4动量和角动量习题思考题
大学物理思考题答案第四章
第四章 动量守恒定律与能量守恒定律4-1 用锤压钉,很难把钉子压入木块,如果用锤击钉,钉子就很容易进入木块。
这是为什么?答:要将钉子压入木块中,受到木块的阻力是很大的,仅靠锤压钉子上面的重量远远不够,只有挥动锤子,使锤子在极短的时间内速度从很大突然变为零,在这过程中可获得较大的冲量,即:0F t mv =-又因为t 很短,所以可获得很大的冲力,这样才足以克服木块的阻力,将钉子打进木块中去。
4-2 一人躺在地上,身上压一块重石板,另一人用重锤猛击石板,但见石板碎裂,而下面的人毫无损伤。
何故?答:石板受击所受到的冲量很大,亦即)(v m d p d dt F ==很大。
但是,由于石板的质量m 很大,所以,石板的速度变化并不大。
又因为用重锤猛击石板时,冲击力F 很大,此力作用于石板,易击碎石板;但是,由于石板的面积很大,故作用于人体单位面积上的力并不大,所以下面的人毫无损伤。
4-3 两个质量相同的物体从同一高度自由下落,与水平地面相碰,一个反弹回去,另一个却贴在地上,问哪一个物体给地面的冲击较大?答:贴地:00)(0mv mv t F =--=∆反弹:)()(00v v m mv mv t F +=--=∆'F F >'∴,则反弹回去的物体对地面冲击大。
4-4 两个物体分别系在跨过一个定滑轮的轻绳两端。
若把两物体和绳视为一个系统,哪些力是外力?哪些力是内力?答:取系统21,m m 和绳,内力:2211,;,T T T T ''外力:g m g m 21,,绳与滑轮摩擦力f ,滑轮对绳支持力N 。
4-5 在系统的动量变化中内力起什么作用?有人说:因为内力不改变系统的动量,所以不论系统内各质点有无内力作用,只要外力相同,则各质点的运动情况就相同。
这话对吗?答:这话是错的。
由质点系动量定理21t ex t F dt p =⎰可知,在系统动量变化中,外力改变系统的动量,内力不改变系统的动量;但内力改变各质点的动量,所以各质点的运动情况就不相同。
大学物理第4章-动量和角动量
与地面碰撞的时间为t
由动量定理得:
F
,重tt12心F下dt移了ps2
。
p1
ห้องสมุดไป่ตู้
F Mv0
t2 t1
t
t
设人落地后作匀减速运动到静止,则:
讨论
v v0 at ,v2 v02 2as
F Mv02 2s
v02 2gh
t 2s v0 h
F Mg s
设人从 2m 处跳下,重心下移 1cm,则:
称质心:质点系的质量中心)的概念。 N个质点组成的系统∶
• • •• • m1, m2 ,, mi ,, mN
y
m1 m2
• • •• 位矢分别为 • • • •• • •
•C
m3
mi
x
• • r1 , r2 ,..., ri ,..., rN
mN
• 质点系的动量为∶
p m1v1 m2v2 ... mN vN
F1
m1
: F1
f1
dp1 dt
f1 f2 0
f1
f2
F2
m1
m2
m2
: F2
f2
dp2 dt
F1
F2
d(
p1
dt
p2
)
n 个质点组成的质点系:
即:
F
外
dp dt
n
Fi
i 1
d dt
n i 1
pi
— 质点系的动力学方程
即∶质点系所受合外力等于系统总动量的变化率。
说明
内力可以改变一个质点的动量,但对系统总动量 的改变无贡献。
四、质点系的动量定理: 1、微分形式: 由
F
动量与角动量习题解答
动量与角动量习题解答(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 动量与动量守恒定律习题一选择题1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( )A. 必为零;B. 必不为零,合力方向与行进方向相同;C. 必不为零,合力方向与行进方向相反;D. 必不为零,合力方向是任意的。
解:答案是C 。
简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )=md v +v d m =v d m 。
因d m <0,所以F 的方向与车行进速度v 的方向相反。
2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有:()A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大; A. 无法确定反冲量谁大谁小。
解:答案是B 。
简要提示:)(12v v -=m I3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为∆t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:()A .mg tm +∆vB .mgC .mg tm -∆vD .tm ∆v解:答案是D 。
简要提示:v m t F =∆⋅4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是:()选择题4图3A. 静止不动;B. 朝质量大的人行走的方向移动;C. 朝质量小的人行走的方向移动;D.无法确定。
解:答案是B 。
简要提示:取m 1的运动方向为正方向,由动量守恒:02211='+-v v v M m m ,得:M m m /)(21v v --='如果m 1> m 2,则v ′< 0。
5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为:() A. u B. u /2 C. u /4 D. 0解:答案是B 。
第四章动量和角动量
第四章 动量和角动量32 第四章 动量和角动量§4.1 动量守恒定律一、冲量和动量1.冲量定义:力的时间积累。
dt F I d =或⎰=21t t dt F I2.动量定义:vm P = 单位:kg.m/s 千克.米/秒二、动量定律1.质点动量定理内容:质点所受的合外力的冲量等于质点动量的改变量。
