2020-2021上海民办上宝中学七年级数学上期末模拟试卷(含答案)
上海民办上宝中学七年级上册期末数学模拟试卷及答案
上海民办上宝中学七年级上册期末数学模拟试卷及答案一、选择题 1.已知max {}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max{}21,,2x x x =时,则x 的值为( ) A .14- B .116 C .14 D .122.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3b D .若23a b =,则2a =3b 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D . 4.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .46.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒7.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或58.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .9.下列式子中,是一元一次方程的是( )A .3x+1=4xB .x+2>1C .x 2-9=0D .2x -3y=010.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=二、填空题11.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.12.单项式22ab -的系数是________. 13.在数轴上,点A ,B 表示的数分别是8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.14.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.15.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.16.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 17.4是_____的算术平方根.18.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.19.用“>”或“<”填空:13_____35;223-_____﹣3. 20.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.三、解答题21.如图,AB 和CD 相交于点O ,∠A=∠B ,∠C=75°求∠D 的度数.22.计算:﹣6÷2+11()34-×12+(﹣3)2.23.先化简,再求值:()()223a 4ab 2a ab ---,其中a 2=-,1b 2=. 24.如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点O ,如果66COD ∠=︒,求AOE ∠的度数.25.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.26.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB=,BC= .(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位-的值是否随着时间t的变化而改变? 长度和7个单位长度的速度向右运动.试探索:BC AB请说明理由。
2020-2021学年上海市宝山区七年级(上)期末数学试卷(解析版).docx
2020-2021学年上海市宝山区七年级(上)期末数学试卷一、填空题(共15题,每题2分,满分30分) 1. 用代数式表示"X 的倒数与y 的相反数的和”. 2. 多项式3疽-x 2+2x -4的二次项系数是. 3. 计算:c^b+lc^b=.4. 已知单项式3『y3与单项式5X 2/1的和仍然是单项式,那么m+n=5. 如果关于x 的多项式x 2 - Sx+m 是一个完全平方式,那么.6. 计算:73s,77x=.7. 如果 2021fl =7, 2021fc =2.那么 20212a 3b=.2 Q8. 如果分式丑二当的值为零,那么x=.9. 将2a 2(a-b ) 写成只含有正整数指数帛的形式,其结果为. 10. 数据0.00203用科学记数法可表示为.v 之+乂 -1211. 化简: / ■=.13. 如图,一块等腰直角的三角板A3C,在水平桌面上绕点。
按顺时针方向旋转到A' B'C 的位置,使A 、C 、B'三点共线,那么旋转角度的大小为 度.14, 如图,zMBC 中,直线QE 是边的对称轴,交AC 于Q,交A3于E,如果BC=6, △BCD 的周长为17,那么AC 边的长是 .15. 已知a 2+a - 3=0,那么a 2(tz+4)的值是. 、选择题(共5题,每题2分,滴I 分10分) 16.计算:(- a ) 2p4的结果是(12. 计算:x+3 4 x~l x-1只C B 1A. a8B. - a6C. - a sD. a617.下列分式中,最简分式是()A.忑4abB. 93a2C.旦D.也10x 3x-3 2x+l18.如图,AABC经过平移后得到下列说法:©AB//DE;②AD=BE;③ZACB=ZDFE;④△ABC和的面积相等;⑤四边形ACFD和四边形BCFE的面积相等,其中正确的有()A. 4个B. 3个C. 2个D. 1个19.计算(%' i+y-i) : (x-i -y-i)的结果为()A. B.空 C.空 D. 口x-y x+y y-x y+x 20.已知【二=3,则代数式2x+3xy-2y的值是()x y x-xy-y三、简答题(本大题共6题,每题5分;满分30分)21.计算:(-4。
上海市上宝中学数学七年级上学期期末数学试题题
上海市上宝中学数学七年级上学期期末数学试题题一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90°2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 5.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .6.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .347.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+58.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+19.互不相等的三个有理数a,b,c在数轴上对应的点分别为A,B,C。
七年级上册上海市上宝中学数学期末试卷章末训练(Word版 含解析)
七年级上册上海市上宝中学数学期末试卷章末训练(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
七年级上册上海市上宝中学数学期末试卷章末训练(Word版 含解析)
七年级上册上海市上宝中学数学期末试卷章末训练(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
2020-2021上海市初一数学上期末模拟试题(附答案)
2020-2021上海市初一数学上期末模拟试题(附答案)一、选择题1.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个 B .两个 C .三个 D .四个 2.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .33.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( ) A .16号B .18号C .20号D .22号4.下面的说法正确的是( ) A .有理数的绝对值一定比0大 B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等 5.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭6.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C7.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个8.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣20189.根据图中的程序,当输出数值为6时,输入数值x 为( )A .-2B .2C .-2或2D .不存在10.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分11.4h =2小时24分. 答:停电的时间为2小时24分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.12.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙) A .75︒B .105︒C .120︒D .125︒二、填空题13.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.14.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.15.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____. 16.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 17.用科学记数法表示24万____________.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数1234…n正三角形个数471013…a n19.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.20.已知2a﹣b=﹣2,则6+(4b﹣8a)的值是_____.三、解答题21.在一条笔直的公路上,A、B两地相距300千米.甲乙两车分别从A、B两地同时出发,已知甲车速度为100千米/小时,乙车速度为60千米/小时.经过一段时间后,两车相距100千米,求两车的行驶时间?22.如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位:秒).(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t 的值;如果不存在,请说明理由.23.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:元2×6+4×(8-6)=20(1)若该户居民2月份用水12.5m3,则应收水费元;(2)若该户居民3、4月份共用水20m3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?24.