高等代数复习提纲(下期)

合集下载

《高等数学》(下)期末考试考前复习提纲

《高等数学》(下)期末考试考前复习提纲

《高等数学》下册期末考试考前复习提纲第一部分 空间解析几何与向量代数一、向量代数 1、向量的概念 (1)向量的定义有大小有方向的线段a(自由向量) (2)向量的表示1)),,(z y x a a a a =, 为向量的直角坐标表示2)0a a a=,其中a 为向量的模(大小),222zy x a a a a ++= 0a 为a的单位向量,0(cos ,cos ,cos )(,,)y x z a a a a a a aαβγ==,)cos ,cos ,(cos γβα为a的方向余弦,1cos cos cos 222=++γβα注:若有两点:111222(,,),(,,)A x y z B x y z ,则向量AB 为 212121{(),(),()}A B x x y y z z =--- 2、向量的运算 (1)线性运算),,(z z y y x x b a b a b a b a +++=+),,(z y x a a a a λλλλ=(2)数量积(标积,点积) 1)cos ,,a b a b a b ϕϕ⋅≡≡(0)ϕπ≤≤2)z z y y x x b a b a b a b a ++=⋅特例:当b a ⊥时,0=⋅b a(两向量垂直的判据)(3)向量积(矢积,叉积)1)0sin c b a c b a ϕ=≡⨯,b a ,与c为右手螺旋关系2)()()()xy z y z z yz x x z x y y x xy zij ka b a a a i a b a b j a b a b k a b a b b b b ⨯==-+-+-特例:当b a//时,0=⨯b a ,或z y x z y x z z y y x x b b b a a a b a b a b a ::::=↔==(两向量平行的判据)3、两点的间距公式212212212)()()(z z y y x x d -+-+-=4、平面π外一点0000(,,)P x y z 到平面π的距离公式:Dd =平面π的点法式方程为: 0Ax By Cz D +++= 二、空间解析几何1、空间曲面与空间曲线 (1)方程曲面方程 0),,(=z y x F (三元方程)曲线方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F 或)(),(),(t z z t y y t x x ===(2)常见的曲面与曲线1) 柱面—— 一直线l (母线)沿着一平面曲线C (准线)作平行于一定直线L 的移动所得的曲面 母线z //轴的柱面: 0),(=y x F母线y //轴的柱面: 0),(=x z F 母线x //轴的柱面: 0),(=z y F2) 旋转面—— 一平面曲线(母线)绕着同一平面内的定直线(转轴)旋转一周所得的曲面例(,)00z y f y z x =⎧⎨=⎩绕z 不变,旋转曲面0),(22=+±z y x f 3)空间螺旋线t k z a y a x ωθθθθ====,,c o s ,s i n4)二次曲面(三元二次方程) )(a 椭球面1222222=++cz b y a x椭球面与平行于坐标面平面的交线:→⎪⎩⎪⎨⎧==++12222221z z c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b yz c c a x ; →⎪⎩⎪⎨⎧==++12222221y y c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(y y y b b c z y b b a x ; →⎪⎩⎪⎨⎧==++12222221x x c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(x x x a a c z x a a b y 分别为在1z z =,1y y =与1x x =平面内的椭圆。

高等代数考试大纲

高等代数考试大纲
7.明白得逆矩阵的概念,把握可逆矩阵的性质,和矩阵可逆的判别条件。明白得伴随矩阵的概念,会用伴随矩阵求逆矩阵。
8.把握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的条件。明白得矩阵的秩的概念,了解矩阵的秩与行列式的关系,和矩阵乘积的秩与因子矩阵的秩的关系。了解n阶方阵非退化的概念及充分必要条件,把握用初等变换求矩阵的秩和逆矩阵的方式。
考试要求
1.明白得线性变换的概念,了解线性变换的性质。
2.熟悉线性变换的运算及其性质。
3.明白得线性变换的矩阵,了解线性变换与矩阵的对应。
4.明白得线性变换及其矩阵的特点值、特点向量、特点多项式的概念及性质,会求线性变换及矩阵的特点值和特点向量。
5.了解关于特点多项式的Hamilton-Caylay定理,了解矩阵的迹。
6.明白得线性变换的特点子空间、线性变换的不变子空间的概念。
7.明白得矩阵相似的概念、性质及矩阵可对角化的充分必要条件。把握将矩阵化为对角矩阵的方式。
8.明白得线性变换的值域、核、秩、零度的概念。
(八)λ-矩阵
考试内容
λ-矩阵的概念;λ-矩阵的初等变换;λ-矩阵间的等价概念及等价的充分必要条件;λ-矩阵在初等变换下的标准形;λ-矩阵的行列式因子、不变因子及二者之间的关系;矩阵相似的条件;初等因子的概念;复方阵的假设当标准形。
矩阵的概念;矩阵的大体运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算
考试要求
1.明白得n维向量、向量的线性组合与线性表示等概念。
2.明白得向量组线性相关、线性无关的概念、熟练把握判定向量组线性相关、线性无关的方式。
考试内容
内积的概念及其性质;欧几里德空间的概念;正交基和标准正交基的概念;施密特(Schmidt)正交化进程;正交矩阵;正交变换及其性质;正交子空间、正交补及其性质;实对称矩阵的特点值、特点向量及相似对角矩阵;欧几里德空间的同构。

《高代》复习提纲)

《高代》复习提纲)

第四章矩阵矩阵在本课程中起者承上启下的作用。

尤其是以下几章的学习有重要作用。

矩阵是代数研究对象的进一步扩充。

要求:1.掌握矩阵的加法和乘法的条件、方法和运算规律;掌握数与矩阵的乘法、矩阵的转置的运算规律。

2.掌握初等矩阵的定义、初等矩阵与矩阵初等变换的关系;3.掌握可逆矩阵的定义、判别方法及逆矩阵的求法;4.理解矩阵乘积行列式的求法;重点::矩阵的乘法规则及可逆矩阵求逆的方法要重点掌握。

难点:理解初等变换与矩阵乘法的联系和几种求逆矩阵的方法。

第五章二次型本章介绍二次型的概念,化二次型为标准形的方法。

这些内容是线性代数的重要研究对象。

在数学的其它分支和物理学中有重要应用,对中学数学教学有直接指导作用。

要求;I.掌握二次型及二次型的矩阵的概念及二次型矩阵的求法;2.掌握矩阵合同的定义及性质;3.理解二次型的标准型的概念及化为标准型的方法;4.弄清二次型的标准形不唯一的原因,会确定复二次型和实二次型的规范形,理解它们的唯一性,掌握实二次型和实对称矩阵的正惯性指数、负惯性指数和符号差的概念;重点:二次型,二次型的秩,矩阵的合同,实二次型的标准型,惯性定理,第六章线性空间线性空间和下章的线性变换是高等代数的重要理论部分,但其内容抽象、难度较大。

要求:.1、掌握定义线性空间的“228”条件,和线性空间的四条简单性质2、掌握向量线性相关,无关概念,性质及判别方法;3、掌握子空间的概念和判别方法;掌握由向量组生成的子空间的概念及其基与维数的确定,知道每个有限维线性空间都是由它的基向量组生成的,掌握子空间的交、和等概念;理解子空间的交与和与一般集合交并与并的异同,4、掌握线性空间的维数、基和向量的坐标的概念及其相互关系。

会判定向量组是否可以作为空间的基;会求向量在给定基下的坐标,熟练掌握同一向量在两组不同基下的坐标的转换公式;过渡阵概念,性质及求法;重点:向量空间、线性相关、线性无关、子空间、子空间的运算、基、维数、坐标、过渡矩阵。

高数下册复习提纲

高数下册复习提纲

第7章:微分方程一、微分方程的相关概念1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶.2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解.通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解.3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(=.(2). 方程的解法:分离变量法(3). 求解步骤①. 分离变量,将方程写成dx x f dy y g )()(=的形式;②. 两端积分:⎰⎰=dx x f dy y g )()(,得隐式通解C x F y G +=)()(;③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式:⎪⎭⎫ ⎝⎛=x y dx dy ϕ. (2).方程的解法:变量替换法 (3). 求解步骤①.引进新变量x y u=,有ux y =及dxdux u dx dy +=; ②.代入原方程得:)(u dxdux u ϕ=+;③.分离变量后求解,即解方程xdxu u du =-)(ϕ;④.变量还原,即再用xy代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式:)()(x Q y x P dxdy=+. 一阶齐次线性微分方程:0)(=+y x P dxdy.一阶非齐次线性微分方程:0)()(≠=+x Q y x P dxdy. (2).一阶齐次线性微分方程0)(=+y x P dxdy的解法: 分离变量法. 通解为⎰-=x d x P Ce y )(,(R C ∈).(公式)(3).一阶非齐次线性微分方程0)()(≠=+x Q y x P dxdy的解法: 常数变易法. 对方程)()(x Q y x P dxdy=+,设⎰-=x d x P e x u y )()(为其通解,其中)(x u 为未知函数, 从而有 ⎰---'=⎰x d x P x d x P e x P x u x u dxdy)()()()(e )(,代入原方程有 )()()()()(e)()()()(x Q e x u x P e x P x u x u x d x P x d x P xd x P =+-'⎰-⎰--⎰,整理得 ⎰='x d x P x Q x u )(e )()(,两端积分得 C dx e x Q x u x d x P +=⎰⎰)()()(,再代入通解表达式,便得到一阶非齐次线性微分方程的通解))(()()(C dx e x Q e y x d x P x d x P +=⎰⎰⎰-dx e x Q e Ce x d x P x d x P x d x P ⎰⎰⎰-⎰-+=)()()()(,(公式)即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解.三、可降阶的高阶微分方程1. )()(x f y n =型接连n 次积分,可得此方程的含有n 个相互独立的任意常数的通解. 2. ),(y x f y '=''型令p y =',则dxdpy ='',代入原方程,并依次解两个一阶微分方程便可得此方程的通解. 3. ),(y y f y '=''型令p y =',则dy dp p dx dy dy dp dx dp y =⋅=='',代入原方程,得到一阶微分方程),(p y f dydp p =.解此一阶微分方程,得到),(1C y p y ϕ==',然后分离变量并积分便可得此方程的通解.第8章 向量与解析几何222cos A C A θ=+⋅第9章 多元函数微分法及其应用一、基本概念 1.多元函数(1)知道多元函数的定义n 元函数:),,,(21n x x x f y = (2)会求二元函数的定义域1°:分母不为0; 2°:真数大于0;3°:开偶次方数不小于0; 4°:u z arcsin =或u arccos 中||u ≤1 (3)会对二元函数作几何解释 2.二重极限A y x f y y x x =→→),(lim 0这里动点),(y x 是沿任意路线趋于定点),(00y x 的.(1) 理解二重极限的定义(2) 一元函数中极限的运算法则对二重极限也适用,会求二重极限; (3) 会证二元函数的极限不存在(主要用沿不同路径得不同结果的方法). 3.多元函数的连续性(1)理解定义:)()(lim 00P f P f P P =→.(2)知道一切多元初等函数在其定义域内连续的结论;(3)知道多元函数在闭区域上的最大最小值定理、介值定理。

