浙江省杭州市西湖区三墩中学2020-2021学年九年级上学期期中数学试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.
(1)若∠B=70°,求∠CAD的度数;
(2)若AB=10,AC=8,求DE的长.
20.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)
15.已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是____________________.
三、解答题
16.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
22.我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,BD.显然△DCE、△DEF、△DAE是半直角三角形.
浙江省杭州市西湖区三墩中学2020-2021学年九年级上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列事件是必然事件的是( )
A.明天是晴天
B.有一匹马的奔跑速度是100米/秒
C.打开电视正在播广告
D.在地面上向空中抛掷一石块,石块终将落下
(1)请问两次摸球后所有可能的点的坐标有几个,并用列表法或树状图法说明;
(2)求这样的点落在以M(2,2)为圆心,半径为2的圆内的概率.
18.已知二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函数y=x+m的图象交于(0,-1).
(1)求两个函数解析式;
(2)求两个函数图象的另一个交点.
(1)求该抛物线的表达方式及点C的坐标;
(2)将(1)中求得的抛物线沿y轴向上平移m(m>0)个单位,所得新抛物线与y轴的交点记为点D.当△ACD时等腰三角形时,求点D的坐标;
(3)若点P在(1)中求得的抛物线的对称轴上,联结PO,将线段PO绕点P逆时针转90°得到线段PO′,若点O′恰好落在(1)中求得的抛物线上,求点P的坐标.
10.如图,点C是⊙O优弧ACB上的中点,弦AB=8cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2,则y与动点F的运动时间x(0≤x≤4)秒的函数关系式为( )
A. B. C. D.
二、填空题
11.如图,在平面直角坐标系中,过格点A、B、C作以圆弧,则圆心的坐标是________.
12.若⊙O的弦AB将圆周分为5:7的两部分,则弦AB作对的圆周角的度数是______________.
13.扇形的面积是12π,它的弧长为6π,则这个扇形的圆心角的度数是______________.
14.如图,在△ABC中,点I是外心,∠ABC=70°,∠ACB=45°,则∠BIC=____________.
(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;
(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?
(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?
21.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+4ax+c(a≠0)经过A(0,4),B(﹣3,1),顶点为C.
2.二次函数y=x2+2x﹣5取最小值时,自变量x的值是()
A.2B.﹣2C.1D.﹣1
3.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )
A. B.
C. D.
4.下列说法正确的是()
A.同圆或等圆中弧相等,则它们所对的圆心角也相等
B.90°的圆心角所对的弦是直径
C.平分弦的直径垂直于这条弦
(1)求证:△ABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),求AE的长.
参考答案
1.D
【分析】
利用必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,分别判断即可得出答案.
D.三点确定一个圆
5.一个正多边形的每个外角都是36°,这个正多边形的边数是()
A.9B.10C.11D.12
6.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )
A. B. C. D.
7.如图,若⊙O的弦AB垂直平分半径OC,则四边形OACB是()
A.正方形B.菱形C.矩形D.平行四边形
8.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x
…
﹣2
﹣1
0
1
2
…
y
…
0
4Байду номын сангаас
6
6
4
…
从上表可知,下列说法正确的个数是()
①抛物线与x轴的一个交点为(﹣2,0);
②抛物线与y轴的交点为(0,6);
③抛物线的对称轴是x=1;
④在对称轴左侧y随x增大而减小;
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过区域的面积.
17.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个球记下数字.若将第一次摸出的球上数字记为点的横坐标,第二次摸出的球上数字记为点的纵坐标.
⑤当y>0,则x的取值范围是-2<x<3
A.①②③B.②③④C.②④⑤D.①②⑤
9.坐标平面上,若移动二次函数y=﹣(x﹣2017)(x﹣2018)+2的图象,使其与x轴交于两点,且此两点的距离为1个单位,则移动方式可为()
A.向上平移2个单位B.向下平移2个单位
C.向上平移1个单位D.向下平移1个单位
(1)若∠B=70°,求∠CAD的度数;
(2)若AB=10,AC=8,求DE的长.