1212v m v m P P I -=-= 冲量的方向与动量改变量的方向相同。
在直角坐标系下的表示zz t t z z yy t t y y xx t t x x P P dt F I P P dt F I P P dt F I 121212212121-==-==-==⎰⎰⎰平均冲力:1221t t dtF F t t -=⎰1212t t P P --= 2.质点系动量定理第四章 动量和角动量 33系统所受合外力的冲量等于系统总动量的改变量。
P dt F t t ∆=⎰21合三、动量守恒定律条件:若系统所受的合外力0=合F,则:结论:=∑ii i v m 恒量 四、碰撞1、恢复系数 102012v v v v e --=2、碰撞的分类完全弹性碰撞 0=e 机械能不损失 完全非弹性碰撞 1=e 机械能损失 完全弹性碰撞 10<<e 机械能损失第四章 动量和角动量34 煤粉与传送带A 相互作用的Δt 时间内,落至传送带A 上的煤粉质量为:t q m m ∆=∆。
设煤粉所受传送带的平均冲力为f,建立如图例3-4图解所示的坐标系,由质点系动量定理得:00mv t f mv t f y x ∆-=∆-∆=∆)(149,220N fff v q f v q f yxm y m x =+=⇒==与水平方向的夹角为04.57==xyf f arctg α【讨论】 由于煤粉连续落在传送带上,考察t ∆时间内有m ∆(视为质点)的动量改变,按动量定理可求出平均冲力。
另外,求冲力时,应忽略煤粉给传送带正压力。
牛顿力学中的角动量守恒练习题及
牛顿力学中的角动量守恒练习题及解答牛顿力学中的角动量守恒练习题及解答在牛顿力学中,角动量守恒是一个重要的概念。
它指的是如果一个物体受到的合外力矩为零,则该物体的角动量将保持不变。
本文将介绍一些关于角动量守恒的练习题,并提供解答。
练习题一:一个半径为r的质点以速度v绕一个定点做匀速圆周运动。
求该质点的角动量。
解答一:根据角动量的定义:L = r × p其中,r为质点与定点的距离,p为质点的动量。
由于质点做匀速圆周运动,所以其速度和角动量的方向是沿着圆周平面的法向量。
而质点的动量则是质量和速度的乘积,即p = mv。
所以,角动量的大小为L = r × mv = mvr角动量的方向与速度方向垂直,并由右手法则确定。
对于这道题目,要求的只是角动量的大小,所以最终答案为L = mvr。
练习题二:一个竖直绕一个定点转动的细长杆长L,质量为m。
当杆的角速度为ω时,求杆的角动量。
解答二:根据角动量的定义:L = r × p其中,r为质点与定点的距离,p为质点的动量。
对于细长杆,可以将其看作是质点,且该质点的动量为质量乘以质点的速度,即p = mLω(ω为角速度)。
而关于杆的角速度,根据直线运动的关系可得:v = ωr(v为线速度,r为质点与定点的距离)。
将v代入p = mv中,得到:p = mLωr将以上结果代入角动量的定义中,可得到:L = r × p = r × (mLωr) = mL²ω所以杆的角动量大小为L = mL²ω。
练习题三:一个质量为m的质点,以速度v沿一条与水平方向夹角θ的斜面下滑,质点的轨迹是一条半径为R的圆弧,求质点的角动量。
解答三:首先需要计算质点的速度与轨迹的关系。
根据斜面的性质和牛顿力学的知识,可以得到:mgsinθ = mv²/R其中,g为重力加速度。
将以上结果代入角动量的定义中,可得到:L = r × p = mRsinθ × mv = m²R²sinθ所以质点的角动量大小为L = m²R²sinθ。
动量定理及动量守恒定律(思考题)
第三章 动量定理及动量守恒定律(思考题)3.1试表述质量的操作型定义。
解答,kgv v m m 00 ∆∆=式中kg 1m 0=(标准物体质量) 0v∆:为m 与m 0碰撞m 0的速度改变 v∆:为m 与m 0碰撞m 的速度改变这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。
这样定义的质量为操作型定义。
3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒)p p (p p ,p p p p 22112121 -'-=-'+='+' ,p p 21 ∆-=∆ t p t p 21∆∆-=∆∆ 取极限dt p d dtp d 21-= 动量瞬时变化率是两质点间的相互作用力。
,a m )v m (dt d dt p d F 111111 === ,a m )v m (dt d dt p d F 222222 === 21F F -=对于运动电荷之间的电磁作用力,一般来说第三定律不成立。
(参见P 63最后一自然段)3.3在磅秤上称物体重量,磅秤读数给出物体的“视重”或“表现重量”。
现在电梯中测视重,何时视重小于重量(称作失重)?何时视重大于重量(称作超重)?在电梯中,视重可能等于零吗?能否指出另一种情况使视重等于零?解答,①电梯加速下降视重小于重量;②电梯加速上升视重大于重量;③当电梯下降的加速度为重力加速度g时,视重为零;④飞行员在铅直平面内的圆形轨道飞行,飞机飞到最高点时,gRv,0mgRvmN,NmgRvm22==-=+=飞行员的视重为零3.4一物体静止于固定斜面上。
(1)可将物体所受重力分解为沿斜面的下滑力和作用于斜面的正压力。
(2)因物体静止,故下滑力mg sinα与静摩擦力Nμ相等。
α表示斜面倾角,N为作用于斜面的正压力,0μ为静摩擦系数。
以上两段话确切否?解答,不确切。
角动量——精选推荐
⾓动量⾓动量、刚体习题4-1 如本题图,⼀质量为m的质点⾃由降落,在某时刻具有速度v.此时它相对于A、B、C三参考点的距离分别为d1、d2、d3。
求:(1)质点对三个点的⾓动量;(2)作⽤在质点上的重⼒对三个点的⼒矩。
4-2 ⼀质量为m的粒⼦位于(x,y)处,速度为v=v x i+ v y j,并受到⼀个沿-x⽅向的⼒f.求它相对于坐标原点的⾓动量和作⽤在其上的⼒矩。