化简求值:(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=1.25.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:进价(元/台)售价(元/台)甲种4555乙种6080(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C . 【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.A解析:A 【解析】 【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可. 【详解】把3x =代入方程834x ax -=-得: 8-9=3a-4 解得:a=1 故选:A . 【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.3.C解析:C 【解析】 【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解. 【详解】设那一天是x ,则左日期=x ﹣1,右日期=x+1,上日期=x ﹣7,下日期=x+7, 依题意得x ﹣1+x+1+x ﹣7+x+7=80 解得:x =20 故选:C . 【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.4.D解析:D 【解析】 【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案. 【详解】A .有理数的绝对值一定大于等于0,故此选项错误;B .正有理数的相反数一定比0小,故原说法错误;C .如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D .互为相反数的两个数的绝对值相等,正确. 故选:D . 【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.5.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.6.C解析:C 【解析】 【分析】根据相反数的定义进行解答即可. 【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C. 【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3, ∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0, ∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加, 可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误. ⑥-1+2=1,故正数加负数,其和一定等于0错误. 正确的有2个, 故选C .8.C解析:C【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.9.C解析:C【解析】【分析】根据流程图,输出的值为6时列出两个一元一次方程然后再进行代数式求值即可求解.【详解】解:当输出的值为6时,根据流程图,得1 2x+5=6或12x+5=6解得x=2或-2.故选:C.【点睛】本题考查了列一元一次方程求解和代数式求值问题,解决本题的关键是根据流程图列方程.10.C解析:C【分析】设停电x小时.等量关系为:1-粗蜡烛x小时的工作量=2×(1-细蜡烛x小时的工作量),把相关数值代入即可求解.【详解】解:设停电x小时.由题意得:1﹣14x=2×(1﹣13x),解得:x=2.4.11.无12.D解析:D【解析】【分析】【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角.故选D.【点睛】本题考查角的计算.二、填空题13.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】2-(-8),=2+8,=10(℃).故答案为10℃.【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.14.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元【解析】【分析】依据题意建立方程求解即可.【详解】解:设售货员应标在标签上的价格为x元,依据题意70%x=90×(1+5%)可求得:x=135,故价格应为135元.考点:一元一次方程的应用.15.70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份每一份是30°借助图形找出5时40分时针和分针之间相差的大格数用大格数乘30°即可【详解】钟表两个数字之间的夹角为:度5点40分时针解析:70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出5时40分时针和分针之间相差的大格数,用大格数乘30°即可.【详解】钟表两个数字之间的夹角为:36030 12=度5点40分,时针到6的夹角为:40 30301060-⨯=度分针到6的夹角为:23060⨯=度时针和分针的夹角:60+10=70度故答案为:70°.【点睛】本题考查了钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动112︒⎛⎫⎪⎝⎭,并且利用起点时间时针和分针的位置关系建立角的图形.16.【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到x的值【详解】解:根据题意得:移项合并得:解得故答案为:【点睛】此题考查了解一元一次方程和相反数的概念解题的关键在于根据相反数的概念列出方解析:117【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值. 【详解】解:根据题意得:45+360--=x x , 移项合并得:711x = ,解得117x =, 故答案为:117.【点睛】此题考查了解一元一次方程和相反数的概念,解题的关键在于根据相反数的概念列出方程.17.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数 解析:52.410⨯【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】24万5240000 2.410==⨯ 故答案为:52.410⨯ 【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.18.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:故剪n 次时共有4+3(n-1)=3n+1考点:规律型:图形的变化类解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.19.10【解析】∵轮船在顺水中的速度为28千米/小时在逆水中的速度为24千米/小时∴水流的速度为:(千米/时)∴水面上的漂浮物顺水漂流20千米所需的时间为:(小时)故答案为10点睛:本题解题的关键是要清解析:10【解析】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,∴水流的速度为:(2824)22-÷=(千米/时),∴水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时).故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,①顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;②水面上漂浮物顺水漂流的速度等于水流速度.20.【解析】【分析】根据去括号和添括号法则把原式变形整体代入计算得到答案【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6当2a﹣b=﹣2原式=﹣4×(﹣2)+6=14故答案为:14解析:【解析】【分析】根据去括号和添括号法则把原式变形,整体代入计算,得到答案.【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6,当2a﹣b=﹣2,原式=﹣4×(﹣2)+6=14,故答案为:14.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则和整体代入是解题的关键.三、解答题21.54小时或52小时或5小时或10小时.【解析】【分析】设当两车相距100千米时,两车行驶的时间为x小时,根据路程=速度×时间结合两车相距100千米即可得出关于x的一元一次方程,解之即可得出结论,注意分类讨论.【详解】解:设当两车相距100千米时,两车行驶的时间为x小时,根据题意得:若两车相向而行且甲车离A地更近,则(100+60)x=300-100,解得:x=54;若两车相向而行且甲车离B地更近,则(100+60)x=300+100,解得:x=52;若两车同向而行且甲车未追上乙车时,则(100-60)x=300-100,解得:x=5;若两车同向而行且甲车超过乙车时,则(100-60)x=300+100,解得:x=10;∴两车的行驶时间为54小时或52小时或5小时或10小时.【点睛】本题考查了一元一次方程的应用,根据数量关系路程=速度×时间,列出一元一次方程是解题的关键.22.(1)150°;(2)t的值为1265;(3)t的值为9、27或45.【解析】【分析】(1)将t=3代入求解即可.(2)根据题意列出方程求解即可.(3)分两种情况:①当0≤t≤18时,②当18≤t≤60时,分别列出方程求解即可.【详解】(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t+6t=180+72,解得:t1265 .答:当∠AOB第二次达到72°时,t的值为1265.(3)当0≤t≤18时,180﹣4t﹣6t=90,解得:t=9;当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,解得:t=27或t=45.答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.23.(1) 48;(2) 3月份用水8m3,4月份用水量为12m3【解析】【分析】(1)根据价目表列出式子,计算有理数运算即可得;(2)根据价目表,对3月份的用水量分情况讨论,再根据水费分别建立方程求解即可得.