高数下册的复习总结学习资料完整.doc

高数下册的复习总结学习资料完整.doc

高等数学 ( 向量代数— >无穷级数 ) 知识点向量与空间几何向量:向量表示((a^b)); 向量运算 (向量积 );向量的方向和投影空间方程:曲面方程(旋转曲面和垂直柱面);直线方程 (参数方程和投影方程)平面方程:点法式(法向量 )、一般式、截距式;平面夹角和距离直线方程:一般式、对称式(方向向量 )、参数式;直线夹角;平面交线(法向量积 )切平面和切线:切线与法平面;切平面与法线多元函数微分学多元函数极限:趋近方式,等阶代换偏微分和全微分:高阶微分(连续则可等 );复合函数求导(Jacobi 行列式 );多元函数极值:偏导数判定;拉格朗日乘数法(条件极值 )重积分二重积分:直角坐标和极坐标;对称性;换元法三重积分:直角坐标、柱坐标和球坐标;对称性重积分的应用:曲面面积;质心;转动惯量;引力曲线与曲面积分曲线积分:弧长积分;坐标曲线积分 (参数方程 );格林公式面积积分:对面积积分;坐标面积积分;高斯公式无穷级数级数收敛:通项极限正项级数:调和级数;比较法和比较极限法;根值法;极限法;绝对收敛和条件收敛幂级数:收敛半径和收敛域;和函数;麦克劳林级数(二次展开 )Fourier 级数:傅里叶系数 (高次三角函数积分 );奇偶延拓;正弦和余弦级数;一般周期的傅里叶级数矢量分析与场论(空间场基础 )方向导数与梯度方向导数:向量参数式;偏导数;方向余弦梯度 (grad):方向导数的最值;梯度方向;物理意义(热导方向与电场方向)格林公式:曲线积分—>二重积分;曲线方向与曲面方向全微分原函数:场的还原;折线积分通量与散度高斯公式:闭合曲面—>三重积分;曲面外侧定向;曲面补齐;向量表达(通量 )散度 (div) :通量的体积元微分;物理意义(有源场(电场 ))环流量与旋度斯托克斯公式:闭合曲线—>曲面积分;向量积定向;行列式表达;向量表达;物理意义 (环通量 )旋度 (rot) :行列式斯托克斯公式;物理意义(有旋场 (磁场 ))第八章向量与解析几何向量代数定义定义与运算的几何表达uuur 向量有大小、有方向. 记作a或AB模向量 a 的模记作 a和差在直角坐标系下的表示a a x i a y j a z k (a x, a y ,a z)r r r a x prj x a, a y prj y a,a z prj z a a a x 2 a y 2 a z 2c a b a x b x, a y b y , a z b zc a b c a- b单位向量 a 0 ,则 e a aae a( a x , a y , a z )a x2a y2a z2方向余弦点乘(数量积)叉乘(向量积)c a b 设 a 与x, y, z轴的夹角分别为,,,则方向余弦分别为 cos , cos , cosa b a b cos,为向量a与b的夹角c a b sin为向量 a 与 b 的夹角向量 c 与 a ,b都垂直定理与公式cosa x,cosa y,cosa zr r ra a ae a ( cos , cos , cos )cos2 +cos 2 cos 2 1a b a x b x a y b y a z b zi j ka b a x a y a zb x b y b z垂直平行a b a b 0 a b a x b x a y b y a z b z 0 a // b a b 0 a // ba x a y a zb x b y b za bcosa xb x a y b y a z b z交角余弦两向量夹角余弦cosa x2 a y2 a z2b x2 b y2 b z2a b向量 a 在非零向量b上的投影ax b x a y b y a z b z 投影 a b prj b a bx b y b zprj b a a cos(a b) 2 2 2b平面直线法向量 n { A, B,C }点M0( x0, y0, z0) 方向向量 T { m , n, p} 点 M 0 ( x0 , y0 , z0 )方程名称方程形式及特征方程名称方程形式及特征一般式Ax By Cz D 0 一般式A1 x B1 y C 1 z D 1 0 A 2 x B 2 y C 2 z D 2 0点法式A( x x0 ) B( y y0 ) C(z z0 ) 0 点向式x x0 y y0 z z0 m n px x1 y y1 z z1 x x0 mt 三点式x 2 x1 y2 y1 z2 z1 0 参数式y y0 nt x3 x1 y3 y1 z3 z1 z z0 pt截距式x y z1 两点式x x0 y y0 z z0 a b c x1 x0 y1 y0 z1 z0面面垂直A1 A2 B1B2 C1C2 0 线线垂直m1 m2 n1 n2 p1 p2 0面面平行A1 B1 C1线线平行m1 n1 p1 A2 B2 C 2 m2 n2 p2线面垂直A B C线面平行Am Bn Cp 0 m n p点面距离面面距离M 0 (x0 , y0 , z0 ) Ax By Cz D 0 Ax By Cz D1 0 Ax By Cz D 2 0n1 cosdAx0 By0 Cz0 DdD1 D2A2 B 2 C 2 A2 B2 C2 面面夹角线线夹角线面夹角{ A1, B1 ,C1} n2 { A2 , B2 ,C2 } s1 { m1 ,n1 , p1} s2 { m2 , n2 , p2 } s { m,n, p} n { A, B, C} | A1A2 B1 B2 C1C2 | m1 m2 n1 n2 p1 p2 sinAm Bn Cpcos A2 B2 C 2 m2 n2 p 22 2 2A222 2m12 n12 p12 m22 n22 p22A1 B1 C1 B2 C2空间曲线x(t),y(t),z(t ),(t)x x0 y y0 z z0切“线”方程:(t 0 ) (t 0 ) (t0 ) 切向量T ( (t0 ) , (t0 ) , (t0 )) 法平“面”方程:(t0 ) ( x x0 ) (t0 ) ( y y0 ) (t 0 )( z z0 ) 0:空间曲面:y(x)z (x)F ( x, y, z) 0切向量T (1 , ( x) , (x))法向量rn( F x ( x0 , y0 , z0 ) ,F y ( x0 , y0 , z0 ) ,F z ( x0 , y0 , z0 ) )切“线”方程:x x0 y y 0 z z01 ( x0 ) ( x 0 )法平“面”方程:( x x0 ) ( x0 ) ( y y0 ) ( x0 )( z z0 ) 0切平“面”方程:F x ( x0 , y 0 , z0 )( x x0 ) F x ( x0 , y0 , z0 )( y y 0 )F x ( x0 , y0 , z0 )( z z0 ) 0法“线“方程:x x0 y y 0 z z0F x ( x 0 , y 0 , z0 ) F y ( x 0 , y 0 , z0 ) F z ( x0 , y 0 , z0 )r) ,n ( f x ( x0 , y 0 切平“面”方程:f y ( x0 , y 0 ) , 1 ) f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ) ( z