第三章空间向量与立体几何
高中数学第三章空间向量与立体几何1空间向量及其运算5空间向量运算的坐标表示3课件新人教A版选修2
变式训练
已知 a=(1,2,12),b=(12,-12,1),c=(-2,3, -12),d=(1,-32,14).
求证:a⊥b,c∥d.
证明: ∵ a= (1,2,12), b= (12,-12,1), ∴a·b=1×12+2×(-12)+12×1=0. ∴ a⊥ b. ∵ c= (- 2,3,-12), d= (1,-32,14), ∴ c=- 2(1,-32,14)=- 2d. ∴ c∥ d.
(1)求证:EF⊥CF; (2)求E→F与C→G所成角的余弦值; (3)求 CE 的长. [分析] 可建立空间直角坐标系,利用向量的坐 标形式解题.
[解] 建立如图 3 所示的空间直角坐标系 D-xyz, 则 D(0,0,0),E(0,0,12),C(0,1,0), F(12,12,0),G(1,1,12).
[解] (1)如图 1,以 D 为原点,DA,DC,DD1 所在的直线为 x,y,z 轴建立空间直角坐标系,设 AA1=a,
则 B(4,4,0),N(2,2,a), A(4,0,0),M(2,4,a2),
图1
∴B→N= (- 2,- 2, a), A→M= (- 2, 4,a),
2 由B→N⊥A→M得B→N·A→M = 0, ∴4-8+a2=0,a=2 2,
b32.
2.空间中向量的坐标及两点间的距离公式 在空间直角坐标系中,设 A(a1,a2,a3),B(b1, b2, b3),则: (1)A→B= (b1- a1, b2- a2, b3- a3); (2)AB= |A→B|=
b1- a1 2+ b2- a2 2+ b3- a3 2.
如何理解空间向量的坐标运算与平面向量的坐 标运算间的关系?
|E→F|= |C→G|=
江苏省苏州市第五中学高中数学教案 苏教版选修2-1 第三章《空间向量与立体几何》3.1空间向量及其运算
第3章 空间向量与立体几何3.1 空间向量及其运算一、学习内容、要求及建议二、预习指导1.预习目标(1)了解空间向量的概念及空间向量的几何表示法、字母表示法和坐标表示法;(2)了解共线或平行向量概念、向量与平面平行(共面)意义,掌握它们的表示方法;(3)会用图形说明空间向量加法、减法、数乘向量及它们的运算律;(4)了解空间向量基本定理及其意义;会在简单问题中选用空间三个不共面向量作基底,表示其他的向量;(5)会用向量解决立体几何中证明直线和平面垂直、直线和直线垂直、求两点距离或线段长度等问题的基本方法步骤.(6)掌握空间向量的正交分解及其坐标表示;掌握空间向量的线性运算及其坐标表示;(7)理解空间向量夹角和模的概念及表示方法,理解两个向量的数量积的概念、性质 知识、方法 要求 学习建议空间向量的概念 了解 空间向量的定义、表示方法及相等关系都与平面向量相同.可在复习平面向量的定义、表示方法及其相等关系后类比进行理解﹒空间向量共线、共面的充分必要条件 理解 共面向量与共线向量的定义对象不同,但定义形式相同. 空间向量的加法、减法及数乘运算 理解 掌握空间向量的加法、减法和数乘运算.利用图形说明空间向量加法、减法、数乘向量及它们的运算律﹒空间向量的坐标表示 理解 空间向量的坐标运算,加法、减法和数量积同平面向量类似,具有类似的运算法则,学习中可类比推广.空间向量的数量积 理解 掌握空间向量的数量积的定义及其性质;掌握空间向量的坐标表示;掌握用直角坐标计算空间向量数量积的公式;理解向量长度公式及空间两点间距离公式.空间向量的共线与垂直 理解 能运用向量的数量积判断向量的共线与垂直.AB C OM N G 和计算方法及运算律.(8)理解向量的长度公式、夹角公式、两点间距离公式,并会用这些公式解决有关问题.2.预习提纲(1)回顾平面向量的相关知识:①平面向量的基本要素是什么? ②平面向量是如何表示的?③特殊的平面向量有那些? ④什么是平行向量(共线向量)?⑤什么是相等向量? ⑥什么是相反向量?⑦平面向量共线定理是什么? ⑧平面向量基本定理你知道吗?(2)请你填一填:①对平面内任意的四点A ,B ,C ,D ,则AB BC CD DA +++=u u u r u u u r u u u r u u u r ; ②设1(2,3),(1,5),,33A B AC AB AD AB -==u u u r u u u r u u u r u u u r 且,则C 、D 的坐标分别是____________; ③已知(1,2),(3,)OA OB m =-=u u u r u u u r ,若OA OB ⊥u u u r u u u r ,则m = ;④若三点(1,1),(2,4),(,9)P A B x --共线,则x = ____________;⑤已知正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则a b c ++r r r 的模等于____________;⑥已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,且,,A B C 三点共线,则k = ;⑦等腰Rt ABC ∆中,2,AB AC AB BC ==⋅u u u r u u u r u u u r u u u r 则= ;⑧已知(2,3),(1,2),(2,1)a b c ==--=r r r ,则()a b c ⋅r r r 的值= ____________;⑨1,9a b a b ==⋅=-r r r r ,则a r 与b r 的夹角是____________;⑩已知,a b r r 是两个非零向量,且,a b a b a a b ==-+r r r r r r r 则与的夹角= ____________.(3)研读教材P71—P833.典型例题例1 如图,已知四面体OABC ,,M N 分别是棱,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC u u u r u u u r u u u r 表示向量OG u u u r . 解:23OG OM MG OM MN =+=+u u u r u u u u r u u u u r u u u u r u u u u r 121211()[()]232322111111()233633OA ON OM OA OB OC OA OA OB OC OA OA OB OC =+-=++-=++-=++u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴313161++=点评:若变题为已知OG xOA yOB zOC =++u u u r u u u r u u u r u u u r ,求,,x y z ﹒则由空间向量基本定理存在一个唯一的有序实数组),,(z y x 知111,,633x y z ===. 例 2 设空间任意一点O 和不共线的三点,,A B C ,若点P 满足向量关系z y x ++=(其中1x y z ++=).试问:,,,P A B C 四点是否共面?解:由z y x ++=可以得到z y +=(见教材P75)由,,A B C 三点不共线,可知与不共线,所以,,共面且具有公共起点A .从而,,,P A B C 四点共面.点评:若,,M A B 三点不共线,则空间一点P 位于平面MAB 内的充要条件是存在有序实数对,x y 使得:y x +=,或对空间任意一点O 有:y x ++=. 例3 已知空间四边形ABCD ,E 为AD 的中点,F 为BC 中点, 求证:1()2EF AB DC =+u u u r u u u r u u u r . 证明:(法一)如图, 0EF FC CD DE +++=u u u r u u u r u u u r u u u r r ,0EF FB BA AE +++=u u u r u u u r u u u r u u u r r ,两式相加得: 2()()()EF FC FB CD BA DE EA ++++++u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 20EF BA CD =++=u u u r u u u r u u u r r 所以,11()()22EF BA CD AB DC =-+=+u u u r u u u r u u u r u u u r u u u r ,得证. (法二)如图,在平面上任取一点O ,作OE uuu r 、OF u u u r , ∵1()2OE OA OD =+u u u r u u u r u u u r ,1()2OF OB OC =+u u u r u u u r u u u r , ∴11()()22EF OE OF OB OC OA OD =-=+-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r 111()()()222OB OA OC OD AB DC =-+-=+u u u r u u u r u u u r u u u r u u u r u u u r . 点评:若表示向量1a u r ,2a u u r ,…,n a u u r 的有向线段终点和始点连结起来构成一个封闭折图形,则210n a a a +++=u r u u r u u r r L .这一结论的使用往往能够给解题带来很大的方便.例4 如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=o ,60OAB ∠=o ,求OA 与BC 的夹角的余弦值.