分钟)点拨精讲:用尺规作图作一个角等于已知角的依据是“三边对应相等的两个三角形全等”,可通过添加辅助线构造全等三角形加以证明.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.在△ABC和△DEF中,若AB=DE,BC=EF,AC=DF,则△ABC≌△DEF.2.若两个三角形全等,则它们的三边对应相等;反之,若两个三角形的三边对应相等,则这两个三角形全等.3.下列命题正确的是(A)A.有一边对应相等的两个等边三角形全等B.有两边对应相等的两个等腰三角形全等C.有一边对应相等的两个等腰三角形全等D.有一边对应相等的两个直角三角形全等4.已知AB=3,BC=4,AC=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=6.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB =AD ,CB =CD ,求证:(1)△ABC ≌△ADC ;(2)∠B =∠D. 证明:(1)连接AC ,在△ABC 与△ADC 中,⎩⎪⎨⎪⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS ).(2)∵△ABC ≌△ADC ,∴∠B =∠D.点拨精讲:在证明过程中善于挖掘如“公共边”这个隐含条件,可以考虑添加辅助线.探究2 如图,△ABC 是一个风筝架,AB =AC ,AD 是连接A 与BC 中点D 的支架,求证:AD ⊥BC.证明:∵点D 的BC 中点,∴BD =CD ,∴在△ABD 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,BD =CD ,BD =AC ,∴△ABD≌△ACD(SSS ),∴∠ADB =∠ADC ,∵∠ADB +∠ADC =180°,∴∠ADB =∠ADC =90°,∴AD ⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,AD =BC ,AC =BD ,求证:(1)∠DAB =∠CBA ;(2)∠ACD =∠BDC. 证明:(1)在△ABD 与△BAC 中,⎩⎪⎨⎪⎧AB =BA ,AD =BC ,AC =BD ,∴△ABD ≌△BAC(SSS ),∴∠DAB =∠CBA.(2)在△ADC 与△BCD 中,⎩⎪⎨⎪⎧DC =CD ,AD =BC ,AC =BD ,∴△ADC ≌△BCD(SSS ),∴∠ACD =∠BDC.点拨精讲:三角形全等的判定与性质的应用经常交替使用.(3分钟)本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS ,并利用它可以证明简单的三角形全等问题.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)12.2三角形全等的判定(2)1.理解和掌握全等三角形判定方法2——“边角边”,理解满足边边角的两个三角形不一定全等.2.能把证明角或线段相等的问题转化为证明它们所在的两个三角形全等.重点:能把证明角或线段相等的问题,转化为证明它们所在的两个三角形全等.难点:理解满足边边角的两个三角形不一定全等.一、自学指导自学1:自学课本P37-38页“探究3及例2”,掌握三角形全等的判定条件SAS,进一步掌握证明的格式,完成填空.(5分钟)任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?总结归纳:两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”).点拨精讲:三角形的两条边的长度和它们的夹角的大小确定了,这个三角形的形状、大小就确定了.自学2:自学课本P39页“思考”,明白有两边和其中一边的对角对应相等的两个三角形不一定全等,并会通过画图举反例.(5分钟)画出一个△ABC,使AB=3,AC=4,∠B=30°(即已知两边和其中一边的对角).小组内展示各自画出来的三角形,它们的形状是一样的吗?点拨精讲:如果给定两个三角形的类型(如两个钝角三角形),两边和其中一边的对角对应相等的这两个三角形全等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是(D)A.∠A=∠DB.∠E=∠CC.∠A=∠C D.∠ABD=∠EBC2.如图,AO=BO,CO=DO,AD与BC交于E,∠O=40°,∠B=25°,则∠BED 的度数是(B)A.60°B.90°C.75°D.85°3.有两边和一个角对应相等的两个三角形不一定全等.(填“一定”或“不一定”)4.如图,AB ,CD 相交于O 点,AO =CO ,OD =OB.求证:∠D =∠B. 证明:在△AOD 与△COB 中, ⎩⎪⎨⎪⎧AO =CO ,∠AOD =∠COB ,OD =OB ,∴△AOD ≌△COB(SAS ),∴∠D =∠B.点拨精讲:利用SAS 证明全等时,要注意“角”只能是两组相等边的夹角,在书写证明过程时相等的角应写在中间;证明过程中注意隐含条件的挖掘,如“对顶角相等”“公共角”“公共边”等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB ∥CD ,AB =CD.求证:AD ∥BC.证明:∵AB ∥CD ,∴∠1=∠2,在△ABD 与△CDB中,⎩⎪⎨⎪⎧AB =CD ,∠1=∠2,BD =DB ,∴△ABD ≌△CDB(SAS ),∴∠3=∠4,∴AD ∥BC.点拨精讲:可从问题出发,要证线段平行只需角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.