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元故答案为:48;(2)设3月份用水3xm ,则4月份用水()320x m - 依题意,分以下三种情况:①当3月份用水不超过36m 时则()226448201064x x +⨯+⨯+--= 解得:2263x =>(不符题意,舍去) ②当3月份用水超过36m ,但不超过310m 时则()()264626448201064x x ⨯+-+⨯+⨯+⨯--=解得:810x =<(符合题意)此时,32020812()x m -=-=③当3月份用水超过310m 时由4月份用水量超过3月份用水量可知,不合题意综上,3月份用水38m ,4月份用水量为312m .【点睛】本题考查了一元一次方程的实际应用,读懂题意,正确建立方程是解题关键.24.﹣3a 2+34a ﹣13,18.【解析】【分析】整式的混合运算,先去括号,然后合并同类项,最后代入求值.【详解】解:(5a 2+2a ﹣1)﹣4(3﹣8a +2a 2)=5a 2+2a ﹣1﹣12+32a ﹣8a 2=﹣3a 2+34a ﹣13,当a =1时,原式=﹣3×12+34×1﹣13=18.【点睛】本题考查整式的加减混合运算,掌握去括号法则,正确计算是解题关键.25.(1)计划购进甲、乙两种型号的台灯分别为400台和600台;(2)乙种型号台灯需打9折.【解析】【分析】(1)设超市计划购进甲种型号的台灯为x 台,则购进乙种型号的台灯为()1000x -台,根据总价=单价×数量列出一元一次方程即可;(2)设乙种型号台灯需打a 折,根据利润率为20%列出方程即可.【详解】(1)设超市计划购进甲种型号的台灯为x 台,则购进乙种型号的台灯为()1000x -台. 根据题意,列方程得()45x 601000x 54000+-=解得x 400=,所以,应购进乙种型号的台灯为1000400600-=(台).答:计划购进甲、乙两种型号的台灯分别为400台和600台.(2)设乙种型号台灯需打a 折.根据题意,列方程得0.180a 606020%⨯-=⨯解得a 9=.答:乙种型号台灯需打9折.【点睛】本题考查一元一次方程的应用,找出题中各量的等量关系列出方程是解题关键.。
沪教版(上海)七年级数学2020-2021学年第一学期期末复习检测卷(有答案)
七年级数学(上海)2020-2021学年第一学期期末复习检测卷一、单选题1.下列图案中不是轴对称图形的是( )A .B .C .D .2.下列分式约分正确的是( )A .a b ac c d +=+B .2331212x x x= C .233a b ab b+= D .22a b ab ab a b -=- 3.代数式224x kxy y ++是一个完全平方式,则k 的值是( )A .4B .4±C .2±D .24.用提公因式法分解因式正确的是( )A .2221293(43)abc a b c abc ab -=-B .()2233632x y xy y y x x y -+=-+C .2()a ab ac a a b c -+-=--+D .()2255x y xy y y x x +-=+ 5.广汽新能源汽车公司已经在长沙建成投产,随着市场对新能源汽车的需求越来越大,为了满足市场需求,该厂更新了生产线,加快了生产速度,现在平均每月比更新技术前多生产300台新能源汽车,现在生产5000台新能源汽车所需时间与更新生产线前生产4000台新能源汽车所需时间相同.设更新技术前每月生产x 台新能源汽车,依题意得( )A .40005000300x x =+B .40005000300x x =-C .40005000300x x =-D .40005000300x x=+ 6.在ABC 中,90ACB ︒∠=,1BC =,=3AC ,将ABC 以点C 为中心顺时针旋转90︒,得到DEC ,连接BE 、AD .下列说法错误的是( )A .6ABD S =B .3ADE S ∆=C .BE AD ⊥ D .135AED ︒∠=7.已知三个数,,a b c 满足15ab a b =+,16bc b c =+,17ca c a =+,则abc ab bc ca ++的值是( )A .19B .16C .215D .1208.在正数范围内定义一种运算“※”,其规则为11b b a a =+※,如13424421=+=※.根据这个规则,则方程()21x x -=※的解为( )A .1x =-B .1x =C .12x =-D .12x = 9.已知22213,3221m mn mn n +=+=,则22213644m mn n ++-的值为( )A .45B .5C .66D .1710.若()2140a -+=,则将22ax by -分解因式得( )A .()()44x y x y +-B .()()22x y x y +-C .()()88x y x y +-D .()()1616x y x y +-11.若a -b =2,a -c =1,则(2a -b -c )2+(c -b )2的值为( )A .10B .9C .2D .112.如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .2015πB .3019.5πC .3018πD .3024π二、填空题 13.若210a a +-=,则3222016a a ++的值是__________.14.若23(1)(2)12x A B x x x x +=-++++恒成立,则A-B=__________. 15.知P 1(a ﹣1,4)和P 2(2,b )关于x 轴对称,则(a+b )2021的值为_____.16.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.17.如图,AD 是△ABC 的中线,∠ADC =60°,BC =8,把△ADC 沿直线AD 折叠,点C 落在点C'处,连接BC',那么BC'的长为______.18.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(),a b ,则经过第2020次变换后所得的A 点坐标是________.三、解答题19.先化简,再求值:()222212632122ab a b ab a b ab ab ⎛⎫⎡⎤++----⎪⎣⎦⎝⎭,其中a 为最大的负整数,b 为最小的正整数. 20.已知22320x xy y +-=,求2222224239x y xy x xy y x y y x x y ⎛⎫++-+÷ ⎪---⎝⎭的值. 21.在66⨯的正方形网格中建立如图所示的平面直角坐标系,ABC 的顶点坐标分别为()A 13,,()B 3,2-,()C 1,1- ,△DEF 与△ABC 关于x 轴成轴对称(其中D ,E ,F 分别是A ,B ,C 的对应点).(1)请画出△DEF ,井写出F 点的坐标;(2)仅用无刻度的直尺完成画图,画图过程用虚线,画图结果用实线表示,请按步骤完成下列问题,不要求说明理由.①在格点上取点P ,连接FP ,使FP AB ⊥,并写出点P 的坐标;②设①中直线FP 交AB 于点M ,在AB 关于x 轴的对称线段DE 上找点N ,使M ,N 关于x 轴成轴对称.22.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式31(1)(1)x x x ++-表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x -1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下: 设31(1)(1)x x x ++-11A B x x =++- 则有31(1)(1)x x x ++-(1)(1)()(1)(1)(1)(1)(1)(1)A xB x A B x B A x x x x x x -+++-=+=+-+-+- 故此31A B B A +=⎧⎨-=⎩ 解得12A B =⎧⎨=⎩所以31(1)(1)x x x ++-=1211x x ++- 问题解决:(1)设1(1)1x A B x x x x -=+++,求A 、B . (2)直接写出方程111(1)(1)(2)2x x x x x x x --+=++++ 的解. 23.阅读理解题:拆项法是因式分解中一种技巧较强的方法,它通常是把多项式中的某一项拆成几项,再分组分解,因而有时需要多次实验才能成功,例如把3234x x -+分解因式,这是一个三项式,最高次项是三次项,一次项系数为零,本题既没有公因式可提取,又不能直接应用公式,因而考虑制造分组分解的条件,把常数项拆成1和3,原式就变成()()32133x x +--,再利用立方和与平方差先分解,解法如下:原式()()()()()32213311311x x x x x x x =+--=+-+-+- ()()()()22113312x x x x x x =+-+-+=+- 公式:()()3322a b a b a ab b +=+-+,()()3322a b a b a ab b -=-++根据上述论法和解法,(1)因式分解:322x x +-;(2)因式分解:376x x -+;(3)因式分解:421x x ++.24.如图,Rt ABC 中,90C ∠=,AC BC =,D 是AB 上一动点(与A 、B 不重合),将CD 绕C 点逆时针方向旋转90至CE ,连接BE .(1)求证:EBC A ∠=∠;(2)D 点在移动的过程中,四边形CDBE 是否能成为特殊四边形?若能,请指出D 点的位置并证明你的结论;若不能,请说明理由.25.如图,在直角三角形ABC 中,90C ∠=︒,7BC AC ==,现将ABC ∆沿CB 方向平移到A B C '''∆的位置,平移的距离为4.(1)求A B C '''∆与ABC ∆的重叠部分的面积;(2)若平移距离()07x x ≤≤,ABC ∆与A B C ∆''的重叠部分的面积为y ,则y 与x 有怎样的关系式?参考答案1.B2.D3.B4.C5.A6.D7.A8.D9.A10.A11.A12.D13.2017 14.2 15.1- 16.70 17.418.(a , b )19.222ab +,020.75- 21.F 点的坐标为()11--,;(2)①见详解,P 点的坐标为()23-,;②见详解; 22.(1)A=1,B=-2;(2)23x = 23.(1)()()2122x x x -++;(2)()()()132x x x -+-;(3)()()2211x x x x ++-+ 24.(2)D 点为AB 的中点时,四边形CDBE 能成为正方形25.(1)92 ;( 2)()272x y -=。
2020-2021上海市七年级数学上期末第一次模拟试题(含答案)