分析:OA 与BC 的夹角即为OA u u u r 与BC uuu r 的夹角,可根据夹角公式求解.解:∵BC AC AB =-u u u r u u u r u u u r ,∴OA BC OA AC OA AB ⋅=⋅-⋅u u u r u u u r u u u r u u u r u u u r u u u r||||cos ,||||cos ,OA AC OA AC OA AB OA AB =⋅⋅<>-⋅⋅<>u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r84cos13586cos12024=⨯⨯-⨯⨯=-o o∴243cos ,855||||OA BC OA BC OA BC ⋅--<>===⨯⋅u u u r u u u r u u u r u u u r u u u r u u u r , 所以,OA 与BC的夹角的余弦值为35-. 点评:由图形知向量的夹角时易出错,如,135OA AC <>=o u u u r u u u r 易错写成,45OA AC <>=o u u u r u u u r . 例5 已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积.分析:可用公式1||||sin 2S AB AC A =⋅⋅u u u r u u u r 来求面积 解:∵(1,2,2)AB =-u u u r ,(2,0,3)AC =--u u u r ,∴||3AB ==u u u r,||AC ==u u u r(1,2,2)(2,0,3)264AB AC ⋅=-⋅--=-+=u u u r u u u r ,∴cos cos ,||||AB AC A AB AC AB AC ⋅=<>===⋅u u u r u u u r u u u r u u u r u u u r u u u rsin sin ,A AB AC =<>=u u u r u u u r ,∴1||||sin 2ABC S AB AC A ∆=⋅⋅=u u u r u u u r 例6 已知(1,0,0)A ,(0,1,0)B ,(0,0,2)C ,求满足//DB AC ,//DC AB 的点D 的坐标.分析:已知条件//DB AC ,//DC AB ,也即//DB AC u u u r u u u r ,//DC AB u u u r u u u r ,可用向量共线的充要条件处理.解:设点(,,)D x y z ,∴(,1,)DB x y z =---u u u r ,(1,0,2)AC =-u u u r ,∵//DB AC u u u r u u u r ,∴DB AC λ=u u u r u u u r ,∴(,1,)(,0,2)x y z λλ---=-,∴102x y z λλ-=-⎧⎪-=⎨⎪-=⎩,∴12x y z λλ=⎧⎪=⎨⎪=-⎩,∴(,1,2)D λλ-,∴(,1,22)DC λλ=--+u u u r ,(1,1,0)AB =-u u u r ,又∵//DC AB u u u r u u u r ,∴设DC u AB =u u u r u u u r ,∴(,1,22)(,,0)u u λλ--+=-,∴1220u u λλ-=-⎧⎪-=⎨⎪+=⎩∴1u λ==-,所以,D 点坐标为(1,1,2)-.点评:本题采用的方法是用向量坐标运算处理空间向量共线问题的常用方法.4.自我检测(1)已知点(3,1,4)A --,则点A 关于x 轴的对称点的坐标为____________.(2)设(2,6,3)a =-r ,则与a r 平行的单位向量的坐标为 .(3)已知(1,1,),(2,,)a t t t b t t =--=r r ,则||a b -r r 的最小值是 .(4)如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则M B 1= .(用a ,b ,c 表示)﹒(5)已知四边形ABCD 为平行四边形,且(4,1,3),(2,5,1),(3,7,5)A B C --,则点D 的坐标为 .(6)设向量(1,3,2),(4,6,2),(3,12,)a b c t =-=-=-r r r ,若c ma nb =+r r r ,则t = ,m n += .(7)已知(cos ,1,sin ),(sin ,1,cos )a b θθθθ==r r ,则向量a b +r r 与a b -r r 的夹角是 .三、课后巩固练习A 组1.已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量: (1)AB BC CD ++u u u r u u u r u u u r ; (2)1()2AB BD BC ++u u u r u u u r u u u r ; (3)1()2AG AB AC -+u u u r u u u r u u u r . 2.平行六面体1111ABCD A B C D -中,设→---AB =a r ,→---AD =b r ,→---1AA =c r ,E 、F 分别是AD 1、BD 中点,试用a r 、b r 、c r 表示下列向量:(1)→---B D 1;(2)→---AF ;(3)→---C D 1;(4)→---EF . 3.正方体OASB CQRP -中,→--OA = i r ,→--OB =j r ,→--OC =k r ,→--OP =a r ,→--OQ =b r ,→--OS =c r , 设→z =λa r +μb r +γc r ,则→z = i r + j r + k r . 4.设a r 、b r 、c r 不共面,2,,453m a b n b c p a b c =-=+=--u r r r r r r u r r r r ,判断m u r 、n r 、p u r 是否共 面. 5﹒已知空间四边形ABCD ,AB a =u u u r r ,AC b =u u u r r ,AD c =u u u r r ,点M 在AB 上,且2AM MB =,N 为CD 中点,试用,,a b c r r r 表示MN u u u u r .B 组6.已知,,A B C 三点不共线,O 为空间任意一点,若111333OM OA OB OC =++u u u u r u u u r u u u r u u u r ,试证: 点M 与,,A B C 共面.7.证明四点()()()()1,0,1,4,4,6,2,2,3,10,14,17A B C D 在同一平面上. 8.已知()()3,1,5,1,2,3a b ==-r r ,若9,4a c b c ⋅=⋅=-r r r r ,且→c 垂直于Oz 轴,求→c .9.已知a r 、b r 、c r 是两两垂直的单位向量,求:(1)()a b c ⋅+r r r ; (2)()()23a b b c -⋅+r r r r ; (3)()()4332a b c a b c -+⋅+-r r r r r r .10.已知直角坐标系内的a r 、b r 、c r 的坐标,判断这些向量是否共面?如果不共面,求出以 它们为三邻边所作的平行六面体的表面积:(1)()()()3,4,5,1,2,2,9,14,16a b c ===r r r ; (2)()()()3,0,1,4,3,0,1,2,2a b c =-=-=--r r r .11.已知()()322,0,4,2,1,2,2,4,a b c a c b θ-=-=-⋅==r r r r r r 为,b c r r 夹角,求cos θ.12.已知()()1,0,2,2,1,0a b =--=--r rB CD M G A(1)求a r 与b r 夹角余弦值的大小; (2)若c =r c r 分别与,a b r r 垂直,求c r .13. 平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都等于1,且两两夹角都为600,求1AC 的长.14.已知()()()1,2,3,2,1,5,3,2,5A B C --,求:(1)△ABC 的面积; (2)△ABC 的AB 边上的高. 15.空间两个不同的单位向量()(),,0,,,0OA p q OB r s ==u u u r u u u r ,都与()1,1,1OC =u u u r 成4π角. (1)分别求出p q +和pq 的值;(2)若AOB ∠为锐角,求AOB ∠.四、学习心得五、拓展视野N 维向量空间的起源宇宙,一个人类永远的话题,也是人类永远探索的目标.“没人确切的知道宇宙是怎么开始的.有人推论是一场无序的灾难性爆炸使无尽的世界群不断旋转向黑暗--这些世界随后有了不可思议的生命形态和天差地别的炯异.也有人相信宇宙是被某个强大实体以整体形式创造出来的.”宇宙, 是一个空间概念. 它包括行星, 星系等实体.宇宙同时也是一个时间概念. 现代有人解释宇宙为“无限的空间与时间”,正好印证了中国的一本古书<淮南子>对宇宙的定义,其中说“四方上下谓之宇, 古往来今谓之宙”. “四方上下”概括了所有空间, "古往来今"则概括了部分的时间.为什么说是部分的时间呢? “古往来今”的含义是从永远的过去到现在的今天. 这样的定义没有把从现在到无限的未来包括进来.如果我们把时间用一个变量 t 表示.那么“古往来今”则表示的是 t 在负无穷大到零的区间,即(-∞, 0],如果我们设定坐标零点为现在,负方向代表过去,正方向代表将来.