数列的极限数学归纳法

合集下载

北大附中高考数学专题复习数列、极限、数学归纳法(上)

北大附中高考数学专题复习数列、极限、数学归纳法(上)

学科:数学教学内容:数列、极限、数学归纳法(上)【考点梳理】一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式。

2.等比数列及其通项公式,等比数列前n项和公式。

3.数列的极限及其四则运算。

4.数学归纳法及其应用。

二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

三、考点简析1.数列及相关知识关系表2.作用地位(1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。

对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。

等比数列可看作自然数n的“指数函数”。

因此,学过数列后,一方面对函数概念加深了了解,拓宽了学生的知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。

(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。

另一方面,从数学方法来看,它是一种与以前学习的数学方法有所不同的全新方法,它有着现代数学思想,它把辩证唯物主义的思想引进了数学领域,因而,学习这部分知识不仅能接受一种新的数学思想方法,同时对培养学生唯物主义的世界观也起了一定的作用。

(3)数学归纳法是一种数学论证方法,学生学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想。

学好这部分知识,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有很好的效果。

高考数学极限知识点总结及解题思路方法

高考数学极限知识点总结及解题思路方法
n b n b
特别地,如果 C 是常数,那么
. lim (C
n
a
n
)
lim
n
C
lim a
n
n
Ca
⑷数列极限的应用:
求无穷数列的各项和,特别地,当 q 1时,无穷等比数列的各项和为 S a1 ( q 1) .
1 q
(化循环小数为分数方法同上式)
注:并不是每一个无穷数列都有极限.
3. 函数极限; ⑴当自变量 x 无限趋近于常数 x0(但不等于 x0 )时,如果函数 f (x) 无限
整数)
6. 几个常用极限:
① lim q n 0, q 1 n
② lim a n 0(a 0)
n n!
③ lim nk 0(a 1, k 为常数)
n a n
④ lim ln n 0
n n
⑤ lim (ln n)k 0( 0, k 为常数)
n n
高考数学极限知识点总结及解题思路方法
考试内容:
教学归纳法.数学归纳法应用.
数列的极限.
函数的极限.根限的四则运算.函数的连续性.
考试要求:
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学
命题.
(2)了解数列极限和函数极限的概念.
(3)掌握极限的四则运算法则;会求某些数列与函数的极限.
(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小
xx0
xx0
注:①各个函数的极限都应存在.
②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限
个情况.
⑶几个常用极限:
① lim 1 0
n x
② lim a x 0 (0< a <1); lim a x 0 ( a >1)

第11讲 数列的极限与数学归纳法 教案

第11讲 数列的极限与数学归纳法 教案

第十一讲 数列的极限与数学归纳法 教案【考点简介】1.数列极限与数学归纳法在自主招生中的考点主要有:数列极限的各种求解方法;无穷等比数列各项和;数列的应用题;常用级数;数学归纳法证明等式与不等式。

【知识拓展】1.特殊数列的极限(1)1lim 0(0,a n a a n→∞=>是常数) (2) lim 0(0)!n n a a n →∞=>(3)lim 0k n n n a →∞=(1a >,k 为常数) (4) 111lim 1,lim 1nnn n e n n e →∞→∞⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭公式(4)证明:令11nM n ⎛⎫=+ ⎪⎝⎭,取自然对数得到1ln ln 1M n n ⎛⎫=+ ⎪⎝⎭,令1x n =,得ln(1)ln x M x+=, 由洛比达法则得00ln(1)1lim lim()11x x x x x→→+==+,即0limln 1x M →=,所以,limln 1n M →∞=,则lim n M e →∞=,即1lim 1nn e n →∞⎛⎫+= ⎪⎝⎭。

另外,数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是单调递增的,理由如下:由11n n G A ++≤(1n +个正实数的几何平均数≤它们的算术平均数)有11111111111n n n n n n n ⎛⎫++ ⎪++⎝⎭=+⋅<==+⎪⎪+++⎭⎝⎭, 所以111111n n n n +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭。

2.洛比达法则 若lim ()0x f x →∞=(或∞),lim ()0x g x →∞=(或∞),则()'()limlim ()'()x x f x f x g x g x →∞→∞=。

3.夹逼定理如果数列{}n x 、{}n y 以及{}n z 满足下列条件:(1)从某项起,即当0n n >(其中0n N ∈),有n n n x y z ≤≤(123n =,,); (2)lim n n x a →∞=且lim n n z a →∞=;那么数列{}n y 的极限也存在,且lim n n y a →∞=。

数列与数列的极限与等比数列的求和问题解答的证明

数列与数列的极限与等比数列的求和问题解答的证明

数列与数列的极限与等比数列的求和问题解答的证明数学中,数列是由一串有限或无限的数按照一定顺序排列而成的。

数列的极限是指当数列中的数值无限逼近某个固定值时,该固定值即为数列的极限。

而等比数列是指数列中的每一项与其前一项之比都相等的数列。

在本文中,我们将详细探讨数列与数列的极限以及等比数列的求和问题,并给出相关问题的证明。

一、数列的极限1. 有界数列的极限对于一个有界数列,它的上界与下界各有一个固定值。

假设数列的上界为M,下界为m。

当数列中的每一项都无限逼近M或m时,该数列的极限即为M或m。

证明过程如下:- 首先,根据上界与下界的定义,数列中的所有项必定小于等于M 且大于等于m。

- 其次,由于数列是按照一定顺序排列的,可以推断出随着数列中项的增加,每一项都会无限逼近M或m。

- 最后,可以根据数列定义及数学归纳法证明,当数列中的每一项都无限逼近M或m时,该数列的极限即为M或m。

2. 无穷大数列的极限无穷大数列是指当数列中的每一项都趋向于正无穷或负无穷时。

证明过程如下:- 首先,根据数列的定义,无穷大数列中的每一项都无限逼近正无穷或负无穷。

- 其次,可以利用数学归纳法证明,当数列中的每一项都趋向于正无穷或负无穷时,该数列的极限即为正无穷或负无穷。

二、等比数列的求和问题等比数列的求和问题是指对于一个等比数列,求其前n项的和。

设等比数列的首项为a,公比为r,前n项的和为Sn。

根据等比数列的性质,可得到以下公式:1. 当r=1时,等比数列退化为等差数列,其前n项和的计算公式为Sn = na。

2. 当r≠1时,等比数列的前n项和的计算公式为Sn = a * (1 - r^n) / (1 - r)。

以上公式可以通过数学归纳法证明,具体证明过程略。

三、综合例题考虑一个等差数列的极限与等比数列的求和问题的综合例题:已知数列{an}的通项公式为an = 2^n + 3^n,求该数列的前n项和Sn。

首先,我们可以观察到该数列是由两个不同的幂函数相加而成的。

求数列极限的十五种解法

求数列极限的十五种解法

1

0
0 n1
n1
1 x
1 x (1 x)2
而 S(x) x f (x) x ;因此,原式= S(a1) a1 .
(1 x)2
(1 a1 )2
9.利用级数收敛性判断极限存在 由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此
数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.
求数列极限的十五种方法
求数列极限的十五种方法
1.定义法
N 定义:设{an} 为数列, a 为定数,若对任给的正数 ,总存在正数 N ,使得当 n N 时,