2020-2021上海市七年级数学上期末第一次模拟试题(含答案)一、选择题1.将7760000用科学记数法表示为()A.5⨯D.777.6107.7610⨯7.76107.7610⨯B.6⨯C.62.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A.一个B.两个C.三个D.四个3.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A.9⨯个B.91.2101.210⨯个⨯个D.11⨯个C.1012101.2104.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在()A.16号B.18号C.20号D.22号5.观察如图所示图形,则第n个图形中三角形的个数是( )A.2n+2B.4n+4C.4n D.4n-46.若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3D.5±7.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣20188.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm9.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形10.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2B.4C.6D.811.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×10712.一副三角板不能拼出的角的度数是()(拼接要求:既不重叠又不留空隙)A.75︒B.105︒C.120︒D.125︒二、填空题13.已知﹣5a2m b和3a4b3﹣n是同类项,则12m﹣n的值是_____.14.一个角的余角比这个角的12多30°,则这个角的补角度数是__________.15.-3的倒数是___________16.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.17.已知A,B,C三点在同一条直线上,AB=8,BC=6,M、N分别是AB、BC的中点,则线段MN的长是_______.18.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.19.点A、B、C在同一条数轴上,且点A表示的数为﹣18,点B表示的数为﹣2.若BC=14AB,则点C表示的数为_____.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)-1-0.500.51 1.5箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?22.在一条笔直的公路上,A、B两地相距300千米.甲乙两车分别从A、B两地同时出发,已知甲车速度为100千米/小时,乙车速度为60千米/小时.经过一段时间后,两车相距100千米,求两车的行驶时间?23.已知在数轴上A,B两点对应数分别为-3,20.(1)若P点为线段AB的中点,求P点对应的数.(2)若点A以每秒3个单位,点B以每秒2个单位的速度同时出发向右运动多长时间后A,B两点相距2个单位长度?(3)若点A,B同时分别以2个单位长度秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①经过t秒后A与M之间的距离AM(用含t的式子表示)②几秒后点M到点A、点B的距离相等?求此时M对应的数.24.解方程:(1)141 23x x-=+(2)3(21)2(21)143x x+--=25.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C解析:C 【解析】 【分析】(1)根据线段的性质即可求解; (2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°; (4)根据两点间的距离的定义即可求解. 【详解】(1)两点之间线段最短是正确的; (2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A 、B 两点间的距离是指A 、B 两点间的线段的长度,原来的说法是错误的. 故选C . 【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.3.C解析:C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.5.C解析:C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.6.A解析:A【解析】【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.7.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.8.C解析:C【解析】分两种情况:①如图所示,∵木条AB=20cm,CD=24cm,E、F分别是AB、BD的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=EB+CF=10+12=22cm.故两根木条中点间距离是22cm.②如图所示,∵木条AB=20cm,CD=24cm,E、F分别是AB、BD的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=CF-EB=12-10=2cm.故两根木条中点间距离是2cm.故选C.点睛:根据题意画出图形,由于将木条的一端重合,顺次放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条中点间距离.9.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
上海民办上宝中学七年级上册数学期末试卷(带答案)-百度文库
上海民办上宝中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b3.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =4.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-5.将图中的叶子平移后,可以得到的图案是()A .B .C .D .6.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+7.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 8.计算:2.5°=( ) A .15′ B .25′ C .150′ D .250′ 9.下列各数中,有理数是( )A 2B .πC .3.14D 3710.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a bc c< 11.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )212.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离13.下列计算正确的是( ) A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=114.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离15.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.20.单项式﹣22πa b的系数是_____,次数是_____.21.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.22.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.23.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).24.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克. 25.16的算术平方根是 .26.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.27.﹣225ab π是_____次单项式,系数是_____.28.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.29.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.30.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
七年级上册上海民办上宝中学数学期末试卷同步检测(Word版 含答案)
七年级上册上海民办上宝中学数学期末试卷同步检测(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.已知:O是直线AB上的一点,是直角,OE平分.(1)如图1.若.求的度数;(2)在图1中,,直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.【答案】(1)解:∵是直角,,,,∵OE平分,,.(2)解:是直角,,,,∵OE平分,,(3)解:,理由是:,OE平分,,,,,即【解析】【分析】(1)根据平角的定义得出∠BOD,∠COB的度数,根据角平分线的定义得出∠BOE=∠BOC=75°,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(2)根据平角的定义得出∠BOD90°−a ,∠COB180°−a ,根据角平分线的定义得出∠BOE=∠BOC=90°−a,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(3)∠AOC=2∠DOE ,根据平角的定义得出∠BOC=180°−∠AOC,根据角平分线的定义得出∠BOE=∠BOC=90°−∠AOC ,根据角的和差得出∠BOD=90°−∠BOC=90°−(180°−∠AOC)=∠AOC−90° ,∠DOE=∠BOD+∠BOE,再整体替换即可得出答案。
上海市上宝中学数学七年级上学期期末数学试题题