对于无限的空间的定义(即,时间 t从永远的过去到永远的将来),就成为了(-∞, +∞).那么空间呢?同样我们可以用坐标系的方式来定义空间.问题的关键就在于,我们怎么看待我们生存的空间.我们不是生活在一个2维的平面上(而古代的中国人认为地是方的,就如同我小时候想得一样.),而是生活在一个类似于球体的物体上.这样,很多人会说,我们生活在一个3维空间里面.这样一个3维空间由三个坐标轴 X , Y , Z 组成.在这样一个3维空间中,任何一个位置p 都可以用三个数(x , y , z )表示,x 为位置p 在X 轴上的取值(也是投影),同理,y 和z 也是.同时,这三条坐标轴是正交的.何谓正交,就是三条坐标轴互相垂直.在这个3维空间中,我们有两点111,,)P y z 1(x (可能是伦敦)和2222,,)P x y z ((可能是巴黎),从1P到2P 之间(伦敦到巴黎)的最小距离(直线距离)为D=||1P -2P ||=sqrt((1x -2x )2+(1y -2y )2+(1z -2z )2).在一般情况,因为各种限制,我们可能用不了最小距离,但是最小距离给我们找到一个下限.宇宙不仅包括空间,而且包括时间,所以,我们的这个宇宙就变成了3+1=4维的了.那么宇宙就可以描述为(),,,x y z t ,有了四条正交的坐标轴,,,X Y Z T .比如说事件A 为(),,,x y z t 表示,事件A 发生在(),,x y z 地点,发生在t 时间.在这样一个4维空间中,两个事件之间的最小距离也可以表示出来.但是这个“距离”就不是空间上的相对位置的改变,而是表示两个事件之间的“关系”.跳出我们仅仅对宇宙作为时间+空间的定义.如果我们将宇宙描述为包容万象的,我们就会看到仅仅用时间+空间不能来完整来表示.比如说,如何表述一个人?如何表述我们情感?仅仅用四条坐标轴很难去表述这些东西.显然,我们需要更多的坐标轴.如果要表示我是高兴还是悲伤,我们可以加一条坐标轴e ,e=0表示我即不高兴也不悲伤,当e 取负值,越远离坐标原点,说明我越不happy ,相反,当e 取正值,越远离坐标原点,说明我越happy .如果我们要描叙其他的属性,我们有加入了新的坐标轴.如果,要描述的属性不计其数,要加入的坐标轴也不计其数了.显然,这是有可能的,因为我们对事物的认识是没有止境的,所以,当我们要描叙一个事物时,其属性可能无限多.这也反过来说明了宇宙的包容一切.所以,宇宙是一个无限维的空间,定为n 维空间(n=∞),其存在n 条正交的坐标轴.无数的基本元素组成了宇宙(注意,这里的元素与化学中提到的元素不同,这里的元素是指单元).每个元素是一个向量v , v = {v1, v2, v3, ..., vn}, n =∞,(其实就相当于3维和2维空间中的一个点).无数个向量组成的空间叫做向量空间.向量空间的维度就是坐标轴的个数.宇宙就是一个n 维向量空间。
数学:第三章《空间向量与立体几何》教案(人教版选修2-1)
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.3-3.1.4
3.1.3 空间向量基本定理 3.1.4 空间向量的坐标表示学习目标1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解正交基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.知识点一 空间向量基本定理思考 只有两两垂直的三个向量才能作为空间向量的一组基底吗?答案 不一定,只需三个向量不共面,就可作为空间向量的一组基底,不需要两两垂直.梳理 空间向量基本定理(1)定理内容:不共面.3e ,2e ,1e 条件:三个向量①②结论:对空间中任一向量p ,存在唯一的有序实数组(x ,y ,z ),使p =x e 1+y e 2+z e 3.(2)基底:(3)推论:①条件:O ,A ,B ,C 是不共面的四点.②结论:对空间中任意一点P ,都存在唯一的有序实数组(x ,y ,z ),使得OP →=x OA →+y OB →+z OC →. 知识点二 空间向量的坐标表示思考 若向量AB →=(x 1,y 1,z 1),则点B 的坐标一定为(x 1,y 1,z 1)吗?答案 不一定.由向量的坐标表示知,若向量AB →的起点A 与原点重合,则B 点的坐标为(x 1,y 1,z 1),若向量AB →的起点A 不与原点重合,则B 点的坐标就不为(x 1,y 1,z 1). 梳理 (1)空间向量的坐标表示:①向量a 的坐标:在空间直角坐标系O -xyz 中,分别取与x 轴、y 轴、z 轴方向相同的单位向量i ,j ,k 作为基向量,对于空间任意一个向量a ,根据空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k ,有序实数组(x ,y ,z )叫做向量a 在空间直角坐标系O -xyz 中的坐标,记作a =(x ,y ,z ).②向量OA →的坐标:在空间直角坐标系O -xyz 中,对于空间任意一点A (x ,y ,z ),向量OA →是确定的,即OA →=(x ,y ,z ).(2)空间中有向线段的坐标表示: 设A (x 1,y 1,z 1),B (x 2,y 2,z 2),①坐标表示:AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1).②语言叙述:空间向量的坐标等于表示这个向量的有向线段的终点坐标减去它的起点坐标. (3)空间向量的加减法和数乘的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则:(4)空间向量平行的坐标表示:若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),且a ≠0,则a ∥b ⇔b 1=λa 1,b 2=λa 2,b 3=λa 3(λ∈R ).1.若{a ,b ,c }为空间的一个基底,则{-a ,b,2c }也可构成空间的一个基底.(√) 2.若向量AP →的坐标为(x ,y ,z ),则点P 的坐标也为(x ,y ,z ).(×)3.在空间直角坐标系O -xyz 中向量AB →的坐标就是B 点坐标减去A 点坐标.(√)类型一 空间向量基本定理及应用命题角度1 空间基底的概念例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-67e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.解 假设OA →,OB →,OC →共面,由向量共面的充要条件知存在实数x ,y ,使OA →=x OB →+y OC →成立.所以OA →=e 1+2e 2-e 3。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
高中数学 第3章 空间向量与立体几何 3.7 点到平面的距离课件 湘教版选修2-1
d=|AP1|=___||_A_P_|_c_o_s_∠_P_A__N_|__=___|_A_|Pn_·|_n_| __.
1.已知直线 l 过点 A(1,-1,2),和 l 垂直的一个向量为 n=
(-3,0,4),则 P(3,5,0)到 l 的距离为( )
A.5
B.14
C.154
D.45
答案:C
2.已知直线 l 与平面 α 相交于点 O,A∈l,B 为线段 OA 的中
d=
|B→C|2-B→|CA→·′AC→′|C2=
16 4-14
=2
35 7.
用向量法求点到直线的距离的一般步骤 (1)建立空间直角坐标系; (2)求直线的方向向量; (3)计算所求点与直线上某一点所构成的向量在直线的方向向 量上的射影长; (4)利用勾股定理求解.另外,要注意平行直线间的距离与点到 直线的距离之间的转化.
则 A(4,0,0),B(0,3,0),P0,0,95, 所以A→B=(-4,3,0),A→P=-4,0,95, 所以A→P在 AB 上的投影长为|A→P|A·→BA→| B|=156, 所以点 P 到 AB 的距离为 d= |A→P|2-1562= 16+8215-22556=3. 答案:3
点到直线的距离 如图,在空间直角坐标系中有长方体 ABCD-A′B′C′D′, AB=1,BC=2,AA′=3,求点 B 到直线 A′C 的距离.
又 AC∥平面 PEF,
所以
AC
到平面
PEF
的距离为
17 17 .
用向量法求点面距的步骤 (1)建系:建立恰当的空间直角坐标系; (2)求点坐标:写出(求出)相关点的坐标; (3)求向量:求出相关向量的坐标; (4)利用公式即可求得点到平面的距离.
高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21
解析:(2)①( AB + BC )+ CC1 = AC + CC1 = AC1 ; ②( AA1 + A1D1 )+ D1C1 = AD1 + D1C1 = AC1 ; ③( AB + BB1 )+ B1C1 = AB1 + B1C1 = AC1 ; ④( AA1 + A1B1 )+ B1C1 = AB1 + B1C1 = AC1 .
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算
课标要求:1.经历向量及其运算由平面到空间推广的过程,了解空间向量的 概念.2.掌握空间向量的加法、减法和数乘运算.3.理解空间共线向量和共 面向量定理及推论.