20.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)
15.已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是____________________.
三、解答题
16.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
22.我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,BD.显然△DCE、△DEF、△DAE是半直角三角形.
浙江省杭州市西湖区三墩中学2020-2021学年九年级上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列事件是必然事件的是( )
A.明天是晴天
B.有一匹马的奔跑速度是100米/秒
C.打开电视正在播广告
D.在地面上向空中抛掷一石块,石块终将落下
(1)请问两次摸球后所有可能的点的坐标有几个,并用列表法或树状图法说明;
(2)求这样的点落在以M(2,2)为圆心,半径为2的圆内的概率.
18.已知二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函数y=x+m的图象交于(0,-1).
(1)求两个函数解析式;
(2)求两个函数图象的另一个交点.
(1)求该抛物线的表达方式及点C的坐标;
(2)将(1)中求得的抛物线沿y轴向上平移m(m>0)个单位,所得新抛物线与y轴的交点记为点D.当△ACD时等腰三角形时,求点D的坐标;
(3)若点P在(1)中求得的抛物线的对称轴上,联结PO,将线段PO绕点P逆时针转90°得到线段PO′,若点O′恰好落在(1)中求得的抛物线上,求点P的坐标.
10.如图,点C是⊙O优弧ACB上的中点,弦AB=8cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2,则y与动点F的运动时间x(0≤x≤4)秒的函数关系式为( )
A. B. C. D.
二、填空题
11.如图,在平面直角坐标系中,过格点A、B、C作以圆弧,则圆心的坐标是________.
12.若⊙O的弦AB将圆周分为5:7的两部分,则弦AB作对的圆周角的度数是______________.
13.扇形的面积是12π,它的弧长为6π,则这个扇形的圆心角的度数是______________.
14.如图,在△ABC中,点I是外心,∠ABC=70°,∠ACB=45°,则∠BIC=____________.
(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;
(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?
(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?
21.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+4ax+c(a≠0)经过A(0,4),B(﹣3,1),顶点为C.
2.二次函数y=x2+2x﹣5取最小值时,自变量x的值是()
A.2B.﹣2C.1D.﹣1
3.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )
A. B.
C. D.
4.下列说法正确的是()
A.同圆或等圆中弧相等,则它们所对的圆心角也相等
B.90°的圆心角所对的弦是直径
C.平分弦的直径垂直于这条弦
(1)求证:△ABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),求AE的长.
参考答案
1.D
【分析】
利用必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,分别判断即可得出答案.
D.三点确定一个圆
5.一个正多边形的每个外角都是36°,这个正多边形的边数是()
A.9B.10C.11D.12
6.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )
A. B. C. D.
7.如图,若⊙O的弦AB垂直平分半径OC,则四边形OACB是()
A.正方形B.菱形C.矩形D.平行四边形
8.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x
…
﹣2
﹣1
0
1
2
…
y
…
0
4Байду номын сангаас
6
6
4
…
从上表可知,下列说法正确的个数是()
①抛物线与x轴的一个交点为(﹣2,0);
②抛物线与y轴的交点为(0,6);
③抛物线的对称轴是x=1;
④在对称轴左侧y随x增大而减小;
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过区域的面积.
17.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个球记下数字.若将第一次摸出的球上数字记为点的横坐标,第二次摸出的球上数字记为点的纵坐标.
⑤当y>0,则x的取值范围是-2<x<3
A.①②③B.②③④C.②④⑤D.①②⑤
9.坐标平面上,若移动二次函数y=﹣(x﹣2017)(x﹣2018)+2的图象,使其与x轴交于两点,且此两点的距离为1个单位,则移动方式可为()
A.向上平移2个单位B.向下平移2个单位
C.向上平移1个单位D.向下平移1个单位