4-3 电⼦的质量为9.1×10-31kg,在半径为5.3×10-11m的圆周上绕氢核作匀速率运动。
已知电⼦的⾓动量为h/2π,(h为普朗克常量,等于6.63×10-34J?s),求其⾓速度。
4-4 如本题图,圆锥摆的中央⽀柱是⼀个中空的管⼦,系摆锤的线穿过它,我们可将它逐渐拉短。
设摆长为l1时摆锤的线速度为v1,将摆长拉到l2时,摆锤的速度v2为多少?圆锥的顶⾓有什么变化?4-5 如本题图,在⼀半径为R、质量为m的⽔平转台上有⼀质量是它⼀半的玩具汽车。
起初⼩汽车在转台边缘,转台以⾓速度ω绕中⼼轴旋转。
汽车相对转台沿径向向⾥开,当它⾛到R/2处时,转台的⾓速度变为多少,动能改变多少?能量从哪⾥来?4-6 在上题中若转台起初不动,玩具汽车沿边缘开动,当其相对于转台的速度达到v时,转台怎样转动?4-7 两质点的质量分别为m1、m2(m1> m2),拴在⼀根不可伸长的绳⼦的两端,以⾓速度ω在光滑⽔平桌⾯上旋转。
它们之中哪个对质⼼的⾓动量⼤?⾓动量之⽐为多少?4-8 在上题中,若起初按住m2不动,让m1绕着它以⾓速度ω旋转。
然后突然将m2放开,求以后此系统质⼼的运动,绕质⼼的⾓动量和绳中的张⼒。
设绳长为l。
4-9 两个滑冰运动员,体重都是60kg,他们以6.5m/s的速率垂直地冲向⼀根10m长细杆的两端,并同时抓住它,如本题图所⽰。
若将每个运动员看成⼀个质点,细扦的质量可以忽略不计。
(1)求他们抓住细杆前后相对于其中点的⾓动量;(2)他们每⼈都⽤⼒往⾃⼰⼀边收细杆,当他们之间距离为5.0m时,各⾃的速率是多少?(3)求此时细杆中的张⼒;(4)计算每个运动员在减少他们之间举例的过程中所作的功,并证明这功恰好等于他们动能的变化。
大学物理尹国盛杨毅习题思考题答案
daan第1章 质点运动学和牛顿运动定律参考习题答案1-1 已知质点的运动学方程为x = R cos ωt , y = R sin ωt , z = hωt /(2π),其中R 、ω、h为常量.求:(1)质点的运动方程的矢量形式; (2)任一时刻质点的速度和加速度.解:k j ir ˆ)2/(ˆsin ˆcos πωωωt h t R t R ++= k j i r υˆ2/(ˆcos ˆsin )πωωωωωh t R t R dt d ++-==)ˆsin ˆ(cos ˆsin ˆcos 222j i j iυa t t R t R t R dt d ωωωωωωω+-=--== 1-3半径为R 的轮子沿y = 0的直线作无滑滚动时,轮边缘质点的轨迹为)sin (θθ-=R x )cos 1(θ-=R y求质点的速度;当d θ / d t = ω为常量时,求速度为0的点.解:)cos (dt d dt d R dt dx x θθθυ-==, dtd R dt dy y θθυsin == 即 ()d ˆˆ1c o s s i n d R tθθθ⎡⎤=-⎣⎦υi +j 当ωθ=dtd 为常数时,)cos 1(θωυ-==R dt dx x , θωυsin R dt dy y ==,速度为0 即 0)c o s 1(=-==θωυR dt dx x , 0sin ===θωυR dtdyy 故 ,2,1,0,2==k k πθ1-5一质点沿半径为R 的圆周按规律2012S t bt υ=-运动,其中0υ、b 都是常量.(1)求t 时刻质点的总加速度;(2)t 为何值时总加速度数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈? 解:⑴ 速率bt dt dS -==0υυ, 切向加速度的大小b dtd a -==υτ, 法向加速度的大小Rbt R a n 202)(-==υυ,加速度n n e a ea a ˆˆ+=ττ加速度的大小()240222Rbt b a a a n-+=+=υτ(2)a = bb t bυ==,,(3) a = b 时, bb b b bt t S 2200020212121υυυυυ=⎪⎭⎫ ⎝⎛-⋅=-=转动圈数 bRR Sn πυπ4220== 1-7 在图1-16所示的装置中,两物体的质量为m 1和m 2,物体之间及物体与桌面间的摩擦系数都是μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长.解:根据题意,由滑轮的关系可知绳内张力T = 2F ,设m 1受到m 2的摩擦力f 1,m 2受到地面的摩擦力为f 2,m 1受到的最大静摩擦力为μg m 1,受力如图所示。
第4章 动量与角动量
p mv1 mv2
I ( 3mvo )2 ( mvo )2 2mvo
与水平方向的夹角
tan
Iy Ix
1 3
30
o
例2、质量为2.5g的乒乓球以10 m/s 的速率飞来,被 板推挡后,又以 20 m/s 的速率飞出。设两速度在垂 直于板面的同一平面内,且它们与板面法线的夹角 分别为 45o 和30o, 求:乒乓球得到的冲量;
y
v2
30o
45o x
v1
解: (1)取球为研究对象,由于作用时间很短,忽略重力影响。设挡 板对球的冲力为 F 则有: I F dt mv 2 mv 1 取坐标系,将上式投影,有:
I x Fx dt mv 2 cos 30 ( mv 1 cos 45 ) 0.061(Ns)
注意: 1. 动量定理及动量守恒定律只适用于惯性系,各速度应是相 对同一惯性参考系。动量和力是矢量,可沿坐标轴分解用分 量计算。
2.若某个方向上合外力为零,则该方向上动量守恒,尽管总 动量可能并不守恒。 3.实际问题中,当外力<<内力且作用时间极短时(如碰撞)可 认为动量近似守恒。 4.动量守恒定律比牛顿定律更普遍、更基本 ,在宏观和微观 领域均适用。 5. 用守恒定律做题,应注意选择系统,分析过程和条件。
t 0.01s
Fx 6.1( N) Fy 0.7( N) F F F 6.14( N)
2 x 2 y
例3:一辆煤车以 v=3m/s的速率从煤 斗下面通过,每秒钟落入车厢的煤 为 Q=500 kg。如果车厢的速率保持不变,应用多大的牵引力拉车厢?