z0 ) 0z f ( x, y) 或法“线“方程:rn ( f x ( x0 , y0 ) , x x0 y y0 z z0f y (x0 , y0 ) , 1) f x ( x0 , y0 ) f y (x0 , y0 ) 1第十章重积分积分类型二重积分I f x, y dD平面薄片的质量质量 = 面密度面积重积分计算方法(1)利用直角坐标系X—型 f ( x, y)dxdy b 2 ( x)dx f (x, y)dyD a 1( x)Y—型 f (x, y) dxdy d 2 ( y)dy f (x, y) dxD c 1 ( y)(2)利用极坐标系使用原则(1)积分区域的边界曲线易于用极坐标方程表示( 含圆弧 ,直线段 );(2) 被积函数用极坐标变量表示较简单( 含( x2y2 ) ,为实数)f ( cos , sin ) d dD2(), sin ) dd f ( cos1()020 2(3)利用积分区域的对称性与被积函数的奇偶性当D 关于 y 轴对称时,(关于 x 轴对称时,有类似结论)0 f ( x, y)对于x是奇函数,即 f ( x, y ) f ( x, y )I2 f ( x, y) dxdy f ( x, y )对于x是偶函数,D1即 f ( x, y) f ( x , y )D1是 D的右半部分计算步骤及注意事项典型例题P141—例 1、例 3P147—例 5P141—例 2应用该性质更方便1 .画出积分区域2 .选择坐标系标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3 .确定积分次序原则:积分区域分块少,累次积分好算为妙4 . 确定积分限 方法:图示法 先积一条线,后扫积分域5 . 计算要简便注意:充分利用对称性,奇偶性投影法 (1) 利用直角坐标截面法f ( x, y, z)dVb y 2 ( x ) z 2 ( x,y ) 投影dx dy f ( x, y, z)dzay 1 ( x )z 1 ( x ,y)x r cos (2) 利用柱面坐标y r sinz zP159—例 1P160—例 2三重积分 相当于在投影法的基础上直角坐标转换成极坐标I适用范围 :f ( x, y, z)dvP161—例 3○积分区域 表面用柱面坐标表示时方程简单; 如 旋转体12变量易分离 .如 f ( x 22) f (x 22)○被积函数 用柱面坐标表示时yzf (x, y, z)dVb dr 2 ( ) cos , sin, z) ddzr 1 ( f (空间立体物的a)质量x cos r sin cos (3)利用球面坐标ysinr sin sin质 量 = 密 度z r cos面积dv r 2sindrd dP165— 10-(1)适用范围 :○1积分域 表面用球面坐标表示时 方程简单 ;如,球体,锥体 .2变量易分离 . 如, f ( x2 y2 2)○被积函数 用球面坐标表示时z2 22(, ) sin cos ,sin sin , cos ) 2sin dIdd1(f ( 1 1, )(4)利用积分区域的对称性与被积函数的奇偶性积分类型第一类曲线积分If (x, y)dsL曲形构件的质量质 量 = 线 密 度弧长第十一章曲线积分与曲面积分曲线积分与曲面积分计算方法典型例题参数法(转化为定积分)( 1) L : y (x) I f ( (t), (t)) '2 (t )'2 (t )dt( 2) L : x(t )(t) Ib1 y'2 ( x) dxf (x, y( x))y(t )aP189-例 1x r ( )cosP190- 3( 3) rr ( ) () L :y r ( )sinIf ( r ( ) cos ,r ( ) sin ) r 2 ( ) r '2 ( ) d( 1) 参数法 (转化为定积分)x ( t)(t 单调地从 到 )L :(t) yPdx Qdy{ P[ (t),( t)](t ) Q[ (t), ( t)] (t )} dtL( 2)利用格林公式 (转化为二重积分)条件: ①L 封闭,分段光滑,有向(左手法则围成平面区域D )② P , Q 具有一阶连续偏导数结论:Pdx QdyQ P()dxdyLx y平面第二类曲线 D满足条件直接应用积分应用:有瑕点,挖洞不是封闭曲线,添加辅 助线P196-例 1、例 2、例 3、例 4P205-例 4P214-5(1)(4)I Pdx QdyL变力沿曲线所做的功(3)利用路径无关定理 (特殊路径法)等价条件:①QP ②Pdx Qdyx yL③ PdxQdy 与路径无关,与起点、终点有关L④ Pdx Qdy 具有原函数 u( x, y)(特殊路径法,偏积分法,凑微分法)(4)两类曲线积分的联系P211-例 5、例 6、例 7IPdx Qdy(Pcos Qcos )dsLL( 1)参数法 (转化为定积分)空间第二类曲线Pdx Qdy Rdz{ P[ (t), (t), (t)] (t ) Q[ (t), (t), (t)] (t )积分R[ (t), (t), (t)] (t )}dt( 2)利用斯托克斯公式 (转化第二类曲面积分)IPdx Qdy Rdz 条件: ①L 封闭,分段光滑,有向L② P , Q ,R 具有一阶连续偏导数P240-例 1变力沿曲线所做的功第一类曲面积分If (x, y, z)dv曲面薄片的质量质 量 = 面 密 度面积Pdx QdyRdzL结论:R Q P R Q p()dydz (z)dzdx (x)dxdyyzxy满足条件直接应用应用:不是封闭曲线,添加辅 助线投影法: zz( x, y) 投影到 xoy 面I f (x, y, z)dvf (x, y, z(x, y)) 1 z x 2 z 2y dxdyDxy类似的还有投影到yoz 面和 zox 面的公式P217-例 1、例 2(1)投影法○1Pdydzp( x( y, z), y, z)dydzDy z: z z( x, y) , 为 的法向量与 x 轴的夹角前侧取“ +”, cos 0 ;后侧取“”, cos 0○2Qdzdxp(x, y( x, z), z)dzdxDyz第二类曲面积分: yy( x, z) , 为的法向量与 y 轴的夹角右侧取“ +”, cos 0 ;左侧取“ ”, cos 0○3QdxdyQ( x, y, z(x, y))dxdyDy z: xx( y, z) ,为 的法向量与 x 轴的夹角IPdydz Qdzdx Rdxdy”, cos上侧取“ +”, cos ;下侧取“(2 )高斯公式 右手法则取定 的侧流体流向曲面一 条件: ① 封闭,分片光滑,是所围空间闭区域的外侧侧的流量② P , Q ,R 具有一阶连续偏导数结论:Pdydz Qdzdz Rdxdy(PQR )xyz满足条件直接应用应用:不是封闭曲面,添加辅 助面(3)两类曲面积分之间的联系Pdydz Qdzdx Rdxdy (PcosQcos Rcos )dS转换投影法: dydz (z)dxdy dzdx (z)dxdyx y所有类型的积分:○1 定义:四步法——分割、代替、求和、取极限; ○2 性质:对积分的范围具有可加性,具有线性性;○3 对坐标的积分,积分区域对称与被积函数的奇偶性。