an
a
,则称数列
{an
பைடு நூலகம்
}
收敛于
a
;记作:
lim
n
an
a
,否则称{an} 为发散数列.
1
例 1.求证: lim an 1,其中 a 0 . n
列以外的数 a ,只需根据数列本身的特征就可鉴别其敛散性.
3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极限.
例 5.证明:数列 xn a a a ( n 个根式, a 0 , n 1, 2,
证:由假设知 xn a xn1 ;① 用数学归纳法可证: xn1 xn , k N ;② 此即证 {xn} 是单调递增的.
n0
n0
n
令 Sn
xk1 xk
xn1
x0
,∵
lim
n
Sn
存在,∴
lim
n
xn1
x0
lim
n
Sn
l
(存在);
k 0
对式子:

数列、数列的极限与数学归纳法

数列、数列的极限与数学归纳法

一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

关于数列的知识点总结归纳

关于数列的知识点总结归纳

关于数列的知识点总结归纳【关于数列的知识点总结归纳】一、数列的定义和基本概念数列是由一系列按照一定顺序排列的数所组成的序列。

其中,每个数字称为数列的项,项的位置称为项数。

二、数列的分类1.等差数列等差数列是指数列中各项之间的差值相等的数列。

其中,差值称为公差。

常用符号表示为an=a1+(n-1)d。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。

2.等比数列等比数列是指数列中各项之间的比值相等的数列。

其中,比值称为公比。

常用符号表示为an=a1*r^(n-1)。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。

3.斐波那契数列斐波那契数列是指数列中每一项都是前两项的和的数列。

其中,首项和次项为1,即F1=F2=1,第n项的值为Fn=Fn-1+Fn-2。

4.等差减数列等差减数列是指数列中各项之间的差值递减的数列。

例如,1,2,4,7,11就是一个等差减数列。

5.等差倍数数列等差倍数数列是指数列中各项之间的差值递增的数列,并且差值是递增的倍数关系。

例如,1,2,6,15,31就是一个等差倍数数列。

三、数列的性质和定理1.递推公式递推公式是指通过前面几个项计算后面项的公式。

根据不同数列的特点,可以得到相应的递推公式。

2.通项公式通项公式是指通过项数n直接计算出第n项的公式。

根据不同数列的特点,可以得到相应的通项公式。

3.前n项和公式前n项和公式是指数列前n项的和的公式。

通过该公式,可以快速计算数列前n项的和。

例如等差数列的前n项和公式为Sn=(a1+an)*n/2。

4.数列的求和法则根据数列的性质,可以得到各类数列的求和法则。

例如,等差数列的前n项和公式为Sn=(a1+an)*n/2,等比数列的前n项和公式为Sn=a1*(1-r^n)/(1-r)。

5.数列的性质和规律数列中的项之间存在着一定的性质和规律,比如等差数列的项与项之差相等,等比数列的项与项之比相等等。

高中数学备忘录数列、极限、数学归纳法

高中数学备忘录数列、极限、数学归纳法

高中数学备忘录——数列、极限、数学归纳法1. 等差数列中的重要性质:若( )m n k l m n k l N +=+∈,,,,则m n k l a a a a +=+;2. 等比数列中的重要性质:若( )m n k l m n k l N +=+∈,,,,则m n k l a a a a =;3. 以上两个性质可推广到若干个,但等式两端的项数必须相等,脚标之和必须相等;4. 等差(比)数列通项公式的变式()()n k n k n k a a n k d a a q -=+-=有时非常好用;5. 两个实数 a b 、的等差中项唯一2a b A +=;2a b A +=是 a A b ,,成等差数列的充要条件; 6. 两个正数 a b 、的等比中项有两个G =2G ab =是 a G b ,,成等比数列的必要非充分条件;7. 等差数列{}n a 的前n 项和111()()(1)(1)2222n k n k n n n a a n a a n n d n n d S a n a n -+++--===+=-; 8. 用等比数列求和公式求数列的和时,勿忘1q =;已知前n 项和n S ,求n a , 勿忘1n =; 9. 等比数列{}n a 的前n 项和111 1(1) 111n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩,,; 10. 1q ≠时,1(1)1n n a q S q -=-的优势:无需知道末项;11n n a a q S q-=-的优势:无需知道项数; 11. 等差数列{}n a 的前n 项和,次n 项和,再n 项和,…,第k 个n 项和成等差数列,公差为2n d ;12. 等比数列{}n a 的前n 项和,次n 项和,再n 项和,…,第k 个n 项和成等比数列,公比是n q ;13. 已知等差数列的前n 项和为n S ,则1()2n S d dn a n =+-,表明{}n S n 也是等差数列;即点( )()n S n n N n∈,共线(也就是当n 取不同值时,斜率相等); 14. 项数有限的等差数列奇数项的和S 奇,偶数项的和S 偶满足n S S S +=奇偶;当n 为偶数时,2nd S S -=-奇偶;当n 为奇数时,n S S S a n-==奇偶中; ↓·↓·↓·↓·↓15. 若数列{}n a 、{}n b 都是等差数列,则{}n n A a B b ⋅-⋅( A B 、为常数)也是等差数列;16. 若数列{}n a 、{}n b 都是等比数列,则{}A B n n a b ⋅( A B 、为常数)也是等比数列;17. 若数列{}n a 是等差数列,(0 1)n an b a a a =>≠,,则{}n b 是等比数列; 18. 若数列{}n a 是等比数列,log (0 1)n n a b a a a =>≠,,则{}n b 是等差数列; 19. 证明数列{}n a 为等差数列的方法:①根据定义:1n n a a d +-=( n N d ∈,为常数);②根据通项公式:1(1)n a a n d =+-;③根据性质:122n n n a a a ++=+;20. 证明数列{}n a 为等比数列的方法:①根据定义:1n n a qa +=( n N q ∈,为非零常数);②根据通项公式:11n n a a q -=; ③根据性质:212n n n a a a ++=;21. 设n S 是数列{}n a 的前n 项和, {}n a 为等差数列的充要条件是2n S an bn =+( a b ,为常数)其公差是2a ;{}n a 为等比数列的充要条件是n n S aq a =-( a q ,为非零常数)其公比是q ;22. 等差数列前n 项和的最大(小)值的求法:①二次函数配方法;②找出所有正(负)项;若m k S S =,则m k +为偶数时,2m k S +最大(或小),m k +为奇数时,12m k S ++和12m k S +-大(或小)23. “若n n n c a b =,其中{}n a 是等差数列,{}n b 是等比数列,求{}n c 的最大(小)项”,利用不等式1n n a a +≥(或1n n a a +≤)找到{}n c 的单调性;24. “若n n n c a b =,其中{}n a 是等差数列,{}n b 是等比数列,求{}n c 的前n 项”用“错位相减”法;25. “若1n n nc a b =,其中{}n a 、{}n b 都是等差数列,求{}n c 的前n 项的和”用“裂项求和”法;(如111(1)1n n n n =-++;!(1)!!n n n n ⋅=+-等); 26. “若n n n c Aa Bb =+( A B 、为常数),其中{}n a 、{}n b 的和分别已知或可求,求{}n c 的前n 项的和”用“分组求和”法;(如13223n n c n -=⋅-+等);27. 还有等差数列求和公式的推导方法“倒序相加法”求和;↓·↓·↓·↓·↓28. 数学归纳法证明与自然数有关的问题的步骤:以下斜体字在证题过程中照抄,“……”是证明过程 ①(验证)当0n n =时,……结论成立;②假设0( )n k k n n N =≥∈,时结论成立,即…… 则当1n k =+时,……即当1n k =+时,结论成立由①②可知,结论对任意0 n n n N ≥∈,成立。