自主学习 课堂探究
知识探究
自主学习
1.空间向量及其长度的定义 与平面向量一样,在空间,我们把 具有大小和方向的量 叫做空间向量,
解析:容易判断D是假命题,共线的单位向量是相等向量或相反向量.故
选D.
2.空间两向量a,b互为相反向量,已知向量|b|=3,则下列结论正确的是
(D)
(A)a=b
(B)a+b为实数0
(C)a与b方向相同
(D)|a|=3
3.在下列条件中,使 M 与 A,B,C 一定共面的是( C )
(A) OM =3 OA -2 OB - OC (B) OM + OA + OB + OC =0
高中数学苏教版选修2-1第3章《空间向量与立体几何》(1.5)ppt课件
2019/8/29
最新中小学教学课件
30
规律方法 利用向量的数量积,求异面直线所成的角的 方法:①根据题设条件在所求的异面直线上取两个向量; ②将求异面直线所成角的问题转化为求向量夹角问题; ③利用向量的数量积求角的大小;④证两向量垂直可转 化为数量积为零.
3.1.5 空间向量的数量积
15
跟踪演练2 如图所示,正四面体ABCD的每条棱
④|a·b|≤|a|·|b|
3.1.5 空间向量的数量积
8
预习导学
挑战自我,点点落实
要点一 空间向量的数量积运算
例1 已知长方体ABCDA1B1C1D1中,AB=AA1=2,AD=4,
E为侧面AB1的中心,F为A1D1的中点.试计算: (1)B→C·E→D1;(2)B→F·A→B1;(3)E→F·F→C1. 解 如图,设A→B=a,A→D=b,A→A1=c,
3.1.5 空间向量的数量积
1234
27
课堂小结
空间向量的数量积要找到两个向量的模和夹角;利用数量 积求两异面直线所成的角,关键在于在异面直线上构造向 量,找出两向量的关系;证明两向量垂直可转化为证明两 个向量的数量积为零,求线段长度转化为求向量的模.
3.1.5 空间向量的数量积
28
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
选修2-1第三章 空间向量与立体几何练习题及答案
第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB yAD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,_ _ D_ A_ P_ N _ B_ M0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.C 1 B 1 A 1B A3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42B .32C .33D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ _ A_S_ F_ B参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,EN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x +-=,则2320x x --=,解得1x =,或23x =-(舍去), 111,.A C C BD ∴=⊥1CD 时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示_ C_ D_ A_P_ N _ B_ M _ EA1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0) A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有13(,0,0)2MC =-(0,,0)AB a =,1(0,02)AA a =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.13(,2)22a AC a a =-,(0,2)2aAM a =, ∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=∴<1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t =设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅7可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)3,0),3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,3BC n AC n BC ⋅=⋅==-又(,,),303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DS a =,平面DAC 的一个法向量600a OS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且2626),(0,)DS CS ==(. 设,CE tCS = 则226(,(1),)222BE BC CE BC tCS a a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.作 者 于华东 责任编辑 庞保军_ C_ A_S_ F_ BO。
北师大版(2019)数学-选择性必修第一册-第三章 空间向量与立体几何-4
有=(x-x0,y-y0,z-z0),
代入①式,得·n=(x-x0,y-y0,z-z0)·(A,B,C)=0.
即A(x-x0)+B(y-y0)+C(z-z0)=0.②
由此可见,平面α内任意一点P的坐标(x,y,z)都
满足方程②; 反之,以满足方程②的(x,y,z)为坐标
AB上的一点,且CD⊥AB,求
.
解 依题意知=(1,2,3),=(1,0,-2).
因为点D是直线AB上的一点,所以存在实数λ,使得=λ,则
=+=+λ=(l+λ,2λ,-2+3λ).
由 CD⊥AB,得 •=0,
5
解得λ= .
14
所以
5
= .
14
令
· = 0,
· ′ = 0,
−1 + 2 = 0,
得
−1 + 3 = 0.
解得
=
=
1
,
2
1
.
3
11
故在四边形BCC'B'内存在一点N(1, , ),使得AN丄平面A'BD.
那么如何用平面的法向量来描述平面内任意一点的位置呢?
如图3-32,设点M是平面α内给定的一点,向量n是平面α的一个
法向量,那么对于平面α内任意一点P ,必有
• n=0.
①
反过来,由立体几何知识可以证明:满足①式的
点P都在平面α内, 所以把①式称为平面α的一个
向量表示式.
如图3-33,在空间直角坐标系中,若n=(A,B,C),点M的坐标为(
高中数学 第三章 空间向量与立体几何 3.2 第1课时 空间向量与平行、垂直关系学案 新人教A版选修
第1课时空间向量与平行、垂直关系1.理解直线的方向向量与平面的法向量的概念.2.会求平面的法向量.3.能利用直线的方向向量和平面的法向量判断并证明空间中的平行、垂直关系.1.直线的方向向量和平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量,一条直线的方向向量有无数个.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a =λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u =λv⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0.(2)线面垂直设直线l的方向向量是a=(a1,b1,c1),平面α的法向量是u=(a2,b2,c2),则l⊥α⇔a∥u⇔a=λu⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔u⊥v⇔u·v=0 ⇔a1a2+b1b2+c1c2=0.判断(正确的打“√”,错误的打“×”)(1)若两条直线平行,则它们的方向向量方向相同或相反.( )(2)平面α的法向量是惟一的,即一个平面不可能存在两个不同的法向量.( ) (3)两直线的方向向量平行,则两直线平行.( )(4)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.( ) 答案:(1)√ (2)× (3)× (4)√若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D.(-3,0,1)答案:A若平面α⊥β,且平面α的一个法向量为n =⎝ ⎛⎭⎪⎫-2,1,12,则平面β的法向量可以是( )A.⎝⎛⎭⎪⎫-1,12,14B .(2,-1,0)C .(1,2,0) D.⎝ ⎛⎭⎪⎫12,1,2答案:C若直线的方向向量为u 1=⎝ ⎛⎭⎪⎫2,43,1,平面的法向量为u 2=(3,2,z ),则当直线与平面垂直时z =________.答案:32设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =__________.答案:4探究点1 求直线的方向向量与平面的法向量[学生用书P64]如图,四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.【解】因为PA ⊥平面ABCD ,底面ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,建立空间直角坐标系,则D (0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎪⎫0,32,12, AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3).[变问法]本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解:如图所示,建立空间直角坐标系,则P (0,0,1),C (1,3,0),所以PC →=(1,3,-1),即为直线PC 的一个方向向量.设平面PCD 的法向量为n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为(0,1,3).待定系数法求平面法向量的步骤(1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量.1.已知A (0,y ,3),B (-1,-2,z ),若直线l 的方向向量v =(2,1,3)与直线AB 的方向向量平行,则y +z 等于( )A .-3B .0C .1D.3解析:选B.由题意,得AB →=(-1,-2-y ,z -3),则-12=-2-y 1=z -33,解得y =-32,z =32,所以y +z =0,故选B. 2.在△ABC 中,A (1,-1,2),B (3,3,1),C (3,1,3),设M (x ,y ,z )是平面ABC 内任意一点.(1)求平面ABC 的一个法向量; (2)求x ,y ,z 满足的关系式.解:(1)设平面ABC 的法向量n =(a ,b ,c ). 因为AB →=(2,4,-1),AC →=(2,2,1),所以⎩⎪⎨⎪⎧n ·AB →=2a +4b -c =0n ·AC →=2a +2b +c =0,所以⎩⎪⎨⎪⎧c =b a =-32b ,令b =2,则a =-3,c =2.所以平面ABC 的一个法向量为n =(-3,2,2). (2)因为点M (x ,y ,z )是平面ABC 内任意一点,所以AM →⊥n ,所以-3(x -1)+2(y +1)+2(z -2)=0, 所以3x -2y -2z -1=0.故x ,y ,z 满足的关系式为3x -2y -2z -1=0. 探究点2 利用空间向量证明平行关系[学生用书P64]已知正方体ABCD A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点.