上海市上宝中学数学七年级上学期期末数学试题题一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2062.-2的倒数是( ) A .-2B .12- C .12D .23.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒4.将图中的叶子平移后,可以得到的图案是()A .B .C .D .5.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -6.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 7.计算:2.5°=( ) A .15′ B .25′ C .150′ D .250′ 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣19.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .110.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105 C .3.31×106 D .3.31×107 12.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,213.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60 C .300×0.2-x =60 D .300×0.8-x =60 14.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102515.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题16.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.17. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.18.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 19.分解因式: 22xyxy +=_ ___________20.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;21.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.22.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 23.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 24.化简:2x+1﹣(x+1)=_____.25.﹣225ab π是_____次单项式,系数是_____.26.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 28.钟表显示10点30分时,时针与分针的夹角为________.29.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 30.用度、分、秒表示24.29°=_____. 三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.33.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.34.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.35.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?36.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?38.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.B解析:B 【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒.故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.4.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.5.C解析:C 【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.6.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0,∴0<b2<1,∴ab2>a,∴a<ab2<ab.故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.8.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.9.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.10.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.11.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.13.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.14.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.15.B解析:B【解析】【分析】科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题16.【解析】【分析】先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论.【详解】解:∵AB =4,BC =2AB ,∴B解析:【解析】【分析】先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论.【详解】解:∵AB =4,BC =2AB ,∴BC =8.∴AC =AB +BC =12.∵D 是AC 的中点,∴AD =12AC =6. ∴BD =AD ﹣AB =6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 17.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.18.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.19.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.20.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大21.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】 解:ABC 90∠=,CBD 30∠=, ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.22.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.23.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.24.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.25.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 26.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.27.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键28.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.29.【解析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.30.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212. 当A 在原点的左侧时(如图),a=-212综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.33.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.34.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.35.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.36.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量。
2020-2021上海市初一数学上期末模拟试题含答案
2020-2021上海市初一数学上期末模拟试题含答案一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 2.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<0 3.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3 4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元5.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C 6.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20157.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣20188.根据图中的程序,当输出数值为6时,输入数值x 为( )A .-2B .2C .-2或2D .不存在9.下列比较两个有理数的大小正确的是( )A .﹣3>﹣1B .1143>C .510611-<-D .7697->- 10.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )A .2B .2或2.25C .2.5D .2或2.511.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+612.已知:式子x ﹣2的值为6,则式子3x ﹣6的值为( )A .9B .12C .18D .24二、填空题13.把58°18′化成度的形式,则58°18′=______度.14.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.15.已知一个长方形的周长为(86a b +)厘米(0,0a b >>),长为(32a b +)厘米,则它的宽为____________厘米.16.如图,若输入的值为3-,则输出的结果为____________.17.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 18.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.19.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 20.若()2320m n -++=,则m+2n 的值是______。
沪教版2020-2021学年度第一学期七年级数学期末模拟测试卷(附答案)