数列极限的解法(15种)

数列极限的解法(15种)

数列极限的解法(15种)1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a .记作:lim n n a a →∞=.否则称{}n a 为发散数列.例1.求证1lim 1,nn a →∞=其中0a >.证:当1a =时,结论显然成立.当1a >时,记11na α=-,则0α>,由()1111(1)nna n n ααα=+≥+=+-得111na a n --≤,任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11n a ε-<即1lim 1,nn a →∞=当1111101,1,lim 1,lim 1lim n n n n nn a b b b a ab→∞→∞→∞<<=>=∴==时,令则由上易知综上,1lim 1,nn a →∞=0a >例2.求7lim!nn n →∞解:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅≤=-7777717177100,,0!6!6!!6!n n N n N n n n n εε⎡⎤∴-≤∴∀>∃=>-≤⎢⎥⎣⎦则当时,有<ε 7lim 0!nn n →∞∴= 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0,ε∀>∃正整数N ,使得当,n m N>时,有n m a a ε-<. 例3.证明:数列1sin (1,2,3,)2nn kk kx n ===⋅⋅⋅∑为收敛数列.证11111sin(1)sin 111112()122222212n mn m m n m n m m m n x x m-+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件 11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1,2,)n =⋅⋅⋅ 则称{}n x 为有界变差数列,试证:有界变差数列一定收敛 证:令1112210,n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-那么{}n y 单调递增,由已知知{}n y 有界,故{}n y 收敛,从而0,ε∀>∃正整数N ,使得当n m N >>时,有 n m y y ε-<此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-< 由柯西收敛准则,数列{}n x 收敛.注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a 只需根据数列本身的特征就可鉴别其敛散性.3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极[]1限.例5.证明数列n x a a a =++⋅⋅⋅n 个根式,a>0,n=1,2,⋅⋅⋅)极限存在,并求lim n n x →∞.证:由假设知1n n x a x -=+ ⋅⋅⋅(1) 用数学归纳法易证:1,n n x x k N +>∈ ⋅⋅⋅ ()2 此即证{}n x 单调递增.意选取的点集{}i ξ,[]1,i i i x x ξ-∈只要T<δ,就有()1nii i f x J ξε=-<∑,则称函数()f x 在[],a b 上(黎曼)可积,数J 为()f x 在[],a b 上的定积分,记作()ba J f x dx =⎰.例7.()()11lim !2!n nn n n n --→∞⎡⎤⋅⋅⎣⎦解:原式=()()()()2!122!nn nnn n n n n n n n n ++⋅⋅⋅==11121lim 111exp lim ln 1nnn n i n i n n n n n →∞→∞=⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=+ ⎪⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭∑=()()()10expln 1exp 2ln 21x dx +=-⎰例8.求2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭ 解:因为222sin sin sin sin sin sin sin sin sin 111112n n n n n n n n n n n nn n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++又2sinsinsin 12limlim sin sin sin 11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤⎛⎫=⋅⋅++⋅⋅⋅+ ⎪⎢⎥++⎝⎭⎣⎦=02sinsinsin12lim sin 1n n n n n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰同理2sin sin sin 2lim 1n n n n n n n ππππ→∞++⋅⋅⋅+=+由迫敛性得2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭=2π. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义.部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论。

数列知识点归纳总结笔记

数列知识点归纳总结笔记

数列知识点归纳总结笔记一、数列的概念1. 数列的定义数列是由一系列有序的数按照一定的规律排列而成的。

我们通常用{n}来表示一个数列,其中n为自然数。

2. 数列的常见表示方式(1)通项公式表示:数列的一般形式为a₁,a₂,a₃,......,aₙ,其中aₙ是第n项的值。

数列的通项公式通常是一种算式,可以用来表示数列的第n项。

(2)递推关系表示:数列的第n项与它的前几项之间存在某种关系,这种关系称为数列的递推关系,通常用递归的方式表示。

3. 数列的分类(1)等差数列:数列中任意两项之间的差是常数,这种数列称为等差数列。

(2)等比数列:数列中任意两项之间的比是常数,这种数列称为等比数列。

(3)等差-等比混合数列:数列中既存在等差关系,又存在等比关系,这种数列称为等差-等比混合数列。

(4)等差-等比-等比差混合数列:数列中既存在等差关系,又存在等比关系,同时等差项间的差也构成等差数列,这种数列称为等差-等比-等比差混合数列。

二、数列的性质1. 数列的有界性(1)有界数列:如果一个数列存在一个上界和一个下界,那么该数列称为有界数列。

(2)无界数列:如果一个数列不存在上界或下界,那么该数列称为无界数列。

2. 数列的单调性(1)单调递增数列:如果数列的每一项都大于等于前一项,那么该数列称为单调递增数列。

(2)单调递减数列:如果数列的每一项都小于等于前一项,那么该数列称为单调递减数列。

3. 数列的极限(1)数列的极限定义:对于一个数列{aₙ},如果对于任意给定的ε>0,存在N∈N,对于所有n>N,有|aₙ-L|<ε成立,则称数列{aₙ}的极限为L,记为lim⁡(n→∞) aₙ=L。