解:
设Δ t 时间内 落入车厢的煤 的质量Δm
动量与角动量经典例题
乘积, 即 F ma c , 其质心加速度:a c
m a
i
i
M
。 定理只给出质心运动情况,
并不涉及质点间的相对运动及它们绕质心的运动。 3.碰撞问题 ⑴弹性碰撞:碰撞时无机械能损失.
m110 m220 m11 m22 1 1 1 1 2 2 2 m110 m220 m112 m22 2 2 2 2 (m m2)10 2m220 由①②可得: 1 1 , m1 m2
人体重心上升的总高度: H h1 h2 令 tanφ=μ,则
02 (sin cos ) 2
2g
s0
对 0 、s0 一定时,当 即 arctan
2
时 H 最大.
1
时,人体的重心总升高最大.
类型二、动量守恒定律的问题最基本的特征就是和外力为零或某一方向上和 外力为零,当物体系内质点数量比较多时利用质心守恒是解决此类问题的重 要手段之一,解答过程,会比较简单。 例 2.如图 5—4 所示,在光滑的水平地面上静止放有一块质量 m3=2 kg,长 度 L=0. 6 m 的木板,板的左右两端分别放置质量 m1=2 kg,m2=4 kg 的两物 块, 并分别以初速度 1 =0.4 m/s, 2 =0.2 m/s 时相向运动.M1 , m2 和 m3 间 的滑动摩擦因数均为μ=0.22.试求: (1)m2 在木块上的最大位移; (2)m1 在木块上的最大位移; (3)m3 的最大位移. 分析和解:物体 1、2 可能会相碰,可能不会相碰,要予以讨论。讨论后利 用动量守恒(和质心守恒)解答本题,会比较简单。 (1)假设物块 1 、2 在木板上不会相碰,当 2 3 时,2 相对于 3 有最大位 移,则 2 a2t a3t 同
大学物理学习指导(第3章)
,'定轴转动时刚体的转动定律
^ 刚体紐定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转 动惯量成反比,这称为刚体的转动定律。 31
:
//?
叫
式 ^ 、 7、必须是对同一刚体、同一转轴而言。
8,角动量守恒定律
物体所受的合外力矩等于零,或者不受外力矩的作用,物体的角动量保持不 变。这个结论叫做角动量守恒定律。 I 二加^常矢量
一 转动惯量为/ ^ ^ ^ ^
、
12001^8 ^ 0 1 2 。 一 质 量 为 ^ : 801^8的人,开始时站在转台的中心, ^ 2111时,转台的角速度是多大?
^ 』:2
"; 2 ^ 。 第 页
山# 、理工大学备课紙
年
质量连续分布的刚体 】二 厂2(1^ ^ 厂2一3^
月
日
刚体的转动惯量是刚体作转动时惯性大小的量度。其大小决定于刚体转轴的 位置,刚体本身的形状,质量的大小及其质量分布情况。 6,刚体的角动量 刚体上各质点的角动量之和,即为刚体的角动量。一个刚体绕某一定轴转动, 其角动量为 :加
+ 爐 2 ―威2
由碎块和破盘组成的系统总角动量守恒。
】00 ―】产;十771^^^
^为破盘的角速度。
~ ^ 嫩 、 ^ (^]^!!^^
―
7 ^ ^ 十 卿 0 尺
^ = 0
^0
圆盘余下部分的角动量为
第
页
山系理工大学备课紙
年
I ^ (告魔2 一肌尺2》
月
日
一平面转台绕中心轴转动,每转一周所需时间为纟^ 108,转台对轴的
距轴为「处,取一小段^!厂,其质量01加: 9^^ ,这一小段(!"所受摩擦力矩 习题3-6图 整个杆所受摩擦力矩 1^1 ^2 「2 〃
清华出版社《大学物理》专项练习及解析 03动量与角动量
清华出版社专项练习动量与角动量一、选择题 1、(0063A15)质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) 2m v . (C) 3m v . (D) 2m v . [ ] 2、(0067B30)两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以0.5 m/s的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为(A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg , m B =4 kg (D) m A =4 kg, m B =3 kg [ ]3、(0367A10)质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ] 4、(0368A10) 质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ] 5、(0384A20)质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]6、(0385B25)一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.[ ] 7、(0386A20) A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为C(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]8、(0629C45)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断.(C)两根线一起断. (D)两根线都不断. [ ] 9、(0632A10)质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) v m . (B) 0.(C) v m 2. (D) v m 2-. [ ] 10、(0633A20)机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ] 11、(0659A15)一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 12、(0702B25)如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π. (D) 0.[ ]13、(0703A15)如图所示,砂子从h =0.8 m 高处下落到以3 m /s 向右运动的传送带上.取重力加速度g =10 m /s 2落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下.(B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ]14、(0706B30) 如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动.此时斜面上摩擦力对物块的冲量的方向(A) 是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下.(D) 沿斜面向上或向下均有可能. [ ]15、(5260A20)动能为E K 的A 物体与静止的B 物体碰撞,设A 物体的质量为B 物体的二倍,m A =2m B .若碰撞为完全非弹性的,则碰撞后两物体总动能为(A) E K (B)K E 32. (C) K E 21. (D) K E 31. [ ] 16、(0405A20)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]17、(0406B30) 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB .(C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . [ ]18、(0407C45) 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]19、(5636A15) 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]二、填空题:1、(0055A20) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2)2、(0056B40) 质量m =10 kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示.若已知木箱与地面间的摩擦系数μ=0.2,那么在t = 4 s 时,木箱的速度大小为______________;在t =7 s 时,木箱的速度大小为______________.(g 取10 m/s 23、(0060A10) 一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为________________________,方向为____________________.4、(0061A10) y 21y有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg ,第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F =50 N 的水平力来拉绳子,则 5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.5、(0062B30) 两块并排的木块A 和B ,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为_________________________________,木块B 的速度大小为______________________.6、(0066A20) 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为P A =P 0-bt ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则P B 1=______________________;(2) 开始时,若B 的动量为-P 0,则P B 2=_____________.7、(0068A15) 一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.8、(0184A15) 设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I =__________________.9、(0222A20) 一物体质量M =2 kg ,在合外力i t F )23(+= (SI)的作用下,从静止开始运动,式中i 为方向一定的单位矢量,则当t =1 s 时物体的速度1v =__________.10、(0371A20) 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-= (SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t =____________,(2)子弹在枪筒中所受力的冲量I =________________,(3)子弹的质量m =__________________.11、(0372A15) 水流流过一个固定的涡轮叶片,如图所示.水流流过叶片曲面前后的速率都等于v ,每单位时间流向叶片的水的质量保持不变且等于Q ,则水作用于叶片的力大小为______________,方向为_________.12、(0374B40) 图示一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中,(1) 小球动量增量的大小等于__________________.(2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________. 13、(0387B25) 质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上作弹性碰撞,碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°v的方向运动,则球A 的速率为____________,方向为______________________.14、(0393B25) 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i v += cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v 与x 轴的夹角α=__________.15、(0630A10) 一质量m =10 g 的子弹,以速率v 0=500 m/s 沿水平方向射穿一物体.穿出时,子弹的速率为v =30 m/s ,仍是水平方向.则子弹在穿透过程中所受的冲量的大小为________,方向为_________.16、(0631A15) 一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于________________;若物体的初速度大小为10 m/s ,方向与力F 的方向相同,则在2s 末物体速度的大小等于___________________.17、(0707B25) 假设作用在一质量为10 kg 的物体上的力,在4秒内均匀地从零增加到50 N ,使物体沿力的方向由静止开始作直线运动.则物体最后的速率v =_______________.18、(0708B35) 一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t +0.96(SI),则2秒末物体的速度大小v =______________.19、(0709A15) 质量为1500 kg 的一辆吉普车静止在一艘驳船上.驳船在缆绳拉力(方向不变)的作用下沿缆绳方向起动,在5秒内速率增加至5 m/s ,则该吉普车作用于驳船的水平方向的平均力大小为______________.20、(0710B30) 一吊车底板上放一质量为10 kg 的物体,若吊车底板加速上升,加速度大小为a =3+5t (SI),则2秒内吊车底板给物体的冲量大小I =___________;2秒内物体动量的增量大小P ∆=__________________.21、(0711A20) 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i 43+=0A v ,粒子B 的速度j i 72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v =______________.22、(0715B30)有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时对地的速率v =__________.23、(0717A10) 如图所示,质量为m 的子弹以水平速度0v 射入静止的木 块并陷入木块内,设子弹入射过程中木块M 不反弹,则墙壁 对木块的冲量=____________________.24、(0718A15) 一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20m·s -1的速率水平向北运动。