沪教版2020-2021学年度第一学期七年级数学期末模拟测试卷(附答案)一、单选题1.如图,边长为1的正方形ABCD 绕点A 逆时针旋转得到正方形111AB C D ,使边1AB 恰好落在对角线AC 上,边11B C 与CD 交于点O ,则四边形1AB OD 的面积是( )A .34B .716C .21-D .212- 2.华光服装厂今年完成利税2400万元,比去年增加20%,求去年完成利税多少万元,正确列式的是( )A .2400×(1-20%)B .2400÷(1-20%)C .2400×(1+20%)D .2400÷(1+20%) 3.下列各式正确的是( )A .(1)()1a b c a b c +--+=+++B .222()2a a b c a a b c --+=--+C .27(27)a b c a b c -+=--D .()()a b c d a d b c -+-=--+4.当x 5=时,()()22x x x 2x 1---+等于( )A .-14B .4C .-4D .1 5.下列各式成立的是( )A .235x y xy +=B .()a b c a b c -+=-+C .2233225a b ab a b +=D .2xy xy xy -+=-6.如图,阴影部分的面积是( )A .112xyB .92xyC .4xyD .2xy7.如图,将边长为3的正方形绕点B 逆时针旋转30,那么图中阴影部分的面积为()A .3B .3C .33-D .332- 8.如图,Rt △ABC 中,∠ACB =90°,∠B =30°,S △ABC =23,将△ABC 绕点C 逆时针旋转至△A ′B ′C ,使得点A '恰好落在AB 上,A 'B ′与BC 交于点D ,则S △A ′CD 为( )A .3+1B .334C .32D .231- 9.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 、E 均在边AB 上,且∠DCE=45°,若AD=1,BE=3,则DE 的长为( )A .3B .4C .D .10.下列计算正确的是( )A .2x+x=3x 2B .2x 2•3x 2=6x 4C .x 6÷x 2=x 3D .2x ﹣x=211.下列等式成立的是( ) A .123a b a b+=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a a a b a b =--++ 12.如图,边长为a 的大正方形剪去一个边长为b 的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为( )A .()222a b a b -=-B .()()22a b a b a b -=+-C .()2222a b a ab b -=-+D .()2222a b a ab b +=++二、填空题13.已知22m a =,4m b =,则2()m a b =__________.14.如图,在平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处,若△FDE 的周长为12,△FCB 的周长为28,则FC 的长为_____.15.要使分式有意义,的取值应满足 .16.某社区组织老年人参加太极拳比赛,由于比赛场地的原因,要把每边x 人的方队一边增加2人,另一边减少2人,实际参加比赛的人比原来____人17.若102·10m =102003,则m=________.18.小程做一道题“已知两个多项式 A 、B ,计算 A ﹣B”小程误将 A ﹣B 看 作 A+B ,求得结果是 9x²﹣2x+7.若 B=x²+3x ﹣2,则 A ﹣B= ________________. 19.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____.20.若3x m+5y 2与﹣2x 3y n 是同类项,则m n =_______.三、解答题21.若a 、b 满足|a+1|+(b-3)2=0,求5a 2+3b 2+2(a 2﹣b 2)﹣(5a 2﹣b 2)的值.22.如图,两个半圆分别以P 、Q 为圆心,它们的半径相等,A 1、P 、B 1、B 2、Q 、A 2在同一条直线上.这个图形中的两个半圆是否成中心对称?如果是,请找出对称中心O .23.33(2x)(7)xy ⋅-24.如图所示,在所给正方形网格图中完成下列各题:(保留画图痕迹)(1)画出格点ΔABC 关于直线DE 对称的111ΔA B C ;(2)在DE 上取一点Q ,使ΔQAB 的周长最小.25.计算:(1)﹣12020+(π﹣5)0﹣(12)﹣2﹣|﹣2|; (2)3(x 2)3•x 3﹣(x 3)3+(﹣2x )2•x 9÷x 2; (3)先化简,再求值[(2x ﹣y )(2x ﹣y )+(2x+y )(2x ﹣y )+4xy]÷2x ,其中x =﹣4,y =14.26.如图所示,有理数a 、b 、c 在数轴上的位置大致如图:(1)去绝对值符号:①a =______;②b a -=______;③ab ab =______;④c =______. (2)根据题意,化简a b b a b c a c ++-+---.27.已知a 、b 互为相反数,c 、d 互为倒数,求的值.28.化简 a 2-2[a 2-(2a 2-b)]29.如图,在平面直角坐标系中,已知点A (-3,4),B (-4,2),C (-2,0),且点P (a ,b )是三角形ABC 边上的任意一点,三角形ABC 经过平移后得到三角形A 1B 1C 1,点P (a ,b )的对应点P 1(a+6,b-3).(1)直接写出A 1的坐标 ;(2)在图中画出三角形A 1B 1C 1;(3)求出三角形ABC 的面积.30.(8分)如果A=2x 2+3kx ﹣2x ﹣1,B=﹣x 2+kx ﹣1,且3A+6B 的值与x 的取值无关,求1111111131223344556677889k +++++++-⨯⨯⨯⨯⨯⨯⨯⨯的值.参考答案1.C【分析】由正方形求出AC 的长,再求出B 1C=AC-AB 11,△OCB 1是等腰直角三角形,代入面积公式即可求出四边形1AB OD 的面积.【详解】∵四边形ABCD 是正方形,∴∠B=90︒,AB=BC=CD=AD=1,∠ACD=45︒,∴=,由旋转得AB 1=AB=1,∠AB 1C 1=90︒,则△OCB 1是等腰直角三角形,∴B 1C=AC-AB 11,11221111)122ACD OCB OD S SS =⨯-⨯=-=四边形AB . 故选:C.【点睛】 此题考查图形的旋转的性质,图形旋转前后的对应边、对应角相等,由此求得需要的边B 1C 的长度,△OCB 1是等腰直角三角形,利用面积相减法求出不规则四边形的面积.2.D【解析】由题意得,今年的完成利税=(1+20% )⨯去年的完成利税 ,则去年的完成利税=今年的完成利税÷ (1+20% ).故选D.3.C【解析】试题分析:A .(1)()1a b c a b c +--+=++-,故本选项错误;B .222()222a a b c a a b c --+=-+-,故本选项错误;C .27(27)a b c a b c -+=--,故本选项正确;D .()()a b c d a d b c -+-=---,故本选项错误.故选C .考点:去括号与添括号.4.B【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】(x 2-x )-(x 2-2x+1)=x 2-x-x 2+2x-1=x-1.当x=5时,原式=5-1=4.故选B .【点睛】本题考查了整式的加减—化简求值,熟练掌握运算法则是解本题的关键.5.D【分析】根据合并同类项和去括号的法则逐个计算,进行判断即可.【详解】解:A. 2,3x y 不是同类项,不能合并计算,故此选项不符合题意;B. ()a b c a b c -+=--,故此选项不符合题意;C. 222,2a b ab 不是同类项,不能合并计算,故此选项不符合题意;D. 2xy xy xy -+=-,正确故选:D .【点睛】本题考查合并同类项和去括号的计算,掌握同类项的概念和合并同类项及去括号的计算法则,正确计算是解题关键.6.A【分析】可以用割补法求其面积.扩充成大长方形,让大长方形的面积-小长方形的面积.【详解】3x •2y ﹣0.5x •y =112xy .故选A .【点睛】掌握分割法求一个图形的面积,注意代数式前边的分数不能写成带分数,必须写成假分数. 7.C【解析】【分析】连接BM ,根据旋转的性质和四边形的性质,证明△ABM ≌△C′BM ,得到∠2=∠3=30°,利用三角函数和三角形面积公式求出△ABM 的面积,再利用阴影部分面积=正方形面积−2△ABM 的面积即可得到答案.【详解】连接BM ,在△ABM 和△C′BM 中,BM BM AB C BBAM BC M ⎧⎪'⎨⎪∠∠'⎩=== ∴△ABM ≌△C′BM ,∠2=∠3=9042︒-∠=30°, 在△ABM 中,AMtan30°=1, S △ABM =12×AM×AB正方形的面积为:)2=3,阴影部分的面积为:故选:C .【点睛】本题考查旋转的性质和正方形的性质,利用旋转的性质和正方形的性质证明两三角形全等是解决本题的关键.8.C【分析】先求出2AC =,根据旋转的性质得2CA CA ='=,60CA B A ∠''=∠=︒,证明CAA ∆'为等边三角形,得60ACA ∠'=︒,则可计算出30BCA ∠'=︒,90A DC ∠'=°,然后在Rt △A DC'中利用含30度的直角三角形三边的关系得112A D CA '='=,CD D ='=利用三角形面积公式求解即可.【详解】解:过C 作CH AB ⊥于H ,90ACB ∠=︒,30B ∠=︒,60A ∴∠=︒,30ACH ∴∠=︒,12AC AB ∴=,CH AB ∴=,ABC S ∆= ∴1132322AB CH AB AB == 4AB ∴=,2AC ∴=,ABC ∆绕点C 逆时针旋转至△A B C '',使得点A '恰好落在AB 上,2CA CA ∴='=,60CA B A ∠''=∠=︒,CAA ∴∆'为等边三角形,60ACA ∴∠'=︒,30BCA ∴∠'=︒,90A DC ∴∠'=︒, 在Rt △A DC '中,30ACD∠'=︒, 112A D CA ∴'='=,CD D ='=∴△A CD '的面积112=⨯=. 故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等.也考查了含30度的直角三角形三边的关系.9.C【解析】【分析】以点C为旋转中心,将△ADC顺时针旋转90°,连结EF,如图,先根据等腰直角三角形的性质得∠A=∠ABC=45°,再根据旋转的性质得CD=CF,BF=AD=2,∠DCF=90°,∠CBF=∠A=45°,则可根据“SAS”判断△DCE≌△FCE,得到DE=FE,设ED=x,则BE=4-x,由(2)的证明得到EF=DE=x,BF=AD=1,然后在Rt△BEF中利用勾股定理得到12+(4-x)2=x2,再解方程即可.【详解】以点C为旋转中心,将△ADC顺时针旋转90°,连结EF,如图,∵∠ACB=90°,AC=BC,∴∠A=∠ABC=45°,∵△ADC顺时针旋转90°得到△BCF,∴CD=CF,BF=AD=1,∠DCF=90°,∠CBF=∠A=45°,∵∠DCE=45°,∴∠FCE=45°,在△DCE和△FCE中,∴△DCE≌△FCE,∴DE=FE,在△BEF中,∵∠EBC=45°,∠CBF=45°,∴∠EBF=90°,∴EF=,∴DE=.故选C.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.本题的关键是把AD、DE、BE利用旋转组成一个直角三角形.10.B【解析】试题分析:根据合并同类项,可判断A、D,根据单项式乘单项式,可判断B,根据同底数幂的除法底数不变指数相减,可判断C.