(2)数列的极限存在性:一个数列未必存在极限,但只要该数列有上界和下界,则该数列一定存在极限。

4. 数列的和(1)数列的部分和:对于数列{aₙ},它的前n项的和称为数列的部分和,用Sₙ表示。

(2)数列的无穷和:如果lim⁡(n→∞) Sₙ=L,那么L称为数列{aₙ}的无穷和,即∑ aₙ=L。

高考复习指导讲义第四章数列极限数学归纳法

高考复习指导讲义第四章数列极限数学归纳法

⾼考复习指导讲义第四章数列极限数学归纳法⾼考复习指导讲义第四章数列、极限、数学归纳法⼀、考纲要求 1.掌握:①掌握等差数列、等⽐数列的概念、通项公式、前n 项和公式;②能够运⽤这些知识解决⼀些实际问题;③掌握极限的四则运算法则. 2.理解:①数列的有关概念;②能根据递推公式算出数列的前⼏项;③会求公⽐的绝对值⼩1的⽆穷等⽐数列前n 项的极限. 3.了解:①了解递推公式是给出数列的⼀种⽅法;②了解数列极限的意义;③了解数学归纳法的原理,并能⽤数学归纳法证明⼀些简单问题. ⼆、知识结构(⼀)数列的⼀般概念数列可以看作以⾃然数集(或它的⼦集)为其定义域的函数,因此可⽤函数的观点认识数列,⽤研究函数的⽅法来研究数列。

数列表⽰法有:列表法、图像法、解析法、递推法等。

列表法:就是把数列写成a 1,a 2,a ……a n ……或简写成{a n },其中a n 表⽰数列第n 项的数值,n 就是它的项数,即a n 是n 的函数。

解析法:如果数列的第n 项能⽤项数n 的函数式表⽰为a n =f(n)这种表⽰法就是解析法,这个解析式叫做数列的通项公式。

图像法:在直⾓坐标系中,数列可以⽤⼀群分散的孤⽴的点来表⽰,其中每⼀个点(n,a n )的横坐标n 表⽰项数,纵坐标a n 表⽰该项的值。

⽤图像法可以直观的把数列a n 与n 的函数关系表⽰出来。

递推法:数列可以⽤两个条件结合起来的⽅法来表⽰:①给出数列的⼀项或⼏项。

②给出数列中后⾯的项⽤前⾯的项表⽰的公式,这是数列的⼜⼀种解析法表⽰称为递推法。

例如:数列2,4,5,529,145941…递推法表⽰为 a 1=2 其中a n+1=a n +na 4⼜称该数列 a n+1=an+na 4(n ∈N) 的递推公式。

由数列项数的有限和⽆限来分数列是有穷数列和⽆穷数列。

由数列项与项之间的⼤⼩关系来分数列是递增数列、递减数列、摆动数列以及常数列。

由数列各项绝对值的取值范围来分数列是有界数列和⽆界数列、通项公式是研究数列的⼀个关键,归纳通项公式是求数列通项公式的最基本⽅法,给出数列的前n 项,求这个数列的通项公式并不是唯⼀的,也并⾮所有的数列都能写出通项公式。

(十二)数列、极限、数学归纳法2008.11.26

(十二)数列、极限、数学归纳法2008.11.26

(3)两个重要极限①∞→n lim c n 1=⎪⎩⎪⎨⎧不存在10 000<=>c c c ②∞→n lim r n =⎪⎩⎪⎨⎧不存在10 11||11||-=>=<r r r r 或 1.特殊数列的极限 (1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 . (3)()111lim11nn a q a S q q→∞-==--(S 无穷等比数列}{11n a q- (||1q <)的和).2. 函数的极限定理0lim ()x x f x a →=⇔00lim ()lim ()x x x x f x f x a -+→→==.3.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.4.几个常用极限 (1)1lim0n n→∞=,lim 0nn a →∞=(||1a <);(2)00lim x x x x →=,011limx x xx →=.5.两个重要的极限 (1)0sin lim1x x x→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…).6.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦;(2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦;(3)()()()0lim0x x f x a b g x b→=≠.7.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b→∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).高考题回顾一.数列的极限1. 计算:112323lim-+∞→+-n nnn n =_________。

数列、极限与数学归纳法(2003年以前)

数列、极限与数学归纳法(2003年以前)

数列、极限与数学归纳法考试内容:数列。

等差数列及其通项公式、前n 项和的公式。

等比数列及其通项公式、前n 项和的公式。

数列的极限及其四则运算。

数学归纳法及其应用。

考试要求:(1)理解数列的有关概念。

了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)掌握等差数列与等比数列的概念、通项公式、前n 项和的公式,并能够运用这些知识解决一些问题。