第四章动量和角动量答案
第四章 动量和角动量答案一.选择题 1.(C)2.(B)3.(C)4.(C)5.(C)6.(D)7.(C)8.(C)9.(A)10.(D)11.(A)12.(A)13.(B) 14. (B) 15.(B) 二.填空题:1.s N ⋅7.4; 与速度方向相反. 2.mM Mv V +=.3.s N ⋅18.4.)cos sin (j t b i t a m m Pωωωωυ+-==;零.5.s rad /36.6.不一定; 动量.7.s N ⋅140; s m /24.8.s 003.0; s N ⋅6.0; g 2. 9.s m /10; 北偏东087.36.10.c x 2311.0; k ab mω. 12.s cm /14.6; 05.35. 13.0. 14.Mk l 0;Mk nmM Ml +0. 15.RGMm 32; RG M m 3-.三. 计算题:1.解:由动量定理知质点所受外力的总冲量12)(v m v m v m I -=∆=由A→B1683.045cos -⋅⋅-=--=-=sm kg mvmv mvmv I AB AxBx x1283.045sin 0-⋅⋅-=-=-=sm kg mvmvI A Ayys N I I I y x ⋅=+=739.022方向:x y I I tg /1=θ,5.202=θ(与X轴正向夹角).2.解:(1)因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在铅直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v ',有: v M mv mv '+=0s m M v v m v /13.3/)(0=-=' N l Mv Mg T 5.26/2=+=(2)s N mv mv t f ⋅-=-=∆7.40(0v方向为正,负号表示冲量与0v方向相反). 3.解:完全弹性碰撞,动量守恒,机械能守恒碰前:对A:gl v A 21= 方向向右,对B:01=B v ;碰后:对A:gh v A 22= 方向向左,对B:2B v ,方向向右. 动量守恒:221A A B B A A v m v m v m -= (1) 机械能守恒:222221212121B B A A A A v m v m v m +=(2)联立(1)、(2)两式解得: 2/321A A v v =, 2/22A B v v =而 s m gh v A /66.222==s m v A /41= s m v B /33.12= m l 8.0=;B克服阻力作的功为动能的减少,由动能定理: )(42.42/22J v m W B B f ==..4.解:∑∑<<in exii F F ==∴∑=ni i m p 1i v恒矢量0N νe =++p p p即αθep Np νp 又因为 νe p p ⊥)(212ν2e N p p p +=∴︒==9.61arctanνe p p α122N sm kg 1036.1--⋅⋅⨯=p 代入数据计算得系统动量守恒 , 即0N νe =++p p p 122e s m kg 102.1--⋅⋅⨯=p 123sm kg 104.6--⋅⋅⨯=νp。
4动量和角动量习题思考题
习题44-1.解:(1)根据冲量定理:⎰⎰∆==tt P P d dt 0PP F其中动量的变化:0v v m m -在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零(2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。
重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量=2πmg /ω,方向为竖直向上。
4-2.解:J S v Fdt v Fvdt Fdx W x 6.1253131x 21=⨯====⎰⎰⎰椭圆(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。
4-3.解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j(2)从0=t到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。
4-4.(1)解:由碰撞过程动量守恒可得: 10Mv mv mv +=代入数据123002.060002.0v +⨯=⨯ 可得:s m v /7.51=根据圆周运动的规律:T-G=2vM R2184.6v T M g M NR =+= (2)根据冲量定理可得: s N mv mv I ∙-=⨯-=-=4.1157002.004-5.由碰撞时,动量守恒,分析示意图,可写成分量式:ααcos sin 21m m = ααsin cos 21m m P +=所以221.410/P kg m s -=⨯∙ 9.151=-=απθ(2)反冲的动能为:2180.17102kP E J m-==⨯ 4-6.解:(1)由3/1044005t F ⨯-=和子弹离开枪口处合力刚好为零,则可以得到:03/1044005=⨯-=t F 算出t=0.003s 。
(2)由冲量定义:0.0030.0030.0035520400410/3400210/30.6I Fdt t dt t t N s==-⨯=-⨯=∙⎰⎰()(3)由动量定理:0.0030.60.6/3000.002I Fdt P mv N s m kg==∆==∙==⎰所以:4-7.解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为x c 。
2-4动量与角动量(二)解答.ppt
1 m/s 1 N· m· s ,物体速度的大小v=______________ LB=____________ .
vB d O B
A
vA
物体受有心力作用,力对力心(圆心)的力矩为0, 所以角动量守恒
L L ; L L B A A B
r m v r m v A A B B
2.一力学系统由两个质点组成,他们之间只有万有引力 作用。若两质点所受外力的矢量和为零,则此系统
(A)动量、机械能及对一轴的角动量守恒
(B)动量、机械能守恒,但角动量是否守恒不能确定 (C)动量守恒,但机械能和角动量是否守恒不能确定 (D)动量和角动量守恒,但机械能是否守恒不能确定
角动量是否守恒决定于外力力矩的矢量和是否为0,机械能
p
mvd
o
5.两个滑冰运动员的质量各为70 kg,均以6.5 m/s的速率沿 相反的方向滑行,滑行路线间的垂直距离为10 m,当彼此
交错时,各抓住一10 m长的绳索的一端,然后相对旋转,
2275 kgm2· s-1 则抓住绳索之后各自对绳中心的角动量L=_______
它们各自收拢绳索,到绳长为5 m时,各自的速率
13 m· s-1。 v =________
1 2 角动量 L r P 角动量大小 L 5 70 6 . 5 22750 kgm s
由角动量守恒:半径减 小一半, 速率增大一倍 : v 13 m/ s
三、计算题
1.质量为1 kg的物体,它与水平桌面间的摩擦系数μ= 0.2 .现对物体施以F = 10t (SI)的力,(t表示时刻), 力的方向保持一定,如图所示.如t = 0时物体静止, 则t = 3 s时它的速度大小v 为多少?