探究2 如图,将两个一大、一小的等腰直角三角尺拼接(A ,B ,D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE ,CD ,试确定AE 与CD 的关系,并证明你的结论.解:结论:AE =CD ,AE ⊥CD.证明:延长AE 交CD 于F ,在△ABE 与△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS ),∴AE =CD ,∠EAB =∠DCB ,∵∠DCB +∠CDB =90°,∴∠EAB +∠CDB =90°,∴∠AFD =90°,∴AE ⊥CD.点拨精讲:注意挖掘等腰直角三角形中的隐藏条件,线段的关系分数量与位置两种关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE.证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,在△BAC 与△DAE中⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△BAC ≌△DAE(SAS ),∴BC =DE. (3分钟)1.利用对顶角、公共角、直角用SAS 证明三角形全等.2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(3)理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”,能运用它们判定两个三角形全等.重、难点:理解和掌握全等三角形判定方法3和判定方法4及应用.一、自学指导自学1:自学课本P39-40页“探究4、例3”,理解和掌握全等三角形判定方法“ASA”,完成填空.(5分钟)总结归纳:两角和它们的夹边分别对应相等的两个三角形全等,简称角边角或ASA.自学2:自学课本P40-41页“例4、思考”,理解和掌握全等三角形判定方法“AAS”,试总结全等三角形判定方法.(5分钟)总结归纳:(1)两个角和其中一个角的对边分别相等的两个三角形全等,简称角角边或AAS.(2)三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.能确定△ABC≌△DEF的条件是(D)A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是(B)A.甲和乙B.乙和丙C.只有乙D.只有丙3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是(C) A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF点拨精讲:应用AAS证三角形全等时应注意边是对应角的对边.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ.求证:HN =PM. 证明:∵MQ ⊥PN ,NR ⊥MP ,∴∠PQM =90°,∠HQN =90°,∴∠P +∠PNR =90°,∠QHN +∠PNR =90°,∴∠P =∠QHN.在△PQM 与△HQN 中⎩⎪⎨⎪⎧∠MPQ =∠NHQ ,∠PQM =∠HQN ,MQ =NQ ,∴△PQM ≌△HQN ,∴HN =PM.点拨精讲:有直角三角形就有互余的角,利用同角(等角)的余角相等是证角相等的常用方法.探究2 求证:三角形一边的两端点到这边的中线或中线延长线的距离相等.如图,AD 为△ABC 的中线,且CF ⊥AD 于点F ,BE ⊥AD ,交AD 的延长线于点E ,求证:BE =CF.证法1:∵AD 为△ABC 的中线,∴BD =CD.∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°.在△BED 与△CFD 中⎩⎪⎨⎪⎧∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED ≌△CFD(AAS ),∴BE =CF.证法2:∵S △ABD =12AD·BE ,S △ACD =12AD·CF ,且S △ABD =S △ACD (等底同高的两个三角形面积相等),∴12AD·BE =12AD·CF ,∴BE =CF.点拨精讲:对于文字命题的证明,应先根据题意画出图形,再结合题意,写出已知、求证,最后证明;用“面积法”证线段相等,可使问题简化.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,PM =PN ,∠M =∠N.求证:AM =BN.证明:在△PMB 与△PNA 中⎩⎪⎨⎪⎧∠P =∠P ,PM =PN ,∠M =∠N ,∴△PMB ≌△PNA ,∴PB =PA ,∴PM -PA =PN-PB ,∴AM =BN.(3分钟)已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.三角形全等的判定和全等三角形的性质常在一起进行综合应用.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(4)1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.重、难点:直角三角形全等判定方法“斜边、直角边”(即“HL”)的应用.一、自学指导自学1:自学课本P41-42页“思考、探究5及例5”,掌握判定直角三角形全等的特殊方法“HL”,完成填空.(7分钟)总结归纳:(1)斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“HL”.(2)两直角边对应相等的两个直角三角形全等,根据是边角边或SAS.(3)一锐角和一直角边或斜边对应相等的两个直角三角形全等,根据是角角边或AAS和角边角或ASA.