(3)了解数列极限的意义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n 项和的极限。

(4)了解数学归纳法的原理,并能用数学归纳法证明一些简单问题。

一、选择题1. 给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.它们的和是( )(86年(5)3分) (A)1789 (B)1799 (C)1879 (D)18992. 设命题甲:△ABC 的一个内角为60o ,命题乙:△ABC 的三个内角的度数成等差数列.那么( )(88年(11)3分)(A)甲是乙的充分不必要条件 (B)甲是乙的必要不充分条件 (C)甲是乙的充要条件 (D)甲不是乙的充分条件也不是乙的必要条件 3. 已知{a n }是等比数列,如果a 1+a 2+a 3=18,a 2+a 3+a 4=-9,S n =a 1+a 2+……+a n ,那么n n S ∞→lim 的值等于( )(89年(5)3分)(A)8 (B)16 (C)32 (D)484. 已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=( )(91年(7)3分)(A)5 (B)10 (C)15 (D)205. )]211()511)(411)(311([lim +----∞→n n n 的值等于( )(91年(12)3分) (A)0 (B)1 (C)2 (D)36. 在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+……+log 3a 10=( )(93年(7)3分) (A)12 (B)10 (C)8 (D)2+log 357. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌由一个可繁殖成( )(94年(5)4分) (A)511个 (B)512个 (C)1023个 (D)1024个8. 等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若nn n n n b a lim 则,13n 2n T S ∞→+==( )(95年(12)5分) (A)1(B)36 (C)32 (D)94 9. 等比数列a n 的首项a 1=-1,前n 项和为S n ,已知n n 510S lim 则,3331S S ∞→=等于( )(96年(10)4分)(A)32 (B)-32 (C)2 (D)-210. 等差数列{a n }的前m 项和是30,前2m 项和是100,则它的前3m 项和是( )(96年(12)5分) (A)130 (B)170 (C)210 (D)260 11. 在等比数列{a n }中,a 1>1,且前n 项和S n 满足nn n a 1S lim =∞→,那么a 1的取值范围是( )(98年(15)5分) (A)(1,+∞)(B)(1,4)(C)(1,2)(D)(1,2)二、填空题1. 11)2(3)2(3lim+-∞→-+-+n nn n n =____________.(86年(14)4分)2. )1n 2n1n 31n 21n 1(lim 2222n ++++++++∞→ =____________.(87年(12)4分)3. 已知等比数列{a n }的公比q >1,a 1=b(b ≠0),则n876n321n a a a a a a a a lim ++++++++∞→ =_______.(88年(24)4分)4. 已知{a n }是公差不为0的等差数列,如果S n 是{a n }的前n 项和,那么nnn S na lim ∞→等于_______.(90年(18)3分)5. 已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值是_________.(92年(23)3分)6. 已知等差数列{a n }的公差d >0,首项a 1>0,S n n n1i 1i i n S lim 则,a a 1∞→=+∑==______.(93年(24)3分) 三、解答题1. 设a 1)n(n 3221n +++⋅+⋅= (n =1,2,3……),Ⅰ.证明不等式21)(n <<a 21)n(n 2n ++对所有的正整数n 都成立; Ⅱ.设b 1)n(n a n n += (n =1,2,3……),用极限定义证明21lim =∞→n n b .(85年(16)10分)2. 已知x 1>0,x 1≠1,且x 1)(3x 3)(x x 2n2n n 1n ++=+ (n =1,2,3……).试证:数列{x n }或者对任意的自然数n都满足x n <x n +1,或者对任意的自然数n 都满足x n +1<x n .(86年(22)12分) 3. 设数列a 1,a 2,……a n ,……的前项和S n 与a n 的关系是S n =-ba n +1-nb)(11+,其中b 是与n无关的常数,且b ≠-1, Ⅰ.求a n 和a n +1的关系式;Ⅱ.写出用n 和b 表示a n 的表达式;Ⅲ.当0<b <1时,求极限lim n →∞S n .(87年(20)12分)4. 是否存在常数a,b,c,使得等式1·22+2·32+……+n(n +1)2=12)1(+n n (an 2+bn +c)对一切自然数n 成立?并证明你的结论.(89年(23)10分)5. 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.(90年(21)10分) 6. 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0,Ⅰ.求公差d 的取值范围;Ⅱ.指出S 1,S 2,……S 12中哪一个值最大,并说明理由.(92年(27)10分)7. 设{a n }是正数组成的数列,其前n 项的和为S n ,并且对所有的自然数n,a n 与2的等差中项等于S n 与2的等比中项,Ⅰ.写出数列{a n }的前3项;Ⅱ.求数列{a n }的通项公式(写出推导过程);Ⅲ.令b )a a a a (21n1n 1n nn +++=,(n ∈N),求lim n →∞(b 1+b 2+……+b n -n).(94年(25)14分)8. 设{a n }是由正数组成的等比数列,S n 是其前n 项和,Ⅰ.证明:21(lgS n +lgS n +2)<lgS n +1;Ⅱ.是否存在常数c >0,使得21[lg(S n -c)+lg(S n +2-c)]<lg(S n +1-c)成立?并证明你的结论.(95年(25)12分)9. 已知数列{a n },{b n }都是由正数组成的等比数列,公比分别为p,q,其中p >q,且p ≠1,q ≠1.设c n =a n +b n ,S n 为数列{c n }的前项和,求1n nn S S lim-∞→.(97年(21)11分)10. 已知数列{b n }是等差数列,b 1=1,b 1+b 2+……+b 10=145.①求数列{b n }的通项b n ;②设数列{a n }的通项a n =log a (1+nb 1)(其中a>0且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与3b log 1n a +的大小,并证明你的结论.(98年(25)12分) 11. 右图为一台冷轧机的示意图,冷轧机由若干对轧辊组成,带钢从一段输入,经过各队轧辊逐步减薄后输出(1)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过r 0,问冷轧机至少需要安装多少对轧辊?(一对轧辊减薄率=输入该对的带钢的厚度从该对输出的带钢厚度输入该对的带钢的厚度-)(2)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600mm,若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为L k ,为了便于检修,请计算L',L2,L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗)(99年是斜率为bn 的线段(其中正常数b≠1),设数列{xn}有f(xn)=n(n=1,2,…)定义(1)求x1,x2和xn的表达式;(2)求f(x)的表达式,并写出其定义域(3)证明y=f(x)的图象与y=x的图象没有横坐标大于1的交点(99年(23)14分)。

数学归纳法及数列的极限

数学归纳法及数列的极限

数学归纳法及数列的极限知识精要一、数学归纳法数学归纳法的一般步骤是:(1)当n 取第一个值0n 时,命题成立;(2)假设当k n =时,命题成立,证明当1+=k n 时命题也成立。

根据(1)和(2)可以断定,命题对任何*N n ∈都成立。

二、数列的极限1.定义:一般地,在n 无限增大的变化过程中,如果无穷数列}{n a 中的n a 无限趋近于一个常数A ,那么A 叫做数列}{n a 的极限,或叫做数列}{n a 收敛于A 。

记作A a n n =∞→lim ,读作“n 趋向于无穷大时,n a 的极限等于A ”。

2.常用数列的极限:(1)当1<q 时,0lim =∞→n n q ;(2)01lim =∞→n n (3)C C n =∞→lim ,(C 为常数) 3.四则运算法则:如果B b A a n n n n ==∞→∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞→∞→∞→lim lim )(lim (2)B A b a b a n n n n n n n ⋅=⋅=⋅∞→∞→∞→lim lim )(lim (3))0(,lim lim lim ≠==∞→∞→∞→B B A b a b a n n n n n n n 4.无穷等比数列的各项的和: 把1<q 的无穷等比数列的前n 项和n S 当∞→n 时的极限叫做无穷等比数列的各项的和,并用符号S 表示,即)01(,11)1(lim lim 11≠<-=--==∞→∞→q q qa q q a S S n n n n 且热身练习1.欲用数学归纳法证明“对于足够大的正整数n ,总有32n n >”则所取的第一个n 值,最小应是 。