求证:FC 1∥平面ADE .【证明】 如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2).FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则⎩⎪⎨⎪⎧n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1. 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0. 所以FC 1→⊥n 1.因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .[变问法]在本例条件下,求证:平面ADE ∥平面B 1C 1F .证明:由本例证明知C 1B 1→=(2,0,0), 设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .证明线、面平行问题的方法(1)用向量法证明线面平行:①是证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;②是证明直线的方向向量可以用平面内两个不共线向量表示;③是证明直线的方向向量与平面的法向量垂直且直线不在平面内.(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.在长方体ABCD A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2,点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥RS .证明:法一:如图所示,建立空间直角坐标系,根据题意得M (3,0,43),N (0,2,2),R (3,2,0),S (0,4,23).所以MN →=(-3,2,23),RS →=(-3,2,23),所以MN →=RS →,所以MN →∥RS →,因为M ∉RS ,所以MN ∥RS . 法二:设AB →=a ,AD →=b ,AA 1→=c ,则MN →=MB 1→+B 1A 1→+A 1N →=13c -a +12b ,RS →=RC →+CD →+DS →=12b -a +13c .所以MN →=RS →,所以MN →∥RS →. 又R ∉MN ,所以MN ∥RS .探究点3 利用空间向量证明垂直关系[学生用书P65]在四棱锥S ABCD 中,底面ABCD 是正方形,AS ⊥底面ABCD ,且AS =AB ,E 是SC 的中点.求证:平面BDE ⊥平面ABCD .【证明】 设AS =AB =1,建立如图所示的空间直角坐标系Axyz ,则B (1,0,0),D (0,1,0),A (0,0,0),S (0,0,1),E ⎝ ⎛⎭⎪⎫12,12,12.法一:如图,连接AC ,交BD 于点O ,连接OE ,则点O 的坐标为⎝ ⎛⎭⎪⎫12,12,0.易知AS →=(0,0,1),OE →=⎝⎛⎭⎪⎫0,0,12,所以OE →=12AS →,所以OE ∥AS .又AS ⊥底面ABCD ,所以OE ⊥平面ABCD . 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD . 法二:设平面BDE 的法向量为n 1=(x ,y ,z ). 易知BD →=(-1,1,0),BE →=⎝ ⎛⎭⎪⎫-12,12,12,所以⎩⎪⎨⎪⎧n 1⊥BD →,n 1⊥BE →,即⎩⎨⎧n 1·BD →=-x +y =0,n 1·BE →=-12x +12y +12z =0.令x =1,可得平面BDE 的一个法向量为n 1=(1,1,0). 因为AS ⊥底面ABCD ,所以平面ABCD 的一个法向量为n 2=AS →=(0,0,1). 因为n 1·n 2=0,所以平面BDE ⊥平面ABCD .证明线、面垂直问题的方法(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直即可.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0即可.如图,△ABC 中,AC =BC ,D 为AB 边中点,PO ⊥平面ABC ,垂足O 在CD上,求证:AB ⊥PC .证明:设CA →=a ,CB →=b ,OP →=v .由条件知,v 是平面ABC 的法向量, 所以v ·a =0,v ·b =0, 因为D 为AB 中点,所以CD →=12(a +b ),因为O 在CD 上,所以存在实数λ,使CO →=λCD →=λ2(a +b ).因为CA =CB , 所以|a |=|b |, 所以AB →·CP →=(b -a )·⎣⎢⎡⎦⎥⎤λ2(a +b )+v =λ2(a +b )·(b -a )+(b -a )·v=λ2(|b |2-|a |2)+b ·v -a ·v =0, 所以AB →⊥CP →, 所以AB ⊥PC .1.在正方体ABCD A 1B 1C 1D 1中,M 是棱DD 1的中点,O 是正方形ABCD 的中心,证明:OA 1⊥AM . 证明:设正方体棱长为1,建立空间直角坐标系,如图,则A (1,0,0),A 1(1,0,1),M ⎝⎛⎭⎪⎫0,0,12,O ⎝⎛⎭⎪⎫12,12,0,所以OA 1→=(1,0,1)-⎝ ⎛⎭⎪⎫12,12,0=⎝ ⎛⎭⎪⎫12,-12,1,AM →=⎝⎛⎭⎪⎫0,0,12-(1,0,0)=⎝⎛⎭⎪⎫-1,0,12,所以OA 1→·AM →=12×(-1)+⎝ ⎛⎭⎪⎫-12×0+1×12=0,即OA 1⊥AM .2.在长方体ABCD A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.求证:CE ∥平面C 1E 1F .证明:以D 为原点,以DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎪⎫1,12,2.设平面C 1E 1F 的法向量为n =(x ,y ,z ), 因为C 1E 1→=⎝ ⎛⎭⎪⎫1,-12,0,FC 1→=(-1,0,1),所以⎩⎪⎨⎪⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x =12y ,x =z , 取n =(1,2,1).因为CE →=(1,-1,1),n ·CE →=1-2+1=0,所以CE →⊥n ,且CE ⊄平面C 1E 1F . 所以CE ∥平面C 1E 1F .[学生用书P66]知识结构深化拓展用空间向量解决立体几何的问题有三步(1)首先建立适当的空间坐标系,一般是用互相垂直的直线为x ,y ,z 轴,设出点的坐标.(2)通过向量的坐标运算,来研究点、直线、平面之间的关系,把几何问题转化为代数问题.(3)把向量的运算结果“翻译”为相应的几何意义,据几何意义求出结果.[学生用书P137(单独成册)])[A 基础达标]1.已知a =⎝ ⎛⎭⎪⎫1,2,52,b =⎝ ⎛⎭⎪⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( )A .x =3,y =152B .x =32,y =154C .x =3,y =15D.x =3,y =154解析:选D.因为l 1∥l 2,所以321=x 2=y 52,所以x =3,y =154,故选D.2.直线l 的一个方向向量和平面β的一个法向量分别是m =(-1,1,3),n =⎝ ⎛⎭⎪⎫13,0,19,则直线l 与平面β的位置关系是( )A .l ∥βB .l ⊥βC .l ∥β或l ⊂βD.无法判断解析:选C.因为m ·n =-13+0+13=0,所以m ⊥n .所以l ∥β或l ⊂β.3.设直线l 的方向向量u =(-2,2,t ),平面α的一个法向量v =(6,-6,12),若直线l ⊥平面α,则实数t 等于( )A .4B .-4C .2D.-2解析:选B.因为直线l ⊥平面α,所以u ∥v ,则-26=2-6=t12,解得t =-4,故选B.4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32 D.⎝⎛⎭⎪⎫-1,3,-32解析:选B.要判断点P 是否在平面α内,只需判断向量PA →与平面α的法向量n 是否垂直,即PA →·n 是否为0,因此,要对各个选项进行检验. 对于选项A ,PA →=(1,0,1),则PA →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ; 对于选项B ,PA →=⎝⎛⎭⎪⎫1,-4,12,则PA →·n =⎝ ⎛⎭⎪⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.5.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( )A .1∶2B .1∶1C .3∶1D.2∶1解析:选B.建立如图所示的空间直角坐标系,设正方形边长为1,PA =a ,则B (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y ,0),则BF →=(-1,y ,0),PE →=⎝ ⎛⎭⎪⎫12,1,-a .因为BF ⊥PE , 所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, 所以F 为AD 的中点, 所以AF ∶FD =1∶1.6.已知平面α的一个法向量a =(x ,1,-2),平面β的一个法向量b =⎝ ⎛⎭⎪⎫-1,y ,12,若α⊥β,则x -y =________.解析:因为α⊥β,所以a ⊥b ,所以-x +y -1=0,得x -y =-1. 答案:-17.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).解析:AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,所以AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.答案:①②③8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.解析:因为AB →⊥BC →,所以AB →·BC →=0, 所以3+5-2z =0, 所以z =4.因为BP →=(x -1,y ,-3),且BP →⊥平面ABC , 所以⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157, 故BP →=⎝ ⎛⎭⎪⎫337,-157,-3.答案:⎝⎛⎭⎪⎫337,-157,-39.已知正三棱柱ABC A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明:设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝ ⎛⎭⎪⎫-12,0,0,B ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫0,32,0,N ⎝⎛⎭⎪⎫0,32,14, B 1⎝⎛⎭⎪⎫12,0,1,M ⎝ ⎛⎭⎪⎫14,34,0. 所以MN →=⎝ ⎛⎭⎪⎫-14,34,14,AB 1→=(1,0,1),所以MN →·AB 1→=-14+0+14=0.所以MN →⊥AB 1→,所以AB 1⊥MN .10.如图所示,在正方体ABCD A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点.求证:EF ⊥平面B 1AC .证明:设正方体的棱长为2a ,建立如图所示的空间直角坐标系.则A (2a ,0,0),C (0,2a ,0),B 1(2a ,2a ,2a ),E (2a ,2a ,a ),F (a ,a ,2a ). 