动量和角动量例题和练习
u
60
0
Y
u
v人
X
v
v人x = ucos 600 + v v人y = usin600
解:如图以人和车为研究系 统则水平方向的合外力为零, 统则水平方向的合外力为零, 因此水平方向动量守恒, 因此水平方向动量守恒,设 人跳车后相以地面的 速度 为 v人 ,车相对地面的速度 为 v 则: v人 = u + v
θ
α
X
3mvt
3vt = vB sinα + vc sinθ − vc cosθ + vB cosα = 0 又 vt = v0 − gt
解上述方程得: 解上述方程得:
α =θ
3m t v 3m(v0 − gt ) v1 = = 2sinα 2sinα
例:哈雷慧星绕太阳运动的轨道是一个椭圆,它离太阳 哈雷慧星绕太阳运动的轨道是一个椭圆, 10 v1 = 5.46×104 m/ s 最近的距离为 r = 8.75 ×10 m , 时 1 它距离太阳最远时, 它距离太阳最远时, v2 = 9.08×102 m/ s ,这时 r2 = ?
u
600
u
v人
v
v人x = ucos 600 + v v人y = usin600 (m2 + m1 )v0 = m1v + m2v人x (m2 + m1 )v0 = m1v + m2 (v + ucos 600 ) m2ucos 600 v = v0 − = 2.5m/ s m1 + m2
以人为研究对象,Y方向上受到车作用力的冲量为I 以人为研究对象,Y方向上受到车作用力的冲量为Iy ,Y方向上受到车作用力的冲量为 则
大学物理学 第4章 动量和角动量 习题解答 [王玉国 康山林 赵宝群]
f 0 ,说明其方向竖直向上。
一斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距地面为19.6m ,
4-7
爆炸后1s ,第一块落到爆炸点正下方的地面,此处距抛出点的水平距离为1.0 10 2 m 。问 第二块落在距抛出点多远的地面上? 解 建立平面直角坐标系,抛出点为坐标原点,水平向前为 x 轴,竖直向上为 y 轴。爆 炸前,物体运动到最高点时,速度沿水平方向,其速率为
(或: t2 2 第二块落地时距抛出点的距离为
v2 y g
t1 4.0s )
x2 x1 v2 xt2 100 100 4 500m
一架以 3.0 102 m s 1 的速率水平飞行的飞机,与一只身长为 0.20m 、质量为
4-8
0.50kg 的飞鸟相碰。设碰撞后飞鸟的尸体与飞机具有相同速度,而原来飞鸟对于地面的速
y
v0 v2
v0
x
v1
题 4-2 解图
解 建立如图所示平面直角坐标系。由题知,从抛出到小球落地所经历的时间为
t 0.5 s 。设抛出时的速度为 v0 (水平方向) ,因小球为平抛运动,故小球落地的瞬时向下
的速度大小为 v1 y gt 0.5 g , 小球上跳速度的大小亦为 v2 y 0.5 g . 故小球落地前瞬时
①
A 船搬出重物后, 仍具有速度 v A 。 现将不计重物的 A 船与 B 船搬出而即将落入 A 船的 重物作为一个系统。因为在重物搬出或搬入时,作用于垂直于船的行进方向,所以对此系统 而言,在行进方向上的动量仍守恒,因此有
(mA m) v A mvB mA v A
式中,m 为重物的质量, v A 0 。由方程①、②可解得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求: (1)质点所受合外力的冲量I ; (2)质点所受张力T 的冲量T I 。
解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆, ∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。
已知其中一力与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求: (1)力F 在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。
解:(1)由于椭圆面积为S ab π=椭,∴140125.62A ab J ππ=== (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量; (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:P mv =,而drv dt==sin cos a t i b t j ωωωω-+,∴()(sin cos )P t m a t i b t j ωωω=-- ; (2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
今有一质量为m =20g 的子弹以0v =600m/s 的水平速度射穿物体。
刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。
求:(1)子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量。
解:(1)解:由碰撞过程动量守恒可得:01mv mv M v =+ ∴01 5.7mv mvv M-==/m s 根据圆周运动的规律:21v T Mg M l -=,有:2184.6v T Mg MN l=+=; (2)根据冲量定理可得:00.0257011.4I mv mv N s =-=-⨯=-⋅。
4-5.一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m/s kg 102.122⋅⨯-,中微子的动量为236.410kg m/s -⨯⋅,两动量方向彼此垂直。
(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。
解:由碰撞时,动量守恒,分析示意图,有:(1)2210P -==核 221.3610/kgm s -=⨯20又∵0.64tan 1.2P P α==中微子电子,∴028.1α= , 所以221.410/P kgm s -=⨯核 , 9.151=-=απθ ; (2)反冲的动能为:2180.17102k P E J m -==⨯核核。
4-6.中子的发现者查德威克于1932年通过快中子与氢核、氮核的对心弹性碰撞发现氢核的反冲速度为73.310/m s ⨯,氮核的反冲速度为64.710/m s ⨯,已知氢核的质量为1u ,氮核的质量为14u ,试推算中子的质量及其初速度。
解:设快中子的质量为M ,氢核的质量为H m ,氮核的质量为N m ,根据弹性碰撞的规律,可得:0H H N N Mv m v m v =+,2220111222H H N NMv m v m v =+, 代入已知量,可得:7770 3.310 6.58109.8810Mv u u u =⨯+⨯=⨯2141414010.8910 3.09261013.982610Mv u u u =⨯+⨯=⨯那么,1470713.982610 1.410/9.8810u v m s u ⨯==⨯⨯, 779.881071.410u M u ⨯==⨯。