答案:102.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( D ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立3.用数学归纳法证明:)12(5312)()3)(2)(1(-⋯⋅⋅⋅⋅=+⋯+++n n n n n n n , *N n ∈,从“k n =到1+=k n ”时,左边应增添的因式是( B )A.12+kB.1)22)(12(+++k k k C.112++k k D.122++k k4.计算前几项:16941,941,41,1-+-+--等各项的值,可以猜想:=-+⋯+-+-+21)1(16941n n解答:11=a ,2)12(2)21(32+-=+-=-=a ,2)13(3)321(63+=++==a 猜想:2)1()1()321()1()1(169411121+-=+⋯+++⋅-=-+⋯+-+-+++n n n n n n n 5.数列}{n a 中,2221,11000,10012n n n a n n n n⎧≤≤⎪⎪=⎨⎪≥⎪-⎩ ,则数列}{n a 的极限值( B ) A.等于0B.等于1C.等于0或1D.不存在6.计算:(1)32lim 43n n n →∞-+,(2)23(1)61lim n n n n →∞++,(3)1132lim 32n n n n n ++→∞-+。

数列、极限、数学归纳法·等比数列的概念

数列、极限、数学归纳法·等比数列的概念

数列、极限、数学归纳法·等比数列的概念·教案教学目标1.理解等比数列的定义,并能以方程思想作指导,理解和运用它的通项公式.2.逐步体会类比、归纳的的思想,进一步培养学生概括、抽象思维等能力.3.培养学生严密的思维习惯,促进个性品质的良好发展.教学重点和难点重点:等比数列概念的形成及通项公式的应用.难点:对概念的深刻理解.教学过程设计(一)引入新课师:前面我们已经研究了一类特殊的数列——等差数列,今天我们一起研究第二类新的数列——等比数列.(板书)三等比数列(二)讲解新课师:等比数列与等差数列在名字上非常类似,只有一字之差,一个是差,一个是比,你能否仿照等差数列,举例说明你对等比数列的理解.(要求学生能主动利用类比思想,通过具体例子说明对概念的理解)生:数列1,3,9,27,…师:你为什么认为它是等比数列呢?生:因为这个数列相邻两项的比都是相等的,所以是等比数列.(先引导学生用自己的语言描述等比数列的特征,但暂时不作评论,以防限制其他学生的思维)师:这是你对等比数列的理解,不过这个例子中的项是一项比一项大,能否再举一个一项比一项小的.师:你对等比数列的理解呢?生:数列中每一项与前一项的比都是同一个常数.师:他们对等比数列理解基本相同的,能否再换个样子,举一个例子.(若理解没有什么变化,就不必让学生再重复了)师:下面再举例子又增加点要求,既然要去研究它,说明它一定有实际应用价值,那么能否再举一个生活中的等比数列例子.生:如生物学中细胞分裂问题:1个细胞经过一次分裂变为2个细胞,这两个细胞再继续分裂成为4个细胞.这样分裂继续下去,细胞个数从1到2到4到8,把每次分裂后所得细胞个数排列好可形成一个数列1,2,4,8,16,…这个数列就是等比数列.师:这个例子举得很好,不仅能够发现生活中的数学问题,还能把数学知识应用在其它学科,其实等比数列的应用是非常广泛的,说明它确有很高的研究价值.说了这么多,也发现了等比数列的特征,能否试着给等比数列下个定义呢?生:如果一个数列的每一项与前一项的比都等于一个常数,那么这个数列就叫做等比数列.师:作为定义这种叙述还有一点不足,为保证这样比都作得出来,这每一项应从数列的第二项起,否则第一项没有前一项,也就做不出这个比,调整之后,再找一位同学准确描述一下等比数列.生:如果一个数列,从第二项起.每一项与前一项的比都等于一个常数,那么这个数列叫做等比数列.师:好,就把它作为等比数列的定义记录下来.(板书)1.定义如果一个数列,从第二项起,每一项与前一项的比都是同一个常数,那么这个数列叫做等比数列,这个常数叫做公比,记作q.(教师在叙述的同时,再强调为突出所做出的比都相等,应写为同一个常数更准确)师:记住这句话并不难,关键是如何理解它,并利用它解决问题,先回到刚才几个例子看它们是否是等比数列,如果是,公比是多少?(可让学生作短暂的讨论,再找学生回答)生:形如a,a,a,…这样的数列一定是等差数列(这一点可以由等差数列的定义加以证明).但它未必是等比数列.师:能具体解释一下吗?生:当a=0时,数列每一项均为零,都不能作比,因此不是等比数列,a≠0时,此数列是等比数列.师:这个回答非常准确,通过对这个问题的研究,对于我们进一步认识等比数列有什么帮助吗?从中得到什么启示吗?生:等比数列中的每一项都不能为零,因为在定义中,数列中每一项都要做分母,所以均不能为零.师:这一点实际上是隐含在定义的叙述之中的,从另一个角度上讲,数列各项均不为零是这个数列成等比数列的什么条件呢?生:是必要非充分条件.师:这是我们对等比数列进一步理解得到第一点共识.(板书)2.对定义的理解下面要进一步研究等比数列,必须先搞清怎么表示一个等比数列,要表示数列,需先确定这个数列,确定一个等比数列几个条件呢?生:两个条件.师:哪两个条件?生:可以是首项和公比(板书)例1 一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值.师:拿到这个题目,你打算怎样设计你的求解方案,或者说对这个题目有什么想法.生:想求出首项和公比.师:为什么要求出它们呢?生:有了首项和公比,就有了通项公式,就可以求出数列中任何一项.师:好,这就是计算中要抓基本量的思想.首项和公比就是等比数列的两个基本量.下面我们具体开始解,大家共同完成这个题目的求解.师:通过这个小题的计算,发现这类型题目主要是方程思想的应用.应用过程中主要是三个基本步骤:设、列、求,通过刚才的实践,你们觉得在这三步上应该注意什么呢?生:设未知数应注意设等比数列的基本量首项和公比.在解方程组时,通常会用到乘除消元的方法.师:总结得不错,在注意以上几点的同时,还应注意利用分析综合法寻求已知和所求之间的联系,以达到简化运算的目的.下面我们一起看例2.(四)小结师:这节课主要学习了一个重要概念等比数列和一个重要的公式等比数列的通项公式.(1)对于这个概念要注意与等差数列的类比中把握它们的区别与联系.(2)对于通项公式除了记住内容,了解推导之外,关键是能用方程观点去认识,并应用它解决有关问题.(五)布置作业课本习题(略)课堂教学设计说明等比数列是在等差数列之后介绍的,因此它的数学方法不能简单地重复等差数列.应当既(体现)出两者的联系,又有所变化且有所提高.因此在教学方法上突出了类比思想的使用,教师为学生创造好使用的条件,引导学生自己研究相关内容如定义、表示方法.通项公式及对公式的认识,通过学生的研究,探索,加上老师概括总结,既充分发挥学生的主体作用又体现教师的主导作用.等比数列的通项公式应用是等比数列这段知识的重点,也是本节课的重点,方程思想的应用是公式应用的核心和关键.所以必须了解方程思想应用的特点,首先必须用方程的观点去认识等比数列的基础知识;再从本质上把握公式其次在运用方程思想解题时,对于设元要抓好其中的关键量;最后在运用方程思想时需恰当应用整体代入,设而不求,如例1的计算应注意把a2=2的条件整体代入到所求的a8中,从而使a1设而不求.。