所以EF →=(a ,a ,2a )-(2a ,2a ,a )=(-a ,-a ,a ),AB 1→=(2a ,2a ,2a )-(2a ,0,0)=(0,2a ,2a ),AC →=(0,2a ,0)-(2a ,0,0)=(-2a ,2a ,0).因为EF →·AB 1→=(-a ,-a ,a )·(0,2a ,2a )=(-a )×0+(-a )×2a +a ×2a =0,EF →·AC →=(-a ,-a ,a )·(-2a ,2a ,0)=2a 2-2a 2+0=0,所以EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A ,所以EF ⊥平面B 1AC .[B 能力提升]11.如图,在正方体ABCD A 1B 1C 1D 1中,M ,N ,P 分别是AD 1,BD 和B 1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ; (2)平面MNP ∥平面CC 1D 1D .证明:(1)以D 为坐标原点,DA →,DC →,DD 1→分别为x ,y ,z 轴的正方向,建立空间直角坐标系(图略),并设正方体的棱长为2,则A (2,0,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1).由正方体的性质知AD ⊥平面CC 1D 1D ,所以DA →=(2,0,0)为平面CC 1D 1D 的一个法向量.由于MN →=(0,1,-1),则MN →·DA →=0×2+1×0+(-1)×0=0,所以MN →⊥DA →. 又MN ⊄平面CC 1D 1D , 所以MN ∥平面CC 1D 1D .(2)由于MP →=(0,2,0),DC →=(0,2,0), 所以MP →∥DC →,即MP ∥DC . 由于MP ⊄平面CC 1D 1D , 所以MP ∥平面CC 1D 1D .又由(1),知MN ∥平面CC 1D 1D ,MN ∩MP =M ,所以由两个平面平行的判定定理,知平面MNP ∥平面CC 1D 1D .12.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点E 为BC 的中点.(1)在B 1B 上是否存在一点P ,使D 1P ⊥平面B 1AE? (2)在平面AA 1B 1B 上是否存在一点N ,使D 1N ⊥平面B 1AE? 解:(1)如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则点A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,B 1(1,1,1),D 1(0,0,1),B 1A →=(0,-1,-1),B 1E →=⎝ ⎛⎭⎪⎫-12,0,-1.假设存在点P (1,1,z )满足题意,于是D 1P →=(1,1,z -1),所以⎩⎪⎨⎪⎧D 1P →·B 1A →=0,D 1P →·B 1E →=0,所以⎩⎪⎨⎪⎧0-1-z +1=0,-12+0-z +1=0,解得⎩⎪⎨⎪⎧z =0,z =12,矛盾.故在B 1B 上不存在点P 使D 1P ⊥平面B 1AE .(2)假设在平面AA 1B 1B 上存在点N ,使D 1N ⊥平面B 1AE . 设N (1,y ,z ),则⎩⎪⎨⎪⎧D 1N →·B 1A →=0,D 1N →·B 1E →=0.因为D 1N →=(1,y ,z -1),所以⎩⎪⎨⎪⎧0-y -z +1=0,-12+0-z +1=0,解得⎩⎪⎨⎪⎧y =12,z =12,故平面AA 1B 1B 上存在点N ⎝ ⎛⎭⎪⎫1,12,12,使D 1N ⊥平面B 1AE .13.(选做题)如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠BCD =90°,AB =4,CD =1,点M在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD .证明:以点C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°.因为PC =2,所以BC =23,PB =4.所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32.所以DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32.(1)令n =(x ,y ,z )为平面PAD 的法向量,则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,所以⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).因为n ·CM →=-3×32+2×0+1×32=0,所以n ⊥CM →,又CM ⊄平面PAD , 所以CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).因为PB =AB , 所以BE ⊥PA .又因为BE →·DA →=(-3,2,1)·(23,3,0)=0. 所以BE →⊥DA →,所以BE ⊥DA , 又因为PA ∩DA =A , 所以BE ⊥平面PAD , 又因为BE ⊂平面PAB , 所以平面PAB ⊥平面PAD .。
第三章空间向量与立体几何导学案(20210902135541)
实数入与向量a的积是一个向量,记作2a,其长度和方向规定如下:学习目标:㈠知识目标:1•空间向量;2•相等的向量;3•空间向量的加减与数乘运算及运算律;㈡能力目标:1•理解空间向量的概念,掌握其表示方法;2•会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3•能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢情感目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.学习重点:空间向量的加减与数乘运算及运算律.学习难点:应用向量解决立体几何问题.学习方式:讨论式.学习过程:I .复习[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:(1) 1副=丨川a|(2) 当心0时,2与a同向;当;<0时,2与a反向;当后0时,2= 0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+ b= b+ a加法结合律:(a+ b) + c= a+( b+ c)数乘分配律:2a+ b) = ?a+ b[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们认真阅读课本P26〜P27内容。
n.学习新课[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量. 例如空间的一个平移就是一个向量•那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的•空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?第三章空间向量与立体几何3•实数与向量的积:3.1空间①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB .•向量的加法:2•向量的减法:三肃形沬则乎行四边形;去刚[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:0[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律. [生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c ); ⑶数乘分配律:2(a + b )=入a+入b[师]空间向量加法的运算律要注意以下几点:表示的向量,这是平面向量加法的平行四边形法则向空间的推广.川.巩固练习课本P 92练习IV .小结:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平一 一 一 —— —— 1——⑵ AB AD AA';⑶ AB AD 严1OB OA AB =a+b ,的几何体,叫做 平行六面体•记作ABCD —A B C'.D'OP)a ( R)AB OB OA (指向被减向量),平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱. 解:(见课本P 27)A 1A 2 A 2A 3 A 3A 4 A n 1 A n A A n因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量•即:A l A 2 A 2 A 3 A 3 A 4A n 1A nAnA⑶两个向量相加的平行四边形法则在空间仍然成立. 因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则. 例1已知平行六面体 ABCD A' B'C'D'(如图),化简下列向 量表达式,并标出化简结果的向量: ⑴ AB BC ;移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度” 的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.V .课后作业预习课本P 92〜P 96,预习提纲: ⑴怎样的向量叫做共线向量? ⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么?,空间说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之 和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所 BAD AA').⑷丄(AB3说明:平行四边形ABCD平移向量a到A B C'的'迹所形成空间向量及其运算(2)M P XM A 或对空间任一点 o ,有oP oM X M A①一、 学习目标:1 •理解共线向量定理和共面向量定理及它们的推论; 2 •掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.二、 学习重、难点:共线、共面定理及其应用. 三、 学习过程: (一) 复习回顾:空间向量的概念及表示; (二) 新课学习: 1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或 平行向量。
高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案
3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。
高中数学 第3章 空间向量与立体几何 3.2 空间向量的坐标讲义(含解析)湘教版选修2-1-湘教版高
3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。
高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2
于平面MAB内的充要 条件是存在有序实数
论
对(x,y),使 MP
= x MA+y MB ,
或对空间任意一点O
若在l上取 AB =a,则①式可化 来说,有 OP =OM
为
OP= OA +t AB.
+xMA+ y MB .
小结
1.λa是一个向量.当λ=0或a=0时,λa=0. 2.平面向量的数乘运算的运算律推广到空间向量的数乘运 算,结论仍然成立. 3.共线向量的充要条件及其推论是证明共线(平行)问题的重 要依据,条件b≠0不可遗漏.