4-7.一颗子弹在枪筒里前进时所受的合力大小为5440010()3F t N =-⨯,子弹从枪口射出时的速率为300/m s 。
设子弹离开枪口处合力刚好为零。
求:(1)子弹走完枪筒全长所用的时间t ; (2)子弹在枪筒中所受力的冲量I ; (3)子弹的质量。
解:(1)由于离开枪口处合力刚好为零,有:544001003t -⨯=,得:3310t s -=⨯; (2)由冲量定义:0tI F dt =⎰有:0.0035520.003004240010(40010)0.633I t dt t t N s =-⨯=-⨯=⋅⎰() (3)再由Im v=,有:30.6/300210m kg -==⨯。
4-8.有质量为m 2的弹丸,从地面斜抛出去,它的落地点为c x 。
如果它在飞行到最高点处爆炸成质量相等的两碎片。
其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。
问第二块碎片落在何处。
解:利用质心运动定理,在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为c x 。
112212c m x m x x m m +=+,而12m m m ==, 12c xx =,∴2223,42c c c mx mx x x x m +== 。
4-9.两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。
A 紧靠墙。
今用力推B 块,使弹簧压缩0x 然后释放。
(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;(2)弹簧的最大伸长量。
解:分析题意,首先在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,两者具有相同的速度v 时,弹簧伸长最大,由机械能守恒可算出其量值。
cc x(1)222200220121122m v kx m v m m v==+() 所以:v ==; (2)22122022212121v m m kx v m )(++= 那么计算可得:021x x =4-10.二质量相同的小球,一个静止,一个以速度0v 与另一个小球作对心碰撞,求碰撞后两球的速度。
(1)假设碰撞是完全非弹性的;(2)假设碰撞是完全弹性的;(3)假设碰撞的恢复系数5.0=e 。
解:(1)完全非弹性碰撞具有共同的速度:mv mv 20=,∴021v v =; (2)完全弹性碰撞动量守恒,能量守恒:012222012111222mv mv mv mv mv mv =+=+ ⇒ 1200v v v == 两球交换速度;(3)假设碰撞的恢复系数5.0=e ,按定义:211020v v e v v -=-,有:210.5v v v -=,再利用210mv mv mv +=, 可求得:0141v v = , 0243v v = 。
4-11.如图,光滑斜面与水平面的夹角为30=α,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为 1.0M kg =的木块,木块沿斜面从静止开始向下滑动.当木块向下滑30x cm =时,恰好有一质量0.01m kg =的子弹,沿水平方向以速度200/v m s =射中木块并陷在其中。
设弹簧的劲度系数为25/k N m =。
求子弹打入木块后它们的共同速度。
解:由机械能守恒条件可得到碰撞前木快的速度,碰撞过程中子弹和木快沿斜面方向动量守恒,可得:22111sin 22Mv kx Mgx α+= 10.83/v m s ⇒= (碰撞前木快的速度) 再由沿斜面方向动量守恒定律,可得: 1cos Mv mv m M v α'-=+() 0.89/v m s '⇒=-。
4-12. 水平路面上有一质量15m kg =的无动力小车以匀速率02/v m s =运动。
小车由不可伸长的轻绳与另一质量为225m kg =的车厢连接,车厢前端有一质量为320m kg =的物体,物体与车厢间摩擦系数为2.0=μ。
开始时车厢静止,绳未拉紧。
求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移;(2)从绳绷紧到三者达到共同速度所需时间。
(车与路面间摩擦不计,取g =10m /s 2) 解:(1)由三者碰撞,动量守恒,可得:v m m m v m '++=)(32101 0.2v '→=m s再将1m 与2m 看成一个系统,由动量守恒有:v m m v m )(2101+= → s m v m m m v 31255250211=+⨯=+=对3m ,由动能定理有:2231212311()22m gs m m v m m m v μ'=+-++()m g m v m m m v m m s 60121)(213321221='++-+=μ)((2)由t g m μv m 33=',有:s g μv t 1.0102.02.0=⨯='=4-13.一质量为M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为k 。
一质量为m 的子弹射入木块后,弹簧长度被压缩了L 。
(1)求子弹的速度;(2)若子弹射入木块的深度为s ,求子弹所受的平均阻力。
解:分析,碰撞过程中子弹和木块动量守恒,碰撞结束后机械能守恒条件。
(1)相碰后,压缩前:v M m mv '+=)(0,压缩了L 时,有:222121kL v M m ='+)(, 计算得到:)(M m k mLv +=0,0'mv v m M ==+(2)设子弹射入木快所受的阻力为f ,阻力做功使子弹动能减小,木块动能增加。
222201112222M k L f s mv mv Mv m ''=-=-∴22M k L f ms=4-14.质量为M 、长为l 的船浮在静止的水面上,船上有一质量为m 的人,开始时人与船也相对静止,然后人以相对于船的速度u 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。
设船在运动过程中受到的阻力与船相对水的速度成正比,即f k v =-。
求在整个过程中船的位移x ∆。
分析:将题中过程分三段讨论。
(1)设船相对于静水的速度为()v t ,而人以相对于船的速度为u ,则人相对于静水的速度为()u v t +,开始时人和船作为一个系统动量之和为零。
由于水对船有阻力,当人从船尾走到船头时,系统动量之和等于阻力对船的冲量,有:1I =()[()]M v t m u v t ++,此时,()v t 方向u 方向相反,船有与人行进方向相反的位移1x ;(2)当人走到船头突然停下来,人和船在停下来前后动量守恒,有:()[()]()'M v t m u v t M m v ++=+,'v 为人停下来时船和人具有的共同速度,'v 方向应于原u 方向相同;(3)人就站在船头上,经长时间后,人与船又都静止下来,表明最后人和船作为一个系统动量之和又为零,则这个过程水阻力对船的冲量耗散了系统的动量,有: 2()'I M m v =+,船有与人行进方向相同的位移2x 。