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,E,B,F,C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF,则Rt△ABC≌Rt△DFE,全等的根据是HL.2.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;(AAS)(2)一个锐角和这个角的邻边对应相等;(×)(3)一个锐角和斜边对应相等;(AAS)(4)两直角边对应相等;(SAS)(5)一条直角边和斜边对应相等.(HL)3.下列说法正确的是(C)A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等点拨精讲:直角三角形除了一般证全等的方法外,“HL”可使证明过程简化,但前提是已知两个直角三角形,即在证明格式上表明“Rt△”.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC;(2)AD∥BC.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°.在Rt△ADB与Rt△CBD中,⎩⎪⎨⎪⎧AD =CB ,DB =BD ,∴Rt △ADB ≌Rt △CBD(HL ),∴AB =DC. (2)∵Rt △ADB ≌Rt △CBD ,∴∠ADB =∠CBD ,∴AD ∥BC.探究2 如图,E ,F 分别为线段AC 上的两点,且DE ⊥AC 于点E ,BF ⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M.求证:BM =DM ,ME =MF.证明:∵AE =CF ,∴AE +EF =CF +EF ,∴AF =CE.在Rt △ABF 与Rt △CDE 中⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE(HL ),∴BF =DE.∵DE ⊥AC ,BF ⊥AC ,∴∠DEM =∠BFM =90°.在△BFM 与△DEM 中⎩⎪⎨⎪⎧∠BFM =∠DEM ,∠BMF =∠DME ,BF =DE ,∴△BFM ≌△DEM(AAS ),∴BM =DM ,ME =MF.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)如图,AE=DF,∠A=∠D,欲证△ACE≌△DBF,需要添加什么条件?证明全等的理由是什么?解:①若AC=DB,则根据SAS,可以判定△ACE≌△DBF;②若∠1=∠2,则根据AAS,可以判定△ACE≌△DBF;③若∠E=∠F,则根据ASA,可以判定△ACE≌△DBF.(3分钟)1.“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法.2.证明两个三角形全等的方法有:SSS,SAS,ASA,AAS,HL,注意SSA和AAA条件不能判定两个三角形全等.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.3角的平分线的性质掌握角平分线的性质及画法.重、难点:掌握角平分线的性质及画法.一、自学指导自学1:自学课本P48-49页“思考1、思考2”,掌握并理解三角形的三条角平分线的性质,掌握角平分线的画法和文字命题的证明方法,完成填空.(5分钟) 总结归纳:①角的平分线上的点到角的两边的距离相等.②文字命题的证明方法:a.明确命题中的已知和求证;b.根据题意,画出图形,并用数学符号表示已知和求证;c.经过分析,找出由已知推出要证的结论的途径,写出证明过程.自学2:自学课本P49-50页“思考3与例题”,掌握角平分线的判定.(5分钟)总结归纳:(1)角的内部到角的两边的距离相等的点在角的平分线上.(2)三角形三条角平分线的交点到三边的距离相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P50页练习题1,2.2.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5 cm,则BC的长多少?解:过点D作DE⊥AB于点E,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=5 cm,∵BD=2CD,∴BD=10 cm.点拨精讲:角平分线的性质是证明线段相等的另一途径.3.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么它到角两边的距离相等;(2)如果角的内部某点到角两边的距离相等,那么这个点在角的平分线上;(3)综上所述,角的平分线是到角两边距离相等的所有点的集合.4.三角形内,到三边距离相等的点是三个内角平分线的交点.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)有几处可选择?(2)你能画出塔台的位置吗?解:(1)有4处可选择;(2)略.点拨精讲:在三条直线围成三角形的内部有1个点,外部有3个点.探究2如图,OD平分∠POQ,DA⊥OP于A,DB⊥OQ于B,点C在OD上,CM ⊥AD于M,CN⊥BD于N.求证:CM=CN.证明:∵OD平分∠POQ,DA⊥OP,DB⊥OQ,∴OA=OB.在Rt△OAD与Rt△OBD中⎩⎪⎨⎪⎧OD =OD ,DA =DB ,∴Rt △OAD ≌Rt △OBD(HL ),∴∠ADO =∠BDO ,又∵CM ⊥AD ,CN ⊥BD ,∴CM =CN.点拨精讲:角平分线的性质与判定通常是交叉使用,在这里先要证OD 平分∠ADB.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)如图,在△ABC 中,AD 是△ABC 的角平分线,E ,F 分别是AB ,AC 上一点,并且有∠EDF +∠EAF =180°.试判断DE 和DF 的大小关系并说明理由.