解:A、不是同类项不能合并,故A错误;B、系数乘系数,同底数的乘同底数的,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、系数相加字母部分不变,故D错误;故选:B.点评:本题考查了单项式乘单项式,系数乘系数,同底数的幂乘同底数的幂.11.C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A、221bbaaba+=+,故A错误;B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键. 12.B【分析】边长为a 的大正方形剪去一个边长为b 的小正方形后的面积=a 2-b 2,新的图形面积等于(a+b )(a-b ),由于两图中阴影部分面积相等,即可得到结论.【详解】图中阴影部分的面积等于两个正方形的面积之差,即为a 2-b 2;通过割补拼成的平行四边形的面积为(a+b )(a-b ),∵前后两个图形中阴影部分的面积相等,∴a 2-b 2=(a+b )(a-b ).故选B .【点睛】考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后的面积不变得到等量关系.13.64【分析】根据积的乘方和幂的乘方进行化简,然后把224m a ==,4m b =代入计算即可.【详解】解:∵224m a ==,4m b =,∴2()ma b=2m m a b •=2()m m a b •=244⨯=164⨯=64.故答案为:64.【点睛】本题考查了积的乘方和幂的乘方,解题的关键是熟练掌握运算法则进行运算.14.8【分析】根据折叠的性质可得,EF =AE 、BF =BA ,从而平行四边形的周长可以转化为△FDE 的周长+△FCB 的周长,求出AB +BC ,再由△FCB 的周长28,即可求出FC 的长.【详解】由折叠的性质可得EF =AE 、BF =AB ,∴平行四边形ABCD 的周长=DF +FC +CB +BA +AE +DE=△FDE 的周长+△FCB 的周长=12+28=40,∵四边形ABCD 为平行四边形∴AB +BC =20,∵△FCB 的周长=CF +BC +BF =CF +BC +AB =28即FC +20=28∴FC =8.故答案为:8【点睛】本题主要考查翻折变换(折叠问题)和平行四边形的性质,掌握折叠前后图形的形状和大小不变,且对应边和对应角相等;平行四边形对边平行且相等是解题的关键.15.x≠2【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-2≠0,解得x≠2.故答案为:x≠2.考点:分式有意义的条件16.少4人【分析】列出原来的人数和实际的人数,用实际的人数减去原来的人数进行计算即可.【详解】解:依题意得:()()2-+-=x x2x24故实际参加比赛的人比原来少4人故答案为:少4人【点睛】本题考查了整式的运算,根据题意列出式子,以及准确计算整式乘法是解题的关键.17.2001【解析】因为102·10m=102+m,所以m+2=2003,则m=2001,故答案为2001.18.2-+.x x7811【解析】【分析】先根据A+B=9x2-2x+7且B=x2+3x-2求得A=8x2-5x+9,再代入A-B中去括号、合并同类项即可得.【详解】∵A=(9x2-2x+7)-(x2+3x-2),=9x2-2x+7-x2-3x+2,=8x2-5x+9,∴A-B=(8x2-5x+9)-(x2+3x-2),=8x2-5x+9-x2-3x+2,=7x2-8x+11,故答案为7x2-8x+11.【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.解题的关键是先去括号,然后合并同类项.19.20 27【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.20.4【分析】根据同类项的定义可求出m与n的值,然后代入即可求出结论.【详解】由题意可知:m+5=3,2=n,解得:m=-2,n=2,,∴m n=(-2)2=4.故答案为4.【点睛】本题考查了同类项的概念,属于基础题型.21.20【分析】先根据绝对值和完全平方的非负性得出,a b 的值,然后把式子先化简,最后代入,a b 的值求值即可.【详解】由题意可知:10,30a b +=-=∴1,3a b =-=原式222222222253222(1)2322205a b a b a b a b =++--+=+=⨯-+⨯=;【点睛】本题考查代数式的化简求值、绝对值和完全平方的非负性,根据绝对值和完全平方的非负性得出,a b 的值是关键. 22.【解析】 试题分析:由已知两个图形的位置,判断它们是否中心对称,可以把各对应点连线,看所有连线是否交于同一点.解:是中心对称图形,对称中心如图.点评:通过画图,寻找对称中心,判断是否中心对称,学生对中心对称就会有更进一步的了解.23.43-56x y【解析】试题分析:先计算乘方运算,再利用单项式乘以单项式的运算法则计算即可.试题解析:原式=()33438756x xy x y ⋅-=-. 24.(1)见解析,(2)见解析.【解析】【分析】(1)从三角形各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接;(2)利用轴对称图形的性质可作点A 关于直线DE 的对称点A 1,连接BA 1,交直线DE 于点Q ,点Q 即为所求.【详解】(1)如图,从三角形各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接;△A 1B 1C 1即为所求,(2)连接BA 1,交DE 于Q ,由(1)得A 1为A 直线关于DE 的对称点,∴AQ=A 1Q ,∴AB+BQ+AQ=AB+BQ+A 1Q ,∴点Q 即为所求.【点睛】此题主要考查了根据轴对称作图,要使△QAB 的周长最小,可使AQ+BQ 的值最小,用到的知识点为:两点之间,线段最短.找到图形的对应点是解题关键.25.(1)6-;(2)96x ;(3)4x ;16-【分析】(1)本题利用乘方的意义,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出结果.(2)本题利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算,合并即可得到结果.(3)本题中括号中利用平方差公式,完全平方公式计算,合并后除以2x 化简,再代入计算即可求解.【详解】(1)原式11426=-+--=-.(2)原式639292999934346x x x x x x x x x x =-+÷=-+=.(3)原式22222(4444)2824x xy y x y xy x x x x =-++-+÷=÷=;当4x =-时,原式44(4)16x ==⨯-=-.【点睛】本题考查整式的混合运算,解题关键在于对幂的运算、平方差、完全平方等公式的运用,其次注意计算仔细即可.26.(1)a -;b a -;1-;c -;(2)3a b -+【分析】(1)由题意可得a <0<b <b−c ,利用绝对值定义可求解;(2)利用绝对值化简求解.【详解】解:(1)∵0a <,0b >,b c b ->, ∴a a =-,0b a ->,0ab <,0c <, ∴①a a =-;②b a b a -=-; ③1ab ab=-;④c c =-, 故填:a -;b a -;1-;c -.(2)∵0a <,0b >,0c <,a b >,∴0a b +<,0b a ->,0b c a -->,∴原式a b b a b c a c =--+-+--+3a b =-+.【点睛】本题考查了数轴,绝对值,利用绝对值的性质化简是本题的关键.27.2【解析】【分析】根据a、b互为相反数,可得:a+b=0,c、d互为倒数,可得:cd=1,据此求出的值是多少即可.【详解】∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∴=(a+b)(a-b)+2cd=0+2=2.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.28.3-2b.【解析】试题分析:首先根据去括号的法则将括号去掉,然后进行合并同类项计算.试题解析:原式=-2+2(2-b)=-+4-2b=3-2b考点:(1)、去括号的法则;(2)、合并同类项29.(1)A1的坐标为(3,1);(2)如图所示,△A1B1C1即为所求;见解析;(3)△ABC的面积为3.【解析】【分析】(1)依据点P(a,b)的对应点为P1(a+6,b-3),可得平移的方向和距离为:向右平移6个单位,向下平移3个单位,进而得出结论;(2)依据平移的方向和距离,即可得到△A1B1C1;(3)作长方形CDEF,利用割补法进行计算即可得到三角形ABC的面积.【详解】(1)如图所示,点P(a,b)的对应点为P1(a+6,b-3),∴平移的方向和距离为:向右平移6个单位,向下平移3个单位,又∵A(-3,4),∴A1的坐标为(3,1).故答案为:(3,1).(2)如图所示,△A1B1C1即为所求;(3)如图所示,作长方形CDEF,则CF=2,CD=4,AE=1,BE=2,BF=2,AD=1,∴△ABC的面积为:CF•CD-AD•CD-AE•BE-BF•CF=2×4-×1×4-×1×2-×2×2=8-2-1-2=3.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.30.14 -45【解析】试题分析:把A、B代入3A+6B,由3A+6B的值与x的取值无关可求出k的值;把k代入代数式进行计算即可.注意利用()11111n n n n =-++ 将式子化简. 解:3A +6B =3(2x 2+3kx ﹣2x ﹣1)+6(﹣x 2+kx ﹣1) =6x 2+9xk -6x -3-6x 2+6xk -6 =15xk -6x -9=(15k -6)x -9 ,∵3A +6B 的值与x 的取值无关,∴15k=6,即25k =. ∴原式=111111121...322334895-+-+---⨯ 16195=-- 1445=- .。
上海市上宝中学数学七年级上学期期末数学试题题
①AP=BP;②.BP= 1 AB;③AB=2AP;④AP+PB=AB. 2
A.1 个
B.2 个
C.3 个
D.4 个
二、填空题
16.已知 x=5 是方程 ax﹣8=20+a 的解,则 a= ________ 17.若代数式 mx2+5y2﹣2x2+3 的值与字母 x 的取值无关,则 m 的值是__.
A.1 个
B.2 个
C.3 个
D.4 个
3.下列说法中正确的有( )
A.连接两点的线段叫做两点间的距离
B.过一点有且只有一条直线与已知直线垂直
C.对顶角相等
D.线段 AB 的延长线与射线 BA 是同一条射线
4.观察下列图形,第一个图 2 条直线相交最多有 1 个交点,第二个图 3 条直线相交最多有
3 个交点,第三个图 4 条直线相交最多有 6 个交点,…,像这样,则 20 条直线相交最多交
上海市上宝中学数学七年级上学期期末数学试题题
一、选择题
1.一个由 5 个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )
A.
B.
C.
D.