高数复习大纲同济六版下册

高数复习大纲同济六版下册

高等数学下册复习提纲 (向量代数—>无穷级数)第一次课1、向量与空间几何 向量:向量表示((a^b));向量的模: 向量的大小叫做向量的模.向量a 、→a 、→AB 的模分别记为|a |、||→a 、||→AB . 单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或→0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a 与b 平行, 记作a // b . 零向量认为是与任何向量都平行. 向量运算(向量积); 1. 向量的加法 2. 向量的减法3.向量与数的乘法设a =(a x , a y , a z ), b =(b x , b y , b z )即 a =a x i +a y j +a z k , b =b x i +b y j +b z k ,则 a +b =(a x +b x )i +(a y +b y )j +(a z +b z )k =(a x +b x , a y +b y , a z +b z ). a -b = (a x -b x )i +(a y -b y )j +(a z -b z )k =(a x -b x , a y -b y , a z -b z ).λa =λ(a x i +a y j +a z k ) =(λa x )i +(λa y )j +(λa z )k =(λa x , λa y , λa z ). 向量模的坐标表示式 222||z y x ++=r点A 与点B 间的距离为 →212212212)()()(||||z z y y x x AB AB -+-+-==向量的方向:向量a 与b 的夹角 当把两个非零向量a 与b 的起点放到同一点时, 两个向量之间的不超过π的夹角称为向量a 与b 的夹角, 记作^) ,(b a 或^) ,(a b . 如果向量a 与b 中有一个是零向量, 规定它们的夹角可以在0与π之间任意取值. 类似地, 可以规定向量与一轴的夹角或空间两轴的夹角.数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的 余弦的乘积称为向量a 和b 的数量积, 记作a ⋅b , 即a ·b =|a | |b | cos θ .数量积与投影:由于|b | cos θ =|b |cos(a ,^ b ), 当a ≠0时, |b | cos(a ,^ b ) 是向量 b 在向量a 的方向上的投影, 于是a ·b = |a | Prj a b .同理, 当b ≠0时, a·b = |b | Prj b a . 数量积的性质: (1) a·a = |a | 2.(2) 对于两个非零向量 a 、b , 如果 a·b =0, 则 a ⊥b 反之, 如果a ⊥b , 则a·b =0.如果认为零向量与任何向量都垂直, 则a ⊥b ⇔ a ·b =0. 两向量夹角的余弦的坐标表示:设θ=(a , ^ b ), 则当a ≠0、b ≠0时, 有222222||||cos zy x z y x zz y y x x b b b a a a b a b a b a ++++++=⋅=b a b a θ向量积: 设向量c 是由两个向量a 与b 按下列方式定出:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定.那么, 向量c 叫做向量a 与b 的向量积, 记作a ⨯b , 即 c = a ⨯b . 坐标表示:zy x z y x b b b a a a kj i b a =⨯=a y b z i +a z b x j +a x b y k -a y b x k -a x b z j -a z b y i= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . . 向量的方向余弦:设r =(x , y , z ), 则 x =|r |cos α, y =|r |cos β, z =|r |cos γ . cos α、cos β、cos γ 称为向量r 的方向余弦.||cos r x =α, ||cos r y=β, ||cos r z =γ. 从而 r e r r ==||1)cos ,cos ,(cos γβα向量的投影向量在轴上的投影设点O 及单位向量e 确定u 轴.任给向量r , 作→r =OM , 再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影), 则向量→M O '称为向量r 在u 轴上的分向量. 设→e λ='M O , 则数λ称为向量r 在u 轴上的投影, 记作Prj u r 或(r )u .按此定义, 向量a 在直角坐标系Oxyz 中的坐标a x , a y , a z 就是a 在三条坐标轴上的投影, 即a x =Prj x a , a y =Prj y a , a z =Prj z a . 投影的性质:性质1 (a )u =|a |cos ϕ (即Prj u a =|a |cos ϕ), 其中ϕ为向量与u 轴的夹角; 性质2 (a +b )u =(a )u +(b )u (即Prj u (a +b )= Prj u a +Prj u b ); 性质3 (λa )u =λ(a )u (即Prj u (λa )=λPrj u a );空间方程:曲面方程(旋转曲面和垂直柱面); (1)椭圆锥面由方程22222z by a x =+所表示的曲面称为椭圆锥面. (2)椭球面由方程1222222=++cz b y a x 所表示的曲面称为椭球面.(3)单叶双曲面由方程1222222=-+cz b y a x 所表示的曲面称为单叶双曲面. (4)双叶双曲面由方程1222=--cz b y a x 所表示的曲面称为双叶双曲面.(5)椭圆抛物面由方程z by a x =+2222所表示的曲面称为椭圆抛物面 (6)双曲抛物面.由方程z b y a x =-2222所表示的曲面称为双曲抛物面. 椭圆柱面12222=+b y a x ,双曲柱面122=-by a x , 抛物柱面ay x =2, .直线方程(参数方程和投影方程) 空间直线的一般方程空间直线L 可以看作是两个平面∏1和∏2的交线.如果两个相交平面∏1和∏2的方程分别为A 1x +B 1y +C 1z +D 1=0和A 2x +B 2y +C 2z +D 2=0, 那么直线L 上的任一点的坐标应同时满足这两个平面的方程, 即应满足方程组 ⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线, 这个向量就叫做这条直线的方向向量. 容易知道, 直线上任一向量都平行于该直线的方向向量.确定直线的条件: 当直线L 上一点M 0(x 0, y 0, x 0)和它的一方向向量s = (m , n , p )为已知时, 直线L 的位置就完全确定了.直线方程的确定: 已知直线L 通过点M 0(x 0, y 0, x 0), 且直线的方向向量为s = (m , n , p ), 求直线L 的方程.设M (x , y , z )在直线L 上的任一点, 那么(x -x 0, y -y 0, z -z 0)//s , 从而有pz z n y y m x x 000-=-=-. 这就是直线L 的方程, 叫做直线的对称式方程或点向式方程 ⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 直线L 1和L 2的夹角ϕ可由 |) ,cos(|cos 2^1s s =ϕ222222212121212121||p n m p n m p p n n m m ++⋅++++=直线与平面的夹角设直线的方向向量s =(m , n , p ), 平面的法线向量为n =(A , B , C ), 直线与平面的夹角为ϕ , 那么|) , (2|^n s -=πϕ, 因此|) , cos(|sin ^n s =ϕ. 按两向量夹角余弦的坐标表示式, 有222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ平面方程:点法式(法向量)、一般式、任一平面都可以用三元一次方程来表示 . Ax +By +Cz +D =0.其中x , y , z 的系数就是该平面的一个法线向量n 的坐标, 即 n =(A , B , C ). 提示:D =0, 平面过原点.n =(0, B , C ), 法线向量垂直于x 轴, 平面平行于x 轴. n =(A , 0, C ), 法线向量垂直于y 轴, 平面平行于y 轴. n =(A , B , 0), 法线向量垂直于z 轴, 平面平行于z 轴.n =(0, 0, C ), 法线向量垂直于x 轴和y 轴, 平面平行于xOy 平面. n =(A , 0, 0), 法线向量垂直于y 轴和z 轴, 平面平行于yOz 平面. n =(0, B , 0), 法线向量垂直于x 轴和z 轴, 平面平行于zOx 平面.截距式;平面夹角和距离两平面的夹角: 两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面∏1和∏2的法线向量分别为n 1=(A 1, B 1, C 1)和n 2=(A 2, B 2, C 2), 那么平面∏1和∏2的夹角θ 应是) ,(2^1n n 和) ,() ,(2^12^1n n n n -=-π两者中的锐角, 因此, |) ,cos(|cos 2^1n n =θ. 按两向量夹角余弦的坐标表示式, 平面∏1和∏2的夹角θ 可由2222222121212121212^1|||) ,cos(|cos C B A C B A C C B B A A ++⋅++++==n n θ.来确定.从两向量垂直、平行的充分必要条件立即推得下列结论: 平面∏1和∏2垂直相当于A 1 A 2 +B 1B 2 +C 1C 2=0;平面∏ 1和∏ 2平行或重合相当于212121C C B B A A == 空间曲线的一般方程空间曲线可以看作两个曲面的交线. 设F (x , y , z )=0和G (x , y , z )=0是两个曲面方程, 它们的交线为C . 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组⎩⎨⎧==0),,(0),,(z y x G z y x F空间曲线的参数方程(33)空间曲线C 的方程除了一般方程之外, 也可以用参数形式表示, 只要将C 上动点的坐标x 、y 、z 表示为参数t 的函数:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x .当给定t =t 1时, 就得到C 上的一个点(x 1, y 1, z 1); 随着t 的变动便得曲线C 上的全部点. 方程组(2)叫做空间曲线的参数方程. 切平面和切线: 切线与法平面;设空间曲线Г的参数方程为),(),(),(t z t y t x ωφϕ=== 曲线在点),,(000z y x M 处的切线方程为)(00t x x ϕ'-=.)()(0000t z z t y y ωφ'-='- 向量 )}('),('),('{000t t t T ωφϕ=就是曲线Г在点M 处的一个切向量 法平面的方程为0))(('))(('))( ('000000=-+-+-z z t y y t x x t ωφϕ切平面与法线隐式给出曲面方程((,,)0F x y z =)法向量为:)},,,(),,,(),,,({000000000z y x Fz z y x F z y x F n y x = 切平面的方程是))(,,())(,,())(,,(000000000000z z z y x F y y z y x F x x z y x F z y x -+-+-法线方程是.),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-),(y x z =在点),(00y x如果用α、β、γ表示曲面的法向量的方向角,并假定法向量的方向是向上的,即使得它与z 轴的正向所成的角γ是一锐角,则法向量的方向余弦为 ,1cos 22yxx ff f ++-=α ,1c o s 22yxy ff f ++-=β.11cos 22yxff ++=γ2、多元函数微分学多元函数极限:简单复习讲解 偏微分全微分:如果三元函数),,(z y x u φ=可以微分,那么它的全微分就等于它的三个偏微分之和, du =x u ∂∂dx +y u ∂∂dy +zu ∂∂dz 第二次课3、重积分二重积分:利用直角坐标计算二重积分我们用几何观点来讨论二重积分f x y d D(,)σ⎰⎰的计算问题。

高数下册总复习

高数下册总复习

目录
上页
下页
返回
结束
多元函数微分学
(一)极限与连续 (二)偏导数和全微分 (三)方向导数和梯度 (四)极值
14
蜗牛
机动 目录 上页 下页 返回 结束
(五)几何应用
(一)极限定义的说明
1、 lim f ( x , y ) = A 存在是指: ( x , y ) 沿任何路
x → x0 y → y0
15
蜗牛
机动
目录
上页
下页
返回
结束
5
G G G G G G 混合积: (a , b , c ) = ( a × b ) ⋅ c = b1
c1
a1
a2 b2 c2
a3 b3 c3
几何意义: G G G G G G (a , b , c ) 表示以 a , b , c 为棱的平行六面体的体 积。 G G G G G G G G G G G G G G G (a , b , c ) = (b , c , a ) = (c , a , b ) , (a , b , c ) = − (b , a , c )
5、夹角

蜗牛
机动
G Π 1 : n1 G Π 2 : n2 G L1 : v1 G L2 : v2 G L:v G Π:n
目录
上页
下页
返回
结束
11
6、二次曲面
[1] 柱面
⎧F ( x, y) = 0 母线平行于 z 轴,准线为: ⎨ 的柱面方 ⎩ z=0 程为: F ( x , y ) = 0
[2] 旋转曲面
的平面束方程为:
A1 x + B1 y + C1 z + D1 + λ ( A2 x + B2 y + C 2 z + D2 ) = 0

高数下册总复习知识点归纳

高数下册总复习知识点归纳

第八、九章向量代数与空间解析几何总结○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。

第十二章总结无穷级数常数项级数傅立叶级数幂级数一般项级数正项级数用收敛定义,nns∞→lim存常数项级数的基本性质常数项级数的基本性质○若级数收敛,各项同乘同一常数仍收敛?○两个收敛级数的和差仍收敛?注:一敛、一散之和必发散;两散和、差必发散.○去掉、加上或改变级数有限项?不改变其收敛性?○若级数收敛?则对这级数的项任意加括号后所成的级数仍收敛,且其和不变。