解:结论:DE =DF.证明:过点D 作DG ⊥AB 于点G ,作DH ⊥AC 于点C ,∵AD 是△ABC 的角平分线,∴DG =DH.∵∠DGA =∠DHA =90°,∴∠GDH +∠BAC =180°,∵∠EDF +∠EAF =180°,∴∠GDH =∠EDF ,∴∠GDH -∠EDH =∠EDF -∠EDH ,∴∠GDE =∠FDH.在△DGE 与△DHF中,⎩⎪⎨⎪⎧∠DGE =∠DHF =90°,DG =DH ,∠GDE =∠HDF ,∴△DGE ≌△DHF(ASA ),∴DE =DF.点拨精讲:在已知角的平分线的前提下,作两边的垂线段是常用辅助线之一.(3分钟)在已知角平分线的条件下,也可想到翻折构造全等的方法.角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用的辅助线.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:12.1.1全等三角形班级 姓名 时间学习目标: 1、能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2、能在全等三角形中正确地找出对应顶点、对应边、对应角。
3、能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质 。
学习难点: 掌握两个全等三角形的对应边、对应角。
学习过程:一、课前研学(预习教材31页-32页的内容,完成下面的问题) (约3-5分钟)(一)、全等形、全等三角形的概念1、能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2、全等三角形.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
(二)、全等三角形的对应元素及表示阅读课本P31第一个思考及下面两段内容,完成下面填空:1、 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略. 2、全等三角形的对应元素(说一说)(1)对应顶点(三个)——重合的(2)对应边(三条) ——重合的 (3)对应角(三个) ——重合的 3、寻找对应元素的规律(1)有公共边的,公共边是 ;(2)有公共角的,公共角是 ;第(4)题图EBAE 第(1)题图E C BFC第(2)题图D A C B (4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.简单记为:(1)大边对应大角,大角对应 ;(2) 公共边是对应边,公共角是 ,对顶角也是 ;4、“全等”用“ ”表示,读作“ ”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作:注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.二、课堂探究 (约15-20分钟)知识点1:全等三角形的性质阅读课本P32第二个思考及下面内容,完成下面填空:活动一:观察下列各组的两个全等三角形,并回答问题:(1) 如图(1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC= 。
∠A 对应角是 即可记为∠A = 。
(2) 如图(2)△ABC ≌△DEF ,△ABC 的边AC 的对应边是 ,即可记为AC= 。
(3) 如图(3)△ABC ≌△ ,∠ABC 对应角是 即可记为∠ = ∠ 。
(4) 如图(4)△ABC ≌△ ,△ABC 的∠BAC 的对应角是 即可记为∠ = ∠ 。
(5) △ABC ≌与△DEF ,AB=DE,AC=DF,BC=EF,写出所有对应角相等的式子。
小结1:规律总结:1、全等三角形的对应边 ,对应角 。
2、两个三角形全等,与它们所在的位置 关系。
(填有或无)知识点2:全等三角形的性质例解例1:如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,说出这两个三角形中的对应边和对应角.D CABODCABE图1 图2BD AC F例2:如图2,已知△ABE≌△ACD,∠ADC=∠AEB,∠B=∠C,•指出其他的对应边和对应角.三、课时达标(约10分钟)1、“全等”用符号表示,读作:.2、若△BCE≌△CBF,则∠CBE= ,∠BEC= ,BE= ,CE= .3、判断题(1)全等三角形的对应边相等,对应角相等.()(2)全等三角形的周长相等,面积也相等.()(3)面积相等的三角形是全等三角形.()(4)周长相等的三角形是全等三角形.()第4题图4、如图:△ABC≌△DBF,找出图中的对应边,对应角.答:∠B的对应角是,∠C的对应角是,∠BAC的对应角是;AB的对应边是,AC的对应边是,BC的对应边是.5、如下图,ABC∆≌CDA∆,并且ADBC=,则下列结论错误的是()A.21∠=∠B.CDAB=C.DB∠=∠D.DCAC=6、如下图,ABC∆≌BAD∆,若6=AB,4=AC,5=BC,则AD的长为()A.4 B.5 C.6 D.以上都不对7、如下图,直角△ABC沿直角边BC所在直线向右平移得到DEF∆,下列结论错误的是()A.ABC∆≌DEF∆B.︒=∠90DEF C.DFAC=D.CFEC=8、在ABC∆中,CB∠=∠,与ABC∆全等的三角形有一个角为︒100,则ABC∆中与这个︒100角对应相等的角是()A.A∠B.B∠C.C∠D.B∠或C∠第5题图第6题图第7题图9、如图,已知ABC∆≌EBD∆,求证:21∠=∠EB四、课堂总结1、全等形、全等三角形的概念2、全等三角形的性质五、星级挑战(约5分钟)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。