4.直线的方向向量是指与直线平行或共线的向量.一条 直线的方向向量有无限多个,它们的方向相同或相反.
5.共面向量的充要条件给出了空间平面的向量表示式, 说明空间中任意一个平面都可以由一点及两个不共线的平面 向量表示出来.另外,还可以用OP =xOA+yOB+zOC ,且 x +y+z=1 判断 P,A,B,C 四点共面.
跟踪训练
5.在下列条件中,使 M 与 A,B,C 一定共面的是( ) A.OM =3OA-2OB-OC B.OM +OA+OB+OC =0 C. MA+ MB+ MC =0 D.OM =14OB-OA+12OC 解析:∵ MA+ MB+ MC =0, ∴ MA=- MB- MC , ∴M 与 A,B,C 必共面.
DF =-CF
②
将②代入①中,两式相加得 2 EF = AD+ BC .
所以 EF =12 AD+12BC ,即 EF 与 BC , AD共面.
[一点通] 利用向量法证明向量共面问题,关键是熟练 进行向量的表示,恰当应用向量共面的充要条件.解答本 题实质上是证明存在实数 x,y 使向量 EF =x AD+yBC 成 立,也就是用空间向量的加、减法则及运算律,结合图形, 用 AD, BC 表示 EF .
高中数学2-1学案:第三章 空间向量与立体几何3
3.1。
1空间向量及其线性运算[学习目标]1。
了解空间向量的概念,掌握空间向量的几何表示和字母表示.2。
掌握空间向量的线性运算及运算律,理解空间向量线性运算及其运算律的几何意义.知识点一空间向量的概念在空间中,我们把像位移、力、速度、加速度这样既有大小又有方向的量叫做空间向量,向量的大小叫向量的长度或模.知识点二空间向量的加减法(1)加减法定义空间中任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.(如图)错误!=错误!+错误!=a+b;错误!=错误!-错误!=a-b.(2)运算律交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).知识点三空间向量的数乘运算(1)定义实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.当λ>0时,λa与a方向相同;当λ〈0时,λa与a方向相反;当λ=0时,λa=0。
λa的长度是a的长度的|λ|倍.如图所示.(2)运算律分配律:λ(a+b)=λa+λb;结合律:λ(μa)=(λμ)a。
知识点四共线向量定理(1)共线向量的定义与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∥b。
(2)充要条件对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.思考(1)若表示两个相等空间向量的有向线段的起点相同,则终点也相同.对吗?(2)零向量没有方向.对吗?(3)空间两个向量的加减法与平面内两向量的加减法完全一致.对吗?答案(1)正确.起点相同,终点也相同的两个向量相等.(2)错误.不是没有方向,而是方向任意.(3)正确.题型一空间向量的概念例1判断下列命题的真假.(1)空间中任意两个单位向量必相等;(2)方向相反的两个向量是相反向量;(3)若|a|=|b|,则a=b或a=-b;(4)向量错误!与错误!的长度相等.解(1)假命题.因为两个单位向量,只有模相等,但方向不一定相同.(2)假命题.因为方向相反的两个向量模不一定相等.(3)假命题.因为两个向量模相等时,方向不一定相同或相反,也可以是任意的.(4)真命题.因为错误!与错误!仅是方向相反,但长度是相等的.反思与感悟空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念.跟踪训练1如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)试写出与错误!相等的所有向量;(2)试写出错误!的相反向量;(3)若AB=AD=2,AA1=1,求向量错误!的模.解(1)与向量AB,→相等的所有向量(除它自身之外)有错误!,错误!及错误!共3个.(2)向量错误!的相反向量为错误!,错误!,错误!,错误!。
高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面
3.2.1 直线的方向向量及平面的法向量1.用向量表示直线的位置条件直线l上一点A表示直线l方向的向量a(即直线l的□01方向向量)形式在直线l上取AB→=a,那么对于直线l上任意一点P,一定存在实数t使得AP→=□02tAB→作用定位置点A和向量a可以确定直线的位置定点可以具体表示出l上的任意一点(1)通过平面α上的一个定点和两个向量来确定条件平面α内两条□03相交直线的方向向量a,b和交点O形式对于平面α上任意一点P,存在有序实数对(x,y),使得OP→=□04x a+y b(2)通过平面α上的一个定点和法向量来确定平面的法向量□05直线l⊥α,直线l的方向向量,叫做平面α的法向量确定平面位置过点A,以向量a为法向量的平面是完全确定的3.空间中平行、垂直关系的向量表示设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则线线平行l∥m⇔□06a∥b⇔□07a=k b(k∈R)线面平行l∥α⇔□08a⊥u⇔□09a·u=0面面平行α∥β⇔□10u∥v⇔□11u=k v(k∈R)线线垂直 l ⊥m ⇔□12a ⊥b ⇔□13a ·b =0 线面垂直 l ⊥α⇔□14a ∥u ⇔□15a =λu (λ∈R ) 面面垂直 α⊥β⇔□16u ⊥v ⇔□17u ·v =01.判一判(正确的打“√”,错误的打“×”)(1)直线上任意两个不同的点A ,B 表示的向量AB →都可作为该直线的方向向量.( ) (2)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(3)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (4)若两条直线平行,则它们的方向向量的方向相同或相反.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(请把正确的答案写在横线上)(1)若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(2)已知a =(2,-4,-3),b =(1,-2,-4)是平面α内的两个不共线向量.如果n =(1,m ,n )是α的一个法向量,那么m =________,n =________.(3)(教材改编P 104T 2)设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =________.(4)已知直线l 1,l 2的方向向量分别是v 1=(1,2,-2),v 2=(-3,-6,6),则直线l 1,l 2的位置关系为________.答案 (1)(2,4,6) (2)120 (3)4 (4)平行探究1 点的位置向量与直线的方向向量例1 (1)若点A ⎝ ⎛⎭⎪⎫-12,0,12,B ⎝ ⎛⎭⎪⎫12,2,72在直线l 上,则直线l 的一个方向向量为( )A.⎝ ⎛⎭⎪⎫13,23,1B.⎝ ⎛⎭⎪⎫13,1,23C.⎝ ⎛⎭⎪⎫23,13,1D.⎝ ⎛⎭⎪⎫1,23,13(2)已知O 为坐标原点,四面体OABC 的顶点A (0,3,5),B (2,2,0),C (0,5,0),直线BD ∥CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.[解析] (1)AB →=⎝ ⎛⎭⎪⎫12,2,72-⎝ ⎛⎭⎪⎫-12,0,12=(1,2,3),⎝ ⎛⎭⎪⎫13,23,1=13(1,2,3)=13AB →,又因为与AB →共线的非零向量都可以作为直线l 的方向向量.故选A.(2)由题意可设点D 的坐标为(x,0,z ), 则BD →=(x -2,-2,z ),CA →=(0,-2,5).∵BD ∥CA ,∴⎩⎪⎨⎪⎧x -2=0,z =5,∴⎩⎪⎨⎪⎧x =2,z =5,∴点D 的坐标为(2,0,5). [答案] (1)A (2)见解析 拓展提升求点的坐标:可设出对应点的坐标,再利用点与向量的关系,写出对应向量的坐标,利用两向量平行的充要条件解题.【跟踪训练1】 已知点A (2,4,0),B (1,3,3),在直线AB 上有一点Q ,使得AQ →=-2QB →,求点Q 的坐标.解 由题设AQ →=-2QB →,设Q (x ,y ,z ),则(x -2,y -4,z )=-2(1-x,3-y,3-z ),∴⎩⎪⎨⎪⎧x -2=-2(1-x ),y -4=-2(3-y ),z =-2(3-z ),解得⎩⎪⎨⎪⎧x =0,y =2,∴Q (0,2,6).z =6,探究2 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 与平面SBA 的法向量.[解]∵AD ,AB ,AS 是三条两两垂直的线段,∴以A 为原点,分别以AD →,AB →,AS →的方向为x 轴、y 轴、z 轴的正方向建立坐标系,则A (0,0,0),D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ),则n ·DC →=(1,λ,u )·⎝ ⎛⎭⎪⎫12,1,0=12+λ=0,∴λ=-12.n ·DS →=(1,λ,u )·⎝ ⎛⎭⎪⎫-12,0,1=-12+u =0,∴u =12,∴n =⎝⎛⎭⎪⎫1,-12,12. 综上,平面SCD 的一个方向向量为n =⎝⎛⎭⎪⎫1,-12,12,平面SBA 的一个法向量为AD →=⎝ ⎛⎭⎪⎫12,0,0.拓展提升设直线l 的方向向量为u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ⊥α⇔u ∥v ⇔u =k v ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2,其中k ∈R ,平面的法向量的求解方法:①设出平面的一个法向量为n =(x ,y ,z ).②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).