推论?如果加括号后所成的级数发散?则原来级数也发散?注:收敛级数去括号后未必收敛.莱布尼茨判别法若1+≥nnuu且0lim=∞→nnu,则∑∞=--11)1(nnn u收敛nu∑和nv∑都是正项级数,且nnvu≤.若nv∑收敛,则nu∑也收敛;若nu∑发散,则nv∑也发散.比较判别法比较判别法的极限形式nu∑和nv∑都是正项级数,且lvunnn=∞→lim,则○1若+∞<<l0,nu∑与nv∑同敛或同散;○2若0=l,nv∑收敛,nu∑也收敛;○3如果+∞=l,nv∑发散,nu∑也发比值判别法根值判别法nu∑是正项级数,ρ=+∞→nnn uu1lim,ρ=∞→nnnulim,则1<ρ时收敛;1>ρ(ρ=+∞)时发散;1=ρ时可能收敛也可能发收敛性和函数展成幂级数nnnxa∑∞=0,ρ=+∞→nnn aa1lim,1,0;,0;0,.R R Rρρρρ=≠=+∞===+∞缺项级数用比值审敛法求收敛半径)(xs的性质○在收敛域I上连续;○在收敛域),(RR-内可导,且可逐项求导;○和函数)(xs在收敛域I上可积分,且可逐项积分.(R不变,收敛域可能变化).直接展开:泰勒级数间接展开:六个常用展开式⎰-=πππnxdxxfancos)(1⎰-=πππnxdxxfbnsin)(1收敛定理x是连续点,收敛于)(xf;x是间断点,收敛于)]()([21+-+xfxf周期延拓)(xf为奇函数,正弦级数,奇延拓;)(xf为偶函数,余弦级数、偶延拓.交错级数。

高等代数下期末复习

高等代数下期末复习

第六章 线性空间一 线性空间的判定线性空间中两种运算的8条运算规律缺一不可,要证明一个集合是线性空间必须逐条验证.若要证明某个集合对于所定义的两种运算不构成线性空间,只需说明在两个封闭性和8条运算规律中有一条不满足即可。

例:检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 全体n 阶反对称矩阵,对于矩阵的加法和数量乘法;解: 1)否。

因两个n 次多项式相加不一定是n 次多项式,例如523n nx x ++--=()()。

2) n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。

“全体n 阶反对称矩阵”是“n 阶矩阵”的子集,故只需验证反对称矩阵对加法与数量乘法是否封闭即可。

当A ,B 为反对称矩阵,k 为任意一实数时,有'''(A+B )=A +B =-A-B=-(A+B ),即A+B 仍是反对称矩阵。

A kA k A A ''==-=-(k )()(k ),所以kA 是反对称矩阵。

故反对称矩阵的全体构成线性空间。

例:齐次线性方程组A x =0的全体解向量的集合,对于向量的加法和数乘向量构成一个线性空间,通常称为解空间。

而非齐次线性方程组 A x =b 的全体解向量的集合,在上述运算下则不是线性空间,因为它们的两个解向量的和已经不是它的解向量。

二、基 维数 坐标定义:在线性空间V 中,如果存在n 个线性无关的向量12n ,,,ααα使得:V 中任一向量α都可由12n ,,,ααα线性表示,那么,12n ,,,ααα就称为线性空间V 的一个基,n 称为线性空间V 的维数。

记作dim V =n 。

维数为n 的线性空间称为n 维线性空间。

定义(向量的坐标):设12n ,,,ααα是线性空间n V 的一个基。

高等代数下半册复习

高等代数下半册复习

0 ≤ < , >≤
三角不等式: + ≤ + 向量的正交或垂直:(, ) = 0
第九章 欧几里得空间
基的度量矩阵:
设 (1 ,, n ) X, (1,, n )Y
则 (, ) = X T AY
其中A为基的度量矩阵, aij = (i , j )
线性变换的特征值与特征向量:
A
0
任选一组基:A (1,, n ) = (1,, n ) A 矩阵A的特征值与特征向量:
A
矩阵A的特征多项式:E
0
A
如何确定线性变换的特征值和特征向量?
第七章 线性变换
特征子空间:
V = {属于特征值 的所有特征向量再添加 上零向量 }
(k, ) = k (, ) ( + , ) = (, ) + (, ) (, ) ≥ 0,当且仅当 = 零向量时, (, ) = 0
第九章 欧几里得空间
向量的长度: = (, )
(, ) , 向量的夹角: < , >= arccos
P
可逆的线变:若AB=BA=恒等变换,则B为A的逆变换
第七章 线性变换
线性变换的矩阵:A (1,, n ) = (1,, n ) A

在线空V中选定一组基后,每个线变A都与一 个矩阵A对应 矩阵A或是可逆的,或是不可逆的
欧式空间中,正交变换在一组标准正交基下的矩 阵是正交矩阵,对称变换在一组标准正交基下的矩阵 是实对称矩阵.
第六章 线性空间
基变换 (1,, n ) = (1,, n ) A
基II 基I
A为由基I到基II的过渡矩阵,可逆;

高等代数复习提纲(下期)

高等代数复习提纲(下期)

高等代数复习提纲(下期)第五章二次型5.1. 二次型及其矩阵表示5.1.1. 二次型的定义、二次型的矩阵(是对称矩阵)及矩阵表示.注: 二次型的矩阵表示、内积的矩阵表示、双线性函数的矩阵表示的对比.5.1.2. 二次型的非退化线性替换的定义;经非退还线性替换后,新老两个二次型的矩阵的关系(会推导).5.1.3. 矩阵合同的定义.注: 为什么要引入该定义?5.2. 标准形5.2.1. 二次型的标准形的定义及存在性(不唯一),任一对称矩阵都与对角矩阵合同.5.2.2.配方法化二次型为标准形,合同变换法化对称矩阵为对角阵.5.3. 唯一性5.3.1.复二次型的规范形.5.3.2.实二次型的规范形,惯性定理说明实二次型的规范形的存在性和唯一性,实二次型的正惯性指数, 负惯性指数以及符号差的定义. 实二次型的规范形的一些应用(书上哪些习题可以用此来解答?).5.3.3.复对称矩阵和实对称矩阵分别与怎样的最简单的对角阵合同?5.4. 正定二次型5.4.1.实二次型和实对称矩阵的分类:正定,半正定,负定,半负定,不定.5.4.2.正定矩阵的一些等价条件:(1) 正定矩阵的定义;(2) 合同于单位矩阵;(3) 所有顺序主子式大于0;(4) 所有特征值大于0.正定矩阵的一些必要但不充分条件: (1)|A|>0;(2)所有对角线上的元素都大于0;(3)所有主子式都大于0.注:这些等价、必要条件的推导.还要会用实对称矩阵正交相似于对角阵这一结果来判定实对称矩阵的正定性.5.4.3.列举出一些半正定矩阵的等价条件和必要条件.第六章线性空间6.1. 集合映射单射、满射、双射的定义及证明;可逆映射的定义及等价条件(即双射).6.2. 线性空间的定义与简单性质线性空间的定义,即非空集合,加法运算和数乘运算(封闭),8条运算规则.6.3. 维数、基与坐标6.3.1. 维数、基与坐标的定义(会求给定空间的维数、基以及给定向量在给定基下的坐标).6.3.2. 一些常见空间的基和维数,例如n P ,[]n P x ,s n P ?,n n P ?中全体对称(反对称/上三角形)矩阵形成的线性空间,L(V)等.6.4. 基变换与坐标变换不同基之间的过渡矩阵,一个向量在不同基下的坐标之间的关系(会推导).注: (1)要联系线性变换在某组基下的矩阵、一个向量在线性变换作用下的像的坐标;(2) P271的习题2.6.5. 线性子空间6.5.1. 线性子空间的定义及判定(如何判定?).6.5.2.生成子空间的定义、维数、基(如何求?).6.5.3.扩基定理.与第九章的扩充为正交基进行对比.书上哪些定理的证明和习题的证明用到扩基定理?6.6. 子空间的交与和6.6.1.交空间、和空间的定义以及这两子空间的元素的特征.6.6.2.会求两个生成子空间的交空间、和空间.6.6.3.维数公式(会证明)及其应用.6.7. 子空间的直和6.7.1.子空间的直和的定义(为什么要引入该定义?).6.7.2.两个子空间的和是直和的判别条件(列举出4个,并知道哪些是常用的).6.7.3.如何证明12V V V =⊕?6.7.4.多个子空间是直和的判别条件(列举出3个,并会证明).6.7.5. 余子空间的定义和构造.(余子空间是否唯一?与正交补进行比较)6.8. 线性空间的同构线性空间同构的定义,并会用该定义证明两线性空间同构,会构造V 与nP 之间的同构映射,知道两线性空间同构的等价条件为它们的维数相等..第七章线性变换7.1. 线性变换的定义线性变换的定义(熟记),列举出一些线性变换的简单性质并会证明.7.2. 线性变换的运算线性变换的加法、减法、数乘、乘法、逆、方幂的定义及运算规律;线性变换的多项式.注:与矩阵的相应运算进行比较.7.3. 线性变换的矩阵7.3.1. 任意n个向量可唯一确定一个线性变换(如何确定?见P283 定理1). 7.3.2. 线性变换在某组基下的矩阵的定义,线性变换与矩阵的对应关系:线性变换的和、差、数乘、乘积、逆对应矩阵的和、差、数乘、乘积、逆,单位变换、零变换分别对应单位矩阵和零矩阵(会用数学式子表示这种对应,会推导).7.3.3.向量ξ的坐标与Aξ的坐标之间的关系,同一个线性变换在不同基下的矩阵之间的关系(会推导).7.3.4.两个矩阵相似的定义(为什么引入该定义?),如何判别两个矩阵相似?7.4. 特征值与特征向量7.4.1.线性变换和矩阵的特征值和特征向量的定义(为什么要引入该定义?).如何求线性变换和矩阵的特征值和特征向量?线性变换和矩阵的特征值和特征向量之间的关系如何?(掌握求特征值和特征向量的步骤)7.4.2. 线性变换和矩阵的特征多项式的定义.相似矩阵有哪些相似不变量,例如:行列式、特征多项式、特征值、最小多项式、不变因子、行列式因子、初等因子等.7.4.3.哈密顿-凯莱定理及其应用(例如:P309定理12,P326习题3),矩阵的迹的定义,列举出一些矩阵迹的性质(例如:.迹是所有特征值的和;tr(AB)=tr(BA);2tr A tr AA≤).()(')7.5. 对角矩阵7.5.1.矩阵特征值特征向量的一些性质(不同特征值的特征向量线性无关;实对称矩阵的属于不同特征值的特征向量正交;属于不同特征值的特征向量的和不是特征向量)7.5.2.列举出矩阵可对角化的一些充要条件和一些充分条件.充要条件:(1)有n个线性无关的特征向量;(2)所有特征值的重数与其几何重数相等(特征值λ的几何重数指的是λ-=的基础解系所含解向量的个数);E A X()0(3)最小多项式没有重根;(4)初等因子都是1次因式.7.5.3.若矩阵可对角化,如何对角化?7.6. 线性变换的值域与核7.6.1.线性变换的值域和核的定义. 值域和核是子空间,它们中的元素有什么特征?7.6.2.值域如何用生成子空间来表示?值域的维数(线性变换的秩)与线性变换的矩阵的秩的关系如何?,值域的维数与核的维数(线性变换的零度)的和为多少?并会证明这两种关系.7.7. 不变子空间7.7.1.不变子空间的定义.线性变换在不变子空间上的限制成为该子空间上的一个线性变换,该限制与原变换之间的区别是什么?举出一些特殊的不变子空间.7.7.2.会用定义证明一个子空间是一个线性变换的不变子空间.7.7.3.不变子空间在矩阵A 相似于一个准对角矩阵方面的应用.7.8. 若尔当标准形介绍若尔当块、若尔当矩阵的定义,任何方阵都唯一存在若尔当标准形,即相似于一个若尔当矩阵.7.9. 最小多项式最小多项式的定义,性质,求法,与不变因子的关系,应用.第八章λ-矩阵8.1.矩阵A 的特征矩阵及其初等变换,数字矩阵相似的条件,A 的不变因子、行列式因子、初等因子、最小多项式的求法及其关系,以及若尔当标准形的求法.8.2.A 的有理标准形的求法.8.3.利用若尔当块、若尔当矩阵的性质以及A 相似于一个若尔当矩阵证明某些命题.第九章欧几里得空间9.1. 定义及基本性质9.1.1. 内积的定义及其简单性质,欧式空间的定义,向量的正交的定义,会求向量的内积、长度、夹角.9.1.2.柯西-布涅科夫斯基不等式、三角不等式,勾股定理(会推导).9.1.3.内积的矩阵表示(会推导)9.1.4.基在某内积下的度量矩阵的定义及其性质(正定),不同基在同一内积下的度量矩阵之间的关系(合同)(会推导).9.2. 标准正交基9.2.1.标准正交基的定义,如何判定一组基是标准正交基?标准正交基的度量矩阵,内积在标准正交基下的矩阵表示.9.2.2.正交向量组扩充为正交基(或单位正交向量组扩充为标准正交基)的应用(书上有哪些结论的证明和习题的证明用到了该性质?)9.2.3.掌握施密特正交化过程及相应的向量表示,即:1212(,,,)(,,,)n n T ηηηεεε=L L其中12,,,n εεεL 是任一组基,12,,,n ηηηL 是由12,,,n εεεL 经施密特正交化后得到的标准正交基,矩阵T 是一个对角线上元素都大于0的上三角形矩阵。