数列的极限数学归纳法

数列的极限数学归纳法

数列的极限、数学归纳法、知识要点 (一) 数列的极限列中找到一项 aN,使得当n>N 时,|an-A|< 恒成立,则称常数 A 为数列{a n }的极限,记作lim a n A .n2.运算法则:若lim a n 、lim b n 存在,则有lim(a n b n )lim a n lim ;lim( a n b n ) lim a n lim b nnnnnn na lim a nlim —— , (lim b n 0)nb n lim b n nn(a1)3.两种基本类型的极限<1> S= lima nn1(a 1)不存在(a诚a<2>设f (n)、g(n)分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为 a p 、0 (p q)b p 且 g( n) 0(n N),则 limng(n )(二)数学归纳法①验证命题对于第一个自然数 n n 0成立。

②假设命题对 n=k(k > n o )时成立,证明n=k+1时命题也成立 则由①②,对于一切n > n o的自然数,命题都成立。

、例题(数学的极限)1.定义:对于无穷数列{a n },若存在一个常数 A,无论预选指定多么小的正数 ,都能在数 4.无穷递缩等比数列的所有项和公式:S「q E )无穷数列{a n }的所有项和: a p- (p q) b q 不存在 (p q)S lim S n (当 lim S n 存在时)nn数学归纳法是证明与自然数 n 有关命题的一种常用方法,其证题步骤为:(4) lim( J-3Lnn 1 n 1(5) lim G. n 2 2n n)=;n例2 •将无限循环小数 0.12 ; 1.32 12 化为分数.『1例3•已知lim(an b) 1,求实数a, b 的值;nn 1例 4•数列{a n },{b n }满足 lim (2a n +b n )=1,lim (a n — 2tn)=1,试判断数列{a n },{b n }的极限是否nn存在,说明理由并求lim (a n b n )的值.n例5.设首项为a ,公差为d 的等差数列前-项的和为A,又首项为a,公比为r 的等比数列S例6.设首项为1,公比为q(q>0)的等比数列的前 -项之和为S n ,又设T n =— (n 1,2,L ),S- 1求 lim T n .n21 例7. {a n }的相邻两项a n ,a n+1是方程x —c -X +(—)n =0的两根,又a 1=2,求无穷等比C 1 ,c 2, (3)C n ,…的各项和.例8在半径为R 的圆内作内接正方形, 在这个正方形内作内切圆, 又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。

数列不定式极限

数列不定式极限

数列不定式极限
数列的不定式极限是指当数列中的项以某个变量无限逼近某个值时,该数列的极限。

具体而言,对于一个数列{a_n},当n 趋向于无穷大时,如果存在某个数L,使得对于任意给定的正实数ε,都存在正整数N,使得当n>N 时,有|a_n -L|<ε 成立,那么我们就说该数列的极限为L。

数列的不定式极限可以通过一些常见的方法来计算,以下是几种常见的方法:
1. 使用数学归纳法:对于递推定义的数列,可以使用数学归纳法来证明其极限存在,并找到其极限值。

2. 利用已知的极限:如果已知一些数列的极限,可以利用数列的性质(如四则运算、极限运算的性质)来求解更复杂的数列的极限。

3. 应用夹逼定理:如果能找到两个数列{b_n} 和{c_n},使得对于所有的n,都有b_n ≤ a_n ≤ c_n,并且这两个数列的极限相等,即lim(b_n) = lim(c_n),那么根据夹逼定理,数列{a_n} 的极限也等于这个共同的极限。

4. 使用递推关系:如果已知数列的递推关系,可以通过推导递推关系的极限来求解数列的极限。

需要注意的是,并不是所有的数列都有极限。

有些数列可能会发散,即没有有限的极限值。

这种情况下,我们无法求解数列的不定式极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的极限、数学归纳法一、知识要点 (一) 数列的极限1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作A a n n =∞→lim .2.运算法则:若lim n n a →∞、lim n n b →∞存在,则有lim()lim lim n n n n n n n a b a b →∞→∞→∞±=±;lim()lim lim n n n n n n n a b a b →∞→∞→∞⋅=⋅)0lim (lim lim lim ≠=∞→∞→∞→∞→n n n n nn nn n b b a b a 3.两种基本类型的极限:<1> S=⎪⎩⎪⎨⎧-=>=<=∞→)11()1(1)1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、p b 且)(0)(N n n g ∈≠,则⎪⎪⎩⎪⎪⎨⎧>=<=∞→)()()(0)()(lim q p q p b a q p n g n f qpn 不存在4.无穷递缩等比数列的所有项和公式:11a S q=- (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞= (当lim n n S →∞存在时)(二)数学归纳法数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。

②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。

二、例题(数学的极限)例1.(1)∞→n lim 112322+++n n n = ;(2)数列{a n }和{b n }都是公差不为0的等差数列,且n n n b a ∞→lim=3,则122lim nn na a a nb →∞+++=(3)∞→n lim nn a a +-+211(a>1)= ;(4)2221321lim()111n n n n n →∞-++++++= ;(5))2(lim 2n n n n -+∞→= ;(6)等比数列{a n }的公比为q =─1/3,则nnn a a a a a a 24221lim++++++∞→ = ;例2.将无限循环小数••21.0;1.32••21化为分数.例3.已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 例4.数列{a n },{b n }满足∞→n lim (2a n +b n )=1, ∞→n lim (a n ─2b n )=1,试判断数列{a n },{b n }的极限是否存在,说明理由并求∞→n lim (a n b n )的值.例5.设首项为a ,公差为d 的等差数列前n 项的和为A n ,又首项为a,公比为r 的等比数列前n 项和为G n ,其中a ≠0,|r|<1.令S n =G 1+G 2+…+G n ,若有lim()n n n A S n→∞-=a,求r 的值.例6.设首项为1,公比为q(q>0)的等比数列的前n 项之和为S n ,又设T n =1(1,2,)n n S n S +=,求n n T ∞→lim .例7.{a n }的相邻两项a n ,a n+1是方程x 2─c n x+n )31(=0的两根,又a 1=2,求无穷等比c 1,c 2,…c n , …的各项和.例8.在半径为R 的圆内作内接正方形,在这个正方形内作内切圆,又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。