2.在实数:3.14159, 3 5 ,π, 25 ,﹣ 1 ,0.1313313331…(每 2 个 1 之间依次多一 7
个 3)中,无理数的个数是( )
A.m=2,n=1
B.m=2,n=0
C.m=4,n=1
D.m=4,n=0
10.若 OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的
是( )
A.∠AOC=∠BOC
B.∠AOB=2∠BOC
C.∠AOC= 1 ∠AOB 2
上海民办上宝中学七年级上册压轴题数学模拟试卷及答案
上海民办上宝中学七年级上册压轴题数学模拟试卷及答案一、压轴题1.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.2.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.3.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值4.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm /s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.5.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.6.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.7.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?8.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P绕着点O以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q沿直线BA自B点向、两点能相遇,求点Q的运动速度.A点运动,假若点P Q>),9.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和b(b a-.则线段AB的长(点A到点B的距离)可表示为AB=b a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?10.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.11.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.12.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.13.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
上海市上宝中学数学七年级上学期(初一上)数学摸底测验卷
一上 初一(上)数学摸底测验卷(本卷完成时间:60分钟,试卷总分:100分,其中2分为卷面清洁分)一、选择题:()2612''⨯=1.如果一个数的平方等于它本身,那么这个数为( )A .0B .1±C .1±或0D .1或02.下列说法正确的是( )A .由22xz yz >,得x y >B .由a b <,得22ac bc <C .由x y >且0m ≠,得x y m m -<-D .由0a b <<,得1b a< 3.下列说法中正确的个数是( )①任何小于1的数的倒数定大于1:②如果a b >,则a b >;③a --一定是负数;④表示负数的点在原点的左侧;⑤数轴上任意一点都可以表示一个有理数.A .0个B .1个C .2个D .3个4.下列说法错误的是( )A .一个锐角的余角一定是锐角;B .一个锐角的余角加90︒就等于这个角的补角;C .甲看乙的方向为北偏东30︒,那么乙看甲为南偏西30︒;D .长方体中任意一条棱都与四个面垂直.5.用2cm 、4cm 、5cm 三条线段中的任意两条作等腰三角形的底和腰,画出所有的可能情况有( ) A .2种 B .3种 C .4种 D .5种6.某人匀速走过一段路,若每小时走快12千米,走这段路只需要原来时间的45,若每小时走慢12千米,走这段路就要多花2小时30分,这段路长是( ) A .7.5千米 B .2千米C .15千米D .16千米 二、填空题:()21530'⨯=︒7.若0a a +=,则a 是__________.8.64.0010⨯精确到__________位,它有__________个有效数字.9.绝对值小于5.4而大于3.2的所有整数是__________.10.若0b a <<,试比较2a 、ab 、2b 的大小__________.11.查表得28.6775.17=,那么20.867-=__________; 286700=__________(用科学记数法表示).12.若不等式1x x m≥⎧⎨>⎩的解集是x m >;则m 的取值范围是__________.13.已知23x y =⎧⎨=-⎩和412x y =-⎧⎨=-⎩都是二元一次方程12ax by +=的解,那么不等式()150a b x -++≥的解集为__________.14.在直线PQ 上找一点A ,使3PA AQ =,4PQ =,那么AQ =__________.15.如图,长方体中与棱CD 异面的棱是__________;与棱CG 垂直的平面是__________;与棱HE 平行的平面是__________.16.已知C 在直线AB 上,若C 到A 的距离是到B 距离的2倍,又知AB 为10厘米,则AC =__________厘米.17.某商品一件商品按进价先加价四成后再打八折出售,售价119元,那么原价是__________元.18.小王往返甲、乙两地,去时速度为6千米/小时,回来时速度为4千米/小时,结果一共花了7.5小时,则甲、乙两地之间的距离是__________千米三、解答题:()206656'''+⨯=19.解下列方程(组)及不等式(组):()5420''⨯=(1)解方程组:9.8 2.61313x y x y -=⎧⎪⎨-=⎪⎩; (2)解不等式组:()33104811131234322x x x -⎧-≥⎪⎪⎨⎧⎫⎡⎤⎪--+++≥⎨⎬⎢⎥⎪⎣⎦⎩⎭⎩;(3)解方程组:()110.325349 1.5420x y y x +⎧--=⎪⎪⎨-+⎪=-⎪⎩; (4)求不等式组21123x --≤<的整数解.20.已知()()()23133327x x x +--+=-,()()()7770y y y y +---=,求()25853442y y y x y y x ⎛⎫--++--⎪⎝⎭的值.21.如图,射线OB 和射线OE 分别是AOC ∠和DOF ∠的平分线:已知135AOF =︒∠,BOE ∠比COD ∠的2倍大12︒,求BOE ∠和COD ∠的大小.22.张先生准备向商店订购每件定价为100元的某种商品80件,张先生对商店经理说:“如果你肯降价,且每降1元,我就多订4件.”商店经理算了一下,若降价5%,由于张先生会多订购,获得利润反而比原来多了100元,求这种商品成本是多少元?23.一个长方体木块,从下部和上部分别截去高3cm 和2cm 的长方体后,便成为一个正方体,表面积减少212cm ,求原来长方体的体积是多少立方厘米?24.在多项式222()x y x -++的括号中填上一个单项式,使这个多项式能够进行因式分解,并将它因式分解(要求,请至少写出三个不同的单项式).25.化简:2222222211222a b a ab b ab a b a b ab ⎡⎤-⎛⎫+÷+⋅⎢⎥ ⎪++-+⎝⎭⎢⎥⎣⎦,并求当13a =,12b =-时的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把 代入方程 得:
8-9=3a-4
解得:a=1
故选:A.
【点睛】
本题考查了解一元一次方程和一元二次方程的解,能够得出关于a的一元一次方程是解此题的关键.
5.D
解析:D
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据相反数的意义可求得x的值,根据绝对值的意义可求得y的值,然后再代入x+y中进行计算即可得答案.
【详解】
∵ 是 的相反数, ,
∴x=3,y=±5,
当x=3,y=5时,x+y=8,
当x=3,y=-5时,x+y=-2,
故选C.
(3)若七年级(3)班53人也一同前去春游时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需付门票多少元?
23.解方程
(1)
(2)1- =
24.先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.
25.解方程:
(1)4x﹣3(20﹣x)=3
(2) 2
22.凤凰景区的团体门票的价格规定如下表
购票人数
1~55
56~110
111~165
165以上
价格(元/人)
10
9
8
7
某校七年级(1)班和(2)班共112人去凤凰景区进行研学春游活动,当两班都以班为单位分别购票,则一共需付门票1060元.
(1)你认为由更省钱的购票方式吗?如果有,能节省多少元?
(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?
18.已知A,B,C三点在同一条直线上,AB=8,BC=6,M、N分别是AB、BC的中点,则线段MN的长是_______.
19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.
20.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.
三、解答题
21.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣ ,b= .
A.2B.4C.6D.8
10.一副三角板不能拼出的角的度数是()(拼接要求:既不重叠又不留空隙)
A. B. C. D.
11.如图,把 放置在量角器上, 与量角器的中心重合,读得射线 、 分别经过刻度 和 ,把 绕点 逆时针方向旋转到 ,下列结论:
① ;
②若射线 经过刻度 ,则 与 互补;
③若 ,则射线 经过刻度45.
6.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为( )
A.﹣1007B.﹣1008C.﹣1009D.﹣2018
7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().
4.方程 的解是 ,则 的值是().
A.1B. C. D.3
5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()
A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)
【详解】
的小数点向左移动6位得到7.76,
所以 用科学记数法表示为7.76×106,
故选B.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.C
解析:C
【解析】
【分析】
先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.
14.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火
15.若 与-3ab3-n的和为单项式,则m+n=_________.
16.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值
是.
17.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是.
A.95元B.90元C.85元D.80元
8.已知单项式2x3y1+2m与3xn+1y3的和是单项式,则m﹣n的值是( )
A.3B.﹣3C.1D.﹣1
9.观察下列算式,用你所发现的规律得出22015的末位数字是()
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
2020-2021上海民办上宝中学七年级数学上期末模拟试卷(含答案)
一、选择题
1.若 是 的相反数, ,则 的值为()
A. B. C. 或 D. 或
2.将 用科学记数法表示为()
A. B. C. D.
3.实数a、b、c在数轴上的位置如图所示,且a与c互为相反数,则下列式子中一定成立的是()
A.a+b+c>0B.|a+b|<cC.|a-c|=|a|+cD.ab<0
其中正确的是()
A.①②B.①③C.②③D.①②③
12.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )
A.3a+bB.3a-bC.a+3bD.2a+2b
二、填空题
13.若关于x的一元一次方程 x-2=3x+k的解为x=-5,则关于y的一元一次方程 (2y+1)-5=6y+k的解y=________.
【点睛】
本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.
2.B
解析:B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
由数轴可得:a<b<0<c,
∴a+b+c<0,故A错误;
|a+b|>c,故B错误;
|a−c|=|a|+c,故C正确;
ab>0,故D错误;
故答案选:C.
【点睛】
本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.
4.A
解析:A
【解析】
【分析】
把 代入方程 ,得出一个关于a的方程,求出方程的解即可.