高数下册总复习知识点

高数下册总复习知识点

d z z d u z dv dt u dt v dt
z
u v
t
公式的记忆方法:连线相乘,分线相加.
5、全微分形式不变性 无论 z是自变量 u、v的函数或中间变量 u、v 的函数,它的全微分形式是一样的.
z z dz du dv u v
6、隐函数的求导法则
偏导数,记为
z f , ,z x x0 x x0 x x x y y y y
0 0
x x0 或 y y0
f x ( x 0 , y0 ) .
y 同理可定义函数z f ( x , y ) 在点( x0 , y0 ) 处对 的偏导数, 为
f ( x 0 , y0 y ) f ( x 0 , y0 ) lim y 0 y z f 记为 , , z y x x0 或 f y ( x 0 , y 0 ) . y y0 y x x 0 y x x 0
y y0 y y0
2、全微分公式
z z dz dx dy . x y
用定义证明可微与不可微的方法 可微 不可微
z [ f x ( x0 , y0 ) x f y ( x0 , y0 ) y] z [ f x ( x0 , y0 ) x f y ( x0 , y0 ) y] 0 ( 0)
这条定曲线叫柱面 的准线,动直线叫 柱面的母线.
从柱面方程(的特征:二元方程)看柱面的特征:
只含 x , y 而缺 z 的方程 F ( x , y ) 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 x o y 面上曲线C . (其他类推)
实 例
y z 2 1 椭圆柱面 2 b c x2 y2 2 1 双曲柱面 2 a b

高等代数大一下期末知识点

高等代数大一下期末知识点

高等代数大一下期末知识点高等代数是大一下学期的一门重要课程,它是线性代数的延伸与拓展,主要涉及到矩阵、向量、行列式、特征值与特征向量等内容。

下面,我将针对高等代数大一下期末的知识点进行全面的总结和归纳。

一、矩阵与行列式1. 矩阵的定义和性质:矩阵是由一些数按一定规律排列成的矩形数组。

矩阵的加法、数乘和乘法满足一定的运算规律,具有结合律、分配律等性质。

2. 矩阵的转置:矩阵的转置是将矩阵的行和列互换得到的新矩阵。

3. 矩阵的逆:对于可逆矩阵,存在一个逆矩阵,使得矩阵与其逆矩阵相乘得到单位矩阵。

逆矩阵的求解可以利用伴随矩阵和行列式的性质。

4. 行列式的定义和性质:行列式是一个标量,它根据矩阵的排列规律计算而得。

行列式的计算可以使用代数余子式和代数余子式的行列式展开式。

二、向量空间1. 向量与线性相关性:向量的线性组合、线性相关与线性无关的概念是研究向量空间的基础。

线性相关性可以通过求解线性方程组或利用行列式判断。

2. 向量空间的定义和性质:向量空间是由一组向量和定义在其上的加法和数乘运算构成的。

3. 向量空间的子空间:子空间是向量空间的一个更小的子集,它同样满足向量空间的定义和性质。

判断一个子空间是否成立可以利用子空间的闭包性和线性组合的定义。

三、特征值与特征向量1. 特征值与特征向量的定义:对于矩阵A,如果存在一个非零向量X,使得AX=kX,其中k为一个常数,则称k为矩阵A的特征值,X为对应的特征向量。

2. 特征多项式和特征方程:特征多项式是由特征值和对应特征向量所构成的多项式。

特征方程是特征多项式为零的解方程。

3. 对角化和相似矩阵:对于可对角化矩阵,存在一个可逆矩阵P,使得PAP^{-1}为对角矩阵。

相似矩阵具有相同的特征值,但特征向量可能不同。

四、正交性与正交矩阵1. 内积空间与正交性:内积空间是带有内积运算的向量空间。

向量的内积可以用来衡量向量之间的夹角和长度。

2. 正交向量与正交集:两个向量的内积为零时,称这两个向量正交。

高等代数学习提纲2

高等代数学习提纲2

r为M的基,则M=L(1 , r ) 且当dimV=n>r时, r 1 , n使1 , r , r 1 , n构成V的基。
M 2 及M1 +M 2仍为V的子 M 2 ={0} M2 ) 空间, M1 M 2一般非V的子空间(除非M1 M 2或M 2 M1);
二次型
9. 二次型的惯性定律 10. 设二次型f(X)=XAX, 则 f>0 f的标准形的系数全为正数 A=TT(T为可逆) A的特征值全为正数 A的顺序主子式全为正数
Euclid 空间
11. 长度定理与Cauchy-schwartz不等式 12. 设1 , (2) G>0 (3) 若1 , (y1 , 13.(1) 1 , , n为V的另一组基,G为1 , ,yn )=(1 , , n )T,则G=TGT ,n的度量矩阵, , n为Euclid 空间V的基,G为1 , , n ) X , =(1 , (1) =(1 , , n的度量矩阵 , n ) Y V ( , )=XGYFra bibliotekn A
给定方阵属于不同特征值的特征向量线性无关
8. 设V为n维线性空间, A为V上的线性变换 1 0 A在基 1 , , n下的矩阵为 A有n个线性无关 0 n 的特征向量1 , , n ;1 , , n 恰为对应的特征值。 若1 , , k 为A全部两两不同的特征值,则A可对角化 Vk V=V1
5.方阵的Jordan标准形
• 线性变换的循环列与线性空间的循环不变子空间 • 循环幂零线性变换与Jordan块 • 方阵的Jordan标准形
二.基本性质
㈠ 线性空间的子空间 ㈡ 线性空间之间的线性映射/变换 ㈢ 二次型 ㈣ Euclid空间 ㈤ 方阵的Jordan标准形

高数下册期末总复习第七版

高数下册期末总复习第七版

切线方程为 x − x0 = y − y0 = z − z0 ; x′(t0 ) y′(t0 ) z′(t0 )
法平面方程为 x′(t0 ) ⋅ (x − x0 ) + y′(t0 ) ⋅ ( y − y0 ) + z′(t0 ) ⋅ (z − z0 ) = 0
第5页共5页
5
b、
若曲线
Γ
的方程为:
三元方程组确定两个一元隐函数:
⎧ F ( x, ⎨⎩G ( x,
y, y,
z) z)
= =
0 0
⎨ ⎩
z=
z
(
x
)