例9.如图,B 1,B 2,…,B n ,…顺次为曲线y=1/x(x>0)上的点,A 1,A 2,…,A n …顺次为ox 轴上的点,且三角形OB 1A 1,三角形A 1B 2A 2,三角形A n─1B n A n 为等腰三角形(其中∠ B n 为直角),如果A n 的坐标为(x n ,0). (1)求出A n 的横坐标的表达式; (2)求||||lim 11n n n n n A A A A -+∞→.二.例题(数学归纳法)例1.用数学归纳法证明2n>n 2(n ∈N,n ≥5),则第一步应验证n= ; 例2.用数学归纳法证明)1,(,12131211>∈<-++++n N n n n ,第一步验证不等式 成立;例3.是否存在常数a,b,c,使得等式1·22+2·32+……+n(n +1)2=12)1(+n n (an 2+bn +c)对一切自然数n 成立?并证明你的结论.(89年) 例 4.已知数列{a n }=n131211++++ ,记S n =a 1+a 2+a 3+…+a n ,用数学归纳法证明S n =(n+1)a n -n. 例5.证明:n 2131211++++>22+n (n ∈N,n ≥2) 例6.证明:x n─na n─1x+(n─1)a n 能被(x─a)2整除(a ≠0).例7.在1与2之间插入n 个正数n a a a a ,,,,321 ,使这2+n 个数成等比数列;又在1与2之间插入n 个正数n b b b b ,,,,321 使这2+n 个数成等差数列.记n n n n b b b b B a a a a A ++++== 321321,.(Ⅰ)求数列{}n A 和{}n B 的通项;(Ⅱ)当7≥n 时,比较n A 与n B 的大小,并证明你的结论.例8.若数列{a n }满足对任意的n 有:S n =2)(1n a a n +,试问该数列是怎样的数列?并证明你的结论.例9.已知数列{}b n 是等差数列,b b b b 112101145=+++=,…。

(Ⅰ)求数列{}b n 的通项b n ;(Ⅱ)设数列{}n a 的通项a b n a n =+⎛⎝ ⎫⎭⎪log 11(其中a >0,且a ≠1),记S n 是数列{}a n 的前n 项和。

试比较S n 与131log a n b +的大小,并证明你的结论。

练习(数列的极限)1. 已知{a n }是等比数列,如果a 1+a 2+a 3=18,a 2+a 3+a 4=-9,S n =a 1+a 2+……+a n ,那么n n S ∞→lim 的值等于( )(89年)(A)8(B)16(C)32(D)482. )]211()511)(411)(311([lim +----∞→n n n 的值等于( )(91年) (A)0(B)1(C)2(D)33.在等比数列{a n }中,a 1>1,且前n 项和S n 满足nn n a 1S lim =∞→,那么a 1的取值范围是( )(98年) (A)(1,+∞)(B)(1,4)(C)(1,2) (D)(1,2)7.lim(n n nn →∞++++++236236236222 )等于 ( ) (A)0 (B) ∞ (C)32(D)5 8.122321222)2221(lim -∞→+++++++n nn n n n C C C 等于:(A )16 (B )8 (C )4(D )29. 已知各项均为正数的等比数列{a n }的首项a 1=1,公比为q ,前n 项和为S n ,nn n S S 1lim +∞→=1,则公比q 的取值范围是:(A ).q ≥1 (B ).0<q ≤1 (C ).0<q <1 (D ).q >110.⎪⎪⎭⎫⎝⎛++⋯++++∞→32323221lim n n n n n n n n 的值为 ( ) (A)0 (B)1 (C)2 (D)不存在 11.已知{a n }是公差不为0的等差数列,S n 是{a n }的前n 项和,那么nnn S na lim ∞→等于___.12.已知等差数列{a n }的公差d >0,首项a 1>0,S n n n1i 1i i n S lim 则,a a 1∞→=+∑==______.(93年) 13.如果n n a ∞→lim 存在,且9423lim=+-∞→nn n a a ,则n n a ∞→lim =________14.11)2(3)2(3lim+-∞→-+-+n n n n n =____________.(86年)15.)1n 2n1n 31n 21n 1(lim 2222n ++++++++∞→ =____________.(87年) 16.已知等比数列{an}的公比q >1,a 1=b(b ≠0),则n876n321n a a a a a a a a lim ++++++++∞→ =___.17.求nn nn n a a a a --∞→+-lim = (a >0);18.数列••81.0,••8100.0,••810000.0,…的前n 项和及各项和S= .19.∞→n lim nn n 21)1(21211212121122⋅-+-+-++++.= .20.已知数列a 1,a 2,……a n ,……的前项和S n 与a n 的关系是S n =-ba n +1-nb)(11+,其中b 是与n 无关的常数,且b ≠-1; Ⅰ.求a n 和a n +1的关系式; Ⅱ.写出用n 和b 表示a n 的表达式; Ⅲ.当0<b <1时,求极限lim n →∞S n .(87年)21.在边长为a 的正方形ABCD 中内依次作内接正方形A i B i C i D i (i=1,2,3,…),使内接 正方形与相邻前一个正方形的一边夹角为α,求所有正方形的面积之和.22.已知直线L :x─ny=0(n∈N),圆M :(x+1)2+(y+1)2=1,抛物线φ:y=(x─1)2,又L 与M交于点A 、B ,L 与φ交于点C 、D ,求22||||lim CD AB n ∞→.23.设a 1)n(n 3221n +++⋅+⋅= (n =1,2,3……),b 1)n(n a nn += (n =1,2,3……),用极限定义证明21lim =∞→n n b .(85年)练习(数学归纳法) 1.由归纳原理分别探求:(1)凸n 边形的内角和f(n)= ; (2)凸n 边形的对角线条数f(n)= ;(3)平面内n 个圆,其中每两个圆都相交于两点,且任意三个圆不相交于同一点,则该n 个圆分平面区域数f(n)= .2.平面上有n 条直线,且任何两条不平行,任何三条不过同一点,该n 条直线把平面分成f(n) 个区域,则f(n+1)=f(n)+ .3.当n 为正奇数时,求证x n +y n被x+y 整除,当第二步假设n=2k─1时命题为真,进而需验证n= ,命题为真。

相关文档
最新文档