B2厘米课题:11.2三角形全等的判定(1)班级 姓名 时间学习目标: 1、经历三角形全等的判定的全过程,体会利用操作 归纳获得数学结论的过程。
2、掌握三角形全等的“边边边”条件,了解三角形的稳定性。
3 、通过对问题的共同探讨培养学生的协作能力。
学习重点:三角形全等的条件。
学习难点:寻求三角形全等的条件。
学习过程:一、课前研学(预习教材35页-37页的内容,完成下面的问题) (约3-5分钟)1、画一个三角形与已知三角形的三边相等.2、全等三角形判定方法“边边边”.3.作一个角等于已知角.3、全等三角形的 和 相等4、将△ABC 沿直线BC 平移,得到△DEF ,说出你得到的结论,说明理由?如果AB=5, ∠A=55°, ∠B=45°,那么DE= ,∠F= .二、课堂探究 (约15-20分钟)知识点1:探究三角形全等的条件. 阅读课本探究1之前,回答下面问题:1、思考:两个三角形,有三条对应边,三个对应角,如果满足这六个条件中的一个或两个相等时,能不能保证所画出的两个三角形一定全等?2、只给一个条件。
(1)只给一条边时; (2)只给一个角时结论:只有一条边或一个角对应相等的两个三角形 全等(填“一定”或“不一定”)给出两个条件(1)给出两个角相等: (2)给出两条边相等46厘米4厘米6厘米结论:两个角对应相等的两个三角形 全等(填“一定”或“不一定”) 结论:两条边对应相等的两个三角形 全等(填“一定”或“不一定”) (3)给出一边一角相等:2厘米C B 结论:一条边一个角对应相等的两个三角形 全等(填“一定”或“不一定”) 总结:只给出一个或两个条件时,都不能保证所画的三角形全等。
(4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况? 你觉得总共有几种情况,分别是 ①我们先来探究两个三角形三个角对应相等的情况:结论:两个三角形的三个角对应相等,这两个三角形 全等(填“一定”或“不一定”)探究三条边对应相等的两个三角形是否全等。
②我们这节课来重点研究两个三角形三条边对应相等的情况.画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?(怎么画?是不是有难度?可以参看教材哦,最好画在另外的纸上,然后剪下来与其他同学的比较,看是否能够重合,重合即全等)1、先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB , B ′C ′ =BC , A ′C ′ =AC 。
把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?2、做法看课本35页探究2. 比较验证结果③上面的探究反映了什么规律?回答下面问题:的两个三角形全等,简写为“ ”或“ ”. 小结1:1、三角形全等的判定方法:SSS(1) 内容;三边对应 ___的两个三角形全等。
(2) 简写:“___”或“___” 2、尺规作图(1)定义:只用___和___的作图方法3、 书写格式 在△ABC 和△DEF 中 AB = DE BC = EF AC=DF∴ △ABC ≌___ (____________)4、如图AB=CD,AC=BD, △ABC 和△DCB 是否全等?试说明理由。
解:△ABC ≌△DCB理由:在△ABC 和△DCB 中AB=CD AC=BD= ( )△ABC ≌△DCB (SSS) 知识点2:三角形全等例解例1:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明:∵D 是BC ∴ = ∴在△ 和△ 中 AB= BD= 300 700 800300 800700AD=∴△ABD △ACD( )例2:如图,AB=AD ,BC=CD ,求证:(1)△ABC ≌△ADC ; (2)∠B=∠D .小结2:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②三角形全等书写三步骤:三、课时达标(约10分钟)1 、下列说法正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形的周长和面积分别相等 C .全等三角形是指面积相等的两个三角形 D .所有等边三角形都全等.2 、如图,在ABC ∆中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ∆≌ACD ∆;②C B ∠=∠;③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个3 、如图,若AC AB =,DC DB =,根据 可得ABD ∆≌ACD ∆.4 、在ABC ∆中,︒=∠90C ,D 、E 分别为AC 、AB 上的点,且BD AD =,BC AE =,DC DE =.求证:AB DE ⊥5 、如图,点A 、C 、F 、D 在同一直线上,DC AF =,DE AB =,EF BC = 求证:DE AB //6 、如图,已知CD AB =,BD AC =,求证:D A ∠=∠.A BCDFE7 、如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF . 求证:△ABC ≌△DEF四、课堂总结1 、三角形全等的判定方法:SSS2 、三角形全等书写三步骤。
五、星级挑战(约5分钟)1 、已知点B 、C 、E 、D 在同一条直线上,AB =DF ,AC =EF ,BE= CD , 求证:AC ∥EF2 、已知AB =AD ,AC =A E ,BC =D E 求证:∠B AD =∠CAE课题:11.2三角形全等的判定(2)班级 姓名 时间学习目标:1 、经历三角形全等的判定的全过程,体会利用操作 归纳获得数学结论的过程。
2 、掌握三角形全等的“边角边”条件。
3 、在探索三角形全等及运用的过程培养学生的分析推理及简单的证明的能力。