对x求导
dy dx
,
dz dx
⎧u=u ( x, y )
{ ⇒ 四元方程组可确定两个二元隐函数:
F ( x, y,u,v)=0 G( x, y,u,v)=0
⎨⎩v=v( x, y )
对x (或y )求偏导,视y (或x )为常量,得
G 2)点法式方程:法向量 n = ( A, B,C) ,点 M (x0 , y0 , z0 ) ∈ Π ,则 A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0 .
3)截距式方程: x + y + z = 1 abc
4)平面束方程:过直线
⎧ ⎨ ⎩
A1x A2 x
+ +
附录——平面曲线的情形
(1)
若平面曲线 C
:
⎧ ⎨ ⎩
x y
= =
x(t) y(t)
,t
=
t0

M0
∈C
,则
JG 切向量T = (x′(t0 ), y′(t0 )) ,

《高等代数》复习提纲

《高等代数》复习提纲

《高等代数》复习提纲一、基础知识回顾1.四则运算:加法、减法、乘法、除法2.复数的表示与运算3.指数与对数的性质4.幂函数与对数函数的图像与性质5.三角函数的定义与性质6.二次方程与不等式的解法7.组合与排列的性质与计算法则二、向量与矩阵1.向量的定义与性质2.向量的线性运算3.向量的模与方向4.向量的数量积与向量积5.矩阵的定义与性质6.矩阵的加法与数乘7.矩阵的乘法8.矩阵的逆与转置三、矩阵与线性方程组1.线性方程组的定义与性质2.初等变换与线性方程组的解法3.高斯消元法与矩阵的行阶梯形4.线性方程组的解的个数与无解情况5.同解条件与齐次线性方程组的解法6.矩阵的秩与方程组解存在的条件四、复数与复矩阵1.复数域与复数的四则运算2.复数的几何表示与指数形式3.复矩阵的定义与性质4.复矩阵的加法与数乘5.复矩阵的乘法与转置6.复矩阵的逆与行列式五、向量空间1.向量空间的定义与性质2.线性相关与线性无关3.矩阵的秩与零空间4.线性变换与线性映射5.矩阵的特征值与特征向量6.矩阵的对角化与相似矩阵六、多项式与多项式方程1.多项式的定义与性质2.多项式的加法与乘法3.最大公约数与最小公倍数4.多项式方程的解法5.代数多项式与整式的除法6.根与系数的关系7.代数方程的根的性质七、数学归纳法与递推关系1.数学归纳法的原理与应用2.递推关系与递推公式3.斐波那契数列与等差数列4.线性递推关系与齐次线性递推公式5.非齐次线性递推公式与特解6.递推关系的特征方程与通解八、行列式与特征值1.行列式的定义与性质2.行列式的展开与性质3.行列式的性质与应用4.矩阵的特征值与特征向量5.特征值与特征向量的求解6.特征值的性质与应用九、线性方程组的解法1.线性方程组的解的存在唯一性定理2.线性方程组的几何解释3.克拉默法则与逆矩阵法4.线性方程组解的数量与自由变量5.齐次线性方程组的解的结构6.分块矩阵与分块矩阵求逆以上是《高等代数》的复习提纲,希望对你的复习有所帮助。

高等代数(下)复习提纲.

高等代数(下)复习提纲.

高等代数(下)复习提纲课程考试大纲一.课程考核方法与命题要求:本课程考核以笔试为主,一般采用闭卷形式,主要考核学生对基础理论,基本概念的掌握程度,以及学生逻辑推理能力计算能力以及综合应用能力。

平时成绩占30%,期末成绩占70%。

考试大纲根据教学目标,划分标准为“识记、领会、简单应用、综合应用”四级,其中识记占20%,领会占30%,简单应用占40%,综合应用占10%,考试的试题应按照这四个层次,按比例命题。

其中选择8个小题,填空5个小题,计算3个小题,证明2个小题。

本课程考试题型分为客观题和主观题两部分,其中客观题目有选择题(判断题)、填空题,主观题有解答题(计算题)、证明题等。

(第二学期考核第一至第五章部分;第三学期考核第六至第九章部分)二.课程内容与考核要求:第六章向量空间1.知识范围:本章主要介绍了向量空间,子空间,向量的线性相关性,极大无关组,向量空间的基和维数,坐标等概念,并研究了基变换与坐标变换之间的关系,同时还介绍了关于子空间的几种运算,最后介绍了线性空间的同构概念,矩阵的秩和齐次线性方程组的解空间。

2.考核要求:熟练掌握向量空间,子空间,生成元,子空间的和,子空间的直和,维数,基,坐标,过渡矩阵,基变换公式,坐标变换公式,同构映射,理解向量空间的性质,子空间的判定及性质,直和的判定,基变换与坐标变换理论,同构映射的性质,同构的判定。

齐次线性方程组解的结构。

3.考核知识点:向量空间,子空间,生成子空间维数的确定,向量的线性相关性,极大无关组的求法,求向量的坐标,过渡矩阵,基变换公式,坐标变换公式,同构映射,求齐次线性方程组的基础解系。

第七章线性变换1.知识范围:本章主要介绍了线笥映射,线性变换的概念,运算,及线性变换的矩阵,一个线性变换的特征值与特征向量,化一个矩阵为对角矩阵的方法(若可以对角化),矩阵的相似,不变子空间等知识。

2.考核要求:深入理解线性变换的定义,线性变换的运算,线性变换的矩阵,熟练掌握特征值与特征向量,线性变换的矩阵在某组基下的矩阵是对角矩阵的条件,矩阵的相似,理解不变子空间。

大一下学期高代期末知识点

大一下学期高代期末知识点

大一下学期高代期末知识点高等代数是大一下学期的一门重要课程,也是理工科学生的必修课之一。

在这门课中,我们学习了许多抽象的数学概念和符号,如向量空间、线性映射、线性方程组等。

通过学习这些知识,我们可以更好地理解和应用代数学在实际问题中的解决方法。

下面,我将总结一些大一下学期高等代数期末考试的重点知识点。

1. 向量空间:向量空间是高代课程的基石,它是定义了一种满足特定性质的数学结构。

在向量空间中,我们研究了向量的加法、数量乘法、线性组合等运算规律,以及向量空间的性质、子空间、线性无关性等概念。

2. 线性映射:线性映射是一种保持线性关系的函数,它将向量空间中的向量映射到另一个向量空间中。

我们学习了线性映射的定义、性质、核与值空间、线性映射的矩阵表示等内容。

3. 线性方程组:线性方程组是一个包含线性方程的集合,我们需要求解这个方程组得到未知数的解。

在高等代数中,我们学习了线性方程组的解的存在性与唯一性、线性方程组的矩阵表示、增广矩阵、初等变换等知识。

4. 特征值与特征向量:特征值与特征向量是线性变换中非常重要的概念。

特征值是一个标量,特征向量是一个非零向量,对于某个线性变换,特征值和特征向量可以描述该变换的性质。

我们学习了特征值和特征向量的定义、计算方法、特征值与特征向量的性质等。

5. 线性无关性与基和维数:线性无关性是向量组合中的一个重要概念,它描述了向量组合中向量之间的关系。

我们学习了线性无关性的定义、判定方法、基与维数的概念等。

基是一个向量空间中最重要的概念之一,它可以用来描述该向量空间的性质。

6. 特殊矩阵与行列式:在高等代数中,我们还学习了一些特殊的矩阵,如对称矩阵、正交矩阵、幂等矩阵等。

行列式是对于一个方阵的一个标量值,在高等代数中起到了很重要的作用。

我们学习了行列式的定义、性质、计算方法等。

以上是大一下学期高等代数期末考试的一些重点知识点。

通过对这些知识的学习和理解,我们可以更好地掌握代数学的基本概念和方法,为以后的学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章二次型5.1. 二次型及其矩阵表示5.1.1. 二次型的定义、二次型的矩阵(是对称矩阵)及矩阵表示.注: 二次型的矩阵表示、内积的矩阵表示、双线性函数的矩阵表示的对比.5.1.2. 二次型的非退化线性替换的定义;经非退还线性替换后,新老两个二次型的矩阵的关系(会推导).5.1.3. 矩阵合同的定义.注: 为什么要引入该定义?5.2. 标准形5.2.1. 二次型的标准形的定义及存在性(不唯一),任一对称矩阵都与对角矩阵合同.5.2.2.配方法化二次型为标准形,合同变换法化对称矩阵为对角阵.5.3. 唯一性5.3.1.复二次型的规范形.5.3.2.实二次型的规范形,惯性定理说明实二次型的规范形的存在性和唯一性,实二次型的正惯性指数, 负惯性指数以及符号差的定义. 实二次型的规范形的一些应用(书上哪些习题可以用此来解答?).5.3.3.复对称矩阵和实对称矩阵分别与怎样的最简单的对角阵合同?5.4. 正定二次型5.4.1.实二次型和实对称矩阵的分类:正定,半正定,负定,半负定,不定.5.4.2.正定矩阵的一些等价条件:(1) 正定矩阵的定义;(2) 合同于单位矩阵;(3) 所有顺序主子式大于0;(4) 所有特征值大于0.正定矩阵的一些必要但不充分条件: (1)|A|>0;(2)所有对角线上的元素都大于0;(3)所有主子式都大于0.注:这些等价、必要条件的推导.还要会用实对称矩阵正交相似于对角阵这一结果来判定实对称矩阵的正定性.5.4.3.列举出一些半正定矩阵的等价条件和必要条件.第六章线性空间6.1. 集合映射单射、满射、双射的定义及证明;可逆映射的定义及等价条件(即双射).6.2. 线性空间的定义与简单性质线性空间的定义,即非空集合,加法运算和数乘运算(封闭),8条运算规则.6.3. 维数、基与坐标6.3.1. 维数、基与坐标的定义(会求给定空间的维数、基以及给定向量在给定基下的坐标).6.3.2. 一些常见空间的基和维数,例如n P ,[]n P x ,s n P ⨯,n n P ⨯中全体对称(反对称/上三角形)矩阵形成的线性空间,L(V)等.6.4. 基变换与坐标变换不同基之间的过渡矩阵,一个向量在不同基下的坐标之间的关系(会推导).注: (1)要联系线性变换在某组基下的矩阵、一个向量在线性变换作用下的像的坐标;(2) P271的习题2.6.5. 线性子空间6.5.1. 线性子空间的定义及判定(如何判定?).6.5.2.生成子空间的定义、维数、基(如何求?).6.5.3.扩基定理.与第九章的扩充为正交基进行对比.书上哪些定理的证明和习题的证明用到扩基定理?6.6. 子空间的交与和6.6.1.交空间、和空间的定义以及这两子空间的元素的特征.6.6.2.会求两个生成子空间的交空间、和空间.6.6.3.维数公式(会证明)及其应用.6.7. 子空间的直和6.7.1.子空间的直和的定义(为什么要引入该定义?).6.7.2.两个子空间的和是直和的判别条件(列举出4个,并知道哪些是常用的).6.7.3.如何证明12V V V =⊕?6.7.4.多个子空间是直和的判别条件(列举出3个,并会证明).6.7.5. 余子空间的定义和构造.(余子空间是否唯一?与正交补进行比较)6.8. 线性空间的同构线性空间同构的定义,并会用该定义证明两线性空间同构,会构造V 与nP 之间的同构映射,知道两线性空间同构的等价条件为它们的维数相等..第七章 线性变换7.1. 线性变换的定义线性变换的定义(熟记),列举出一些线性变换的简单性质并会证明.7.2. 线性变换的运算线性变换的加法、减法、数乘、乘法、逆、方幂的定义及运算规律;线性变换的多项式.注:与矩阵的相应运算进行比较.7.3. 线性变换的矩阵7.3.1. 任意n个向量可唯一确定一个线性变换(如何确定?见P283 定理1). 7.3.2. 线性变换在某组基下的矩阵的定义,线性变换与矩阵的对应关系:线性变换的和、差、数乘、乘积、逆对应矩阵的和、差、数乘、乘积、逆,单位变换、零变换分别对应单位矩阵和零矩阵(会用数学式子表示这种对应,会推导).7.3.3.向量ξ的坐标与Aξ的坐标之间的关系,同一个线性变换在不同基下的矩阵之间的关系(会推导).7.3.4.两个矩阵相似的定义(为什么引入该定义?),如何判别两个矩阵相似?7.4. 特征值与特征向量7.4.1.线性变换和矩阵的特征值和特征向量的定义(为什么要引入该定义?).如何求线性变换和矩阵的特征值和特征向量?线性变换和矩阵的特征值和特征向量之间的关系如何?(掌握求特征值和特征向量的步骤)7.4.2. 线性变换和矩阵的特征多项式的定义.相似矩阵有哪些相似不变量,例如:行列式、特征多项式、特征值、最小多项式、不变因子、行列式因子、初等因子等.7.4.3.哈密顿-凯莱定理及其应用(例如:P309定理12,P326习题3),矩阵的迹的定义,列举出一些矩阵迹的性质(例如:.迹是所有特征值的和;tr(AB)=tr(BA);2tr A tr AA≤).()(')7.5. 对角矩阵7.5.1.矩阵特征值特征向量的一些性质(不同特征值的特征向量线性无关;实对称矩阵的属于不同特征值的特征向量正交;属于不同特征值的特征向量的和不是特征向量)7.5.2.列举出矩阵可对角化的一些充要条件和一些充分条件.充要条件:(1)有n个线性无关的特征向量;(2)所有特征值的重数与其几何重数相等(特征值λ的几何重数指的是λ-=的基础解系所含解向量的个数);E A X()0(3)最小多项式没有重根;(4)初等因子都是1次因式.7.5.3.若矩阵可对角化,如何对角化?7.6. 线性变换的值域与核7.6.1.线性变换的值域和核的定义. 值域和核是子空间,它们中的元素有什么特征?7.6.2.值域如何用生成子空间来表示?值域的维数(线性变换的秩)与线性变换的矩阵的秩的关系如何?,值域的维数与核的维数(线性变换的零度)的和为多少?并会证明这两种关系.7.7. 不变子空间7.7.1.不变子空间的定义.线性变换在不变子空间上的限制成为该子空间上的一个线性变换,该限制与原变换之间的区别是什么?举出一些特殊的不变子空间.7.7.2.会用定义证明一个子空间是一个线性变换的不变子空间.7.7.3.不变子空间在矩阵A 相似于一个准对角矩阵方面的应用.7.8. 若尔当标准形介绍若尔当块、若尔当矩阵的定义,任何方阵都唯一存在若尔当标准形,即相似于一个若尔当矩阵.7.9. 最小多项式最小多项式的定义,性质,求法,与不变因子的关系,应用.第八章 λ-矩阵8.1.矩阵A 的特征矩阵及其初等变换,数字矩阵相似的条件,A 的不变因子、行列式因子、初等因子、最小多项式的求法及其关系,以及若尔当标准形的求法.8.2.A 的有理标准形的求法.8.3.利用若尔当块、若尔当矩阵的性质以及A 相似于一个若尔当矩阵证明某些命题.第九章 欧几里得空间9.1. 定义及基本性质9.1.1. 内积的定义及其简单性质,欧式空间的定义,向量的正交的定义,会求向量的内积、长度、夹角.9.1.2.柯西-布涅科夫斯基不等式、三角不等式,勾股定理(会推导).9.1.3.内积的矩阵表示(会推导)9.1.4.基在某内积下的度量矩阵的定义及其性质(正定),不同基在同一内积下的度量矩阵之间的关系(合同)(会推导).9.2. 标准正交基9.2.1.标准正交基的定义,如何判定一组基是标准正交基?标准正交基的度量矩阵,内积在标准正交基下的矩阵表示.9.2.2.正交向量组扩充为正交基(或单位正交向量组扩充为标准正交基)的应用(书上有哪些结论的证明和习题的证明用到了该性质?)9.2.3.掌握施密特正交化过程及相应的向量表示,即:1212(,,,)(,,,)n n T ηηηεεε=L L其中12,,,n εεεL 是任一组基,12,,,n ηηηL 是由12,,,n εεεL 经施密特正交化后得到的标准正交基,矩阵T 是一个对角线上元素都大于0的上三角形矩阵。

正交矩阵的分解(见P394 习题14).9.2.4.两组标准正交基之间的过渡矩阵的性质(即AA ’=E )(会推导).9.2.5.正交矩阵的定义,正交矩阵的性质(例如:两个正交矩阵的乘积还是正交阵,正交矩阵的逆、转置和伴随矩阵也还是正交矩阵,正交矩阵的行列式为正负1,正交矩阵的特征值为正负1).9.3. 同构欧式空间的同构的定义及等价条件(与线性空间同构比较).9.4. 正交变换9.4.1.正交变换的定义,正交变换的判定条件,正交变换与正交矩阵之间的对应关系.9.4.2.正交变换的分类,两类正交变换都有些什么性质(例如奇数维欧几里得空间的第一类正交变换,必以1为特征值,偶数维欧几里得空间的第二类正交变换,必以1-为特征值)?镜面反射的定义.9.5. 子空间9.5.1.向量与子空间的正交,子空间与子空间的正交.9.5.2.正交补的定义、表示(正交补中元素的特征)及性质.9.6. 实对称矩阵的标准形9.6.1.实(反)对称矩阵的性质(例如:实对称矩阵的特征值都是实数;实对称矩阵不同特征值所对应的特征向量必正交;实对称矩阵必可正交对角化;实反对称矩阵的特征值都是零或纯虚数).9.6.2. (反)对称变换的定义,(反)对称变换与(反)对称矩阵之间的对应关系.对称变换的性质.9.6.3.实对称矩阵的正交相似对角矩阵的求解过程以及运用11'(')A T T T T T AT T AT --=Λ=Λ==Λ或证明某些问题,其中T 是正交矩阵,Λ是对角矩阵,其对角线上元素为A 的特征值.9.6.4.实二次型经正交线性替换化为标准形.9.7. 向量到子空间的距离、最小二乘法9.7.1.向量到子空间各向量的距离以垂线为最短.9.7.2.最小二乘解的求法.9.8. 酉空间介绍酉空间里的相关概念和结论与欧式空间中相应的概念和结论的对比:内积,酉矩阵(正交矩阵),酉变换(正交变换),埃尔米特矩阵(实对称矩阵),对角化.第10章 双线性函数与辛空间10.1.线性函数的定义,定理1.10.2.对偶空间,对偶基及对偶基之间的过渡矩阵,V 与V**的同构映射.10.3.双线性函数的定义(内积的推广),双线性函数的度量矩阵,双线性函数的矩阵表示,不同基在同一个双线性函数下的度量矩阵之间的关系(合同).。

相关文档
最新文档