③依据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0.④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.【跟踪训练2】 在正方体ABCD -A 1B 1C 1D 1中,求证:DB 1→是平面ACD 1的一个法向量.证明 设正方体的棱长为1,分别以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系,则DB 1→=(1,1,1),AC →=(-1,1,0),AD 1→=(-1,0,1).于是有DB 1→·AC →DB 1→⊥AC →,即DB 1⊥AC . 同理,DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,从而是平面ACD 1的一个法向量. 探究3 利用方向向量、法向量判断线、面 关系例3 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1与l 2的位置关系:①a =(2,3,-1),b =(-6,-9,3); ②a =(5,0,2),b =(0,4,0); ③a =(-2,1,4),b =(6,3,3).(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系: ①u =(1,-1,2),v =⎝ ⎛⎭⎪⎫3,2,-12;②u =(0,3,0),v =(0,-5,0); ③u =(2,-3,4),v =(4,-2,1).(3)设u 是平面α的法向量,a 是直线l 的方向向量(l ⊄α),根据下列条件判断α和l 的位置关系:①u =(2,2,-1),a =(-3,4,2); ②u =(0,2,-3),a =(0,-8,12); ③u =(4,1,5),a =(2,-1,0).[解] (1)①因为a =(2,3,-1),b =(-6,-9,3),所以a =-13b ,所以a ∥b ,所以l 1∥l 2.②因为a =(5,0,2),b =(0,4,0),所以a ·b =0, 所以a ⊥b ,所以l 1⊥l 2.③因为a =(-2,1,4),b =(6,3,3),所以a 与b 不共线,也不垂直,所以l 1与l 2的位置关系是相交或异面.(2)①因为u =(1,-1,2),v =⎝⎛⎭⎪⎫3,2,-12,所以u ·v =3-2-1=0,所以u ⊥v ,所以α⊥β.②因为u =(0,3,0),v =(0,-5,0),所以u =-35v ,所以u ∥v ,所以α∥β.③因为u =(2,-3,4),v =(4,-2,1).所以u 与v 既不共线,也不垂直,所以α,β相交.(3)①因为u =(2,2,-1),a =(-3,4,2),所以u ·a =-6+8-2=0, 所以u ⊥a ,所以直线l 和平面α的位置关系是l ∥α.②因为u =(0,2,-3),a =(0,-8,12),所以u =-14a ,所以u ∥a ,所以l ⊥α.③因为u =(4,1,5),a =(2,-1,0),所以u 和a 不共线也不垂直,所以l 与α斜交. 拓展提升利用向量判断线、面关系的方法(1)两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. (2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.(3)两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.【跟踪训练3】 根据下列条件,判断相应的线、面位置关系: (1)直线l 1,l 2的方向向量分别为a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解 (1)因为a =(1,-3,-1),b =(8,2,2),所以a ·b =8-6-2=0,所以a ⊥b ,所以l 1⊥l 2.(2)因为u =(1,3,0),v =(-3,-9,0),所以v =-3u ,所以v ∥u ,所以α∥β. (3)因为a =(1,-4,-3),u =(2,0,3),所以a ≠k u (k ∈R )且a ·u ≠0,所以a 与u 既不共线也不垂直,即l 与α相交但不垂直.(4)因为a =(3,2,1),u =(-1,2,-1),所以a ·u =-3+4-1=0,所以a ⊥u ,所以l ⊂α或l ∥α.1.空间中一条直线的方向向量有无数个.2.线段中点的向量表达式:对于AP →=tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM →=12(OA →+OB →),这就是线段AB 中点的向量表达式.,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.(1)设n 是平面α的一个法向量,v 是直线l 的方向向量,则v ⊥n 且l 上至少有一点A ∉α,则l ∥α.(2)根据线面平行的判定定理:“如果平面外直线与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明平面外一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.(1)在一个平面内找到两个不共线的向量都与另一个平面的法向量垂直,那么这两个平面平行.(2)利用平面的法向量,证明面面平行,即如果a ⊥平面α,b ⊥平面β,且a ∥b ,那么α∥β.1.若平面α,β的法向量分别为a =⎝ ⎛⎭⎪⎫12,-1,3,b =(-1,2,-6),则( ) A .a ∥β B .α与β相交但不垂直 C .α⊥β D .α∥β或α与β重合 答案 D解析 ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1,平面BCC 1B 1的中心,以点A 为原点,建立如图所示的空间直角坐标系,则直线EF 的方向向量可以是( )A.⎝ ⎛⎭⎪⎫1,0,22B .(1,0,2) C .(-1,0,2) D .(2,0,-2) 答案 D解析 由已知得E (1,1,2),F ⎝ ⎛⎭⎪⎫2,1,22,所以|EF →|=⎝⎛⎭⎪⎫2,1,22-(1,1,2)=⎝⎛⎭⎪⎫1,0,-22,结合选项可知,直线EF 的方向向量可以是(2,0,-2).3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎪⎫33,33,-33 B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝ ⎛⎭⎪⎫-33,-33,-33 答案 D解析 由AB →=(-1,1,0),AC →=(-1,0,1),结合选项,验证知应选D.4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m =________.答案 -8解析 因为直线l ∥α,所以直线l 的方向向量与平面α的法向量垂直,所以(2,m,1)·⎝⎛⎭⎪⎫1,12,2=2+m 2+2=0,解得m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:OB →1是平面PAC 的法向量.证明 建立空间直角坐标系如右图所示,不妨设正方体的棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),∴OB 1→·AC →=-2+2=0,OB 1→·AP →=-2+2=0. ∴OB 1→⊥AC →,OB 1→⊥AP →,即OB 1⊥AC ,OB 1⊥AP . ∵AC ∩AP =A ,∴OB 1⊥平面PAC ,即OB 1→是平面PAC 的法向量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章空间向量与立体几何
§ 3.1空间向量及其运算
§ 3.1.1空间向量的线性运算
一、空间向量的概念
1、空间向量:空间中既有______ 又有_______ 的量
__ 」 A ► B T彳
2、空间向量的表示:AB = a ()()
3、零向量:________________________________ 记作: _______
4、向量的模(长度):________________________________ 记作:___________
5、向量的基线:表示向量的有向线段所在的直线
6、相等向量:_____________________________________________
7、共线向量(平行向量):基线互相________ 或______________
记作:______________
规定:零向量与任意向量平行。
二、空间向量的线性运算已知向量a,b
1、加法
2、减法
4 4^ T T T
a -
b 二a (-b) =0A AB 二_________ 二________
屮寸 T T
即a -b = OA -OC二 __________ (三角形法则)
3、数乘
(1)---------------- | a
■+4 i,扌(2)__________________________________ ■ ^0 时,a 与a 方向 _____ ;' =0 时,a=;' ::0 时,a 与a 方
向______ ;
4 4
注:a//a
三、空间向量运算律
的向量叫做共线向量或平行向量。
a b =0A AB
a b =0A OB
________ (三角形法则)
_______ 平行四边形形法则)
注:若M为LOAB的边AB的中点,则OA 0B-
加法交换律:
_______________________________
加法结合律:_______________________________
分配律:___________________________________________
例题例1已知平行六面体ABCD—ABCD,,化简下列向量表达式
(2)DD - AB BC;
1
(3)AB AD —(DD -BC)
注:三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量。
1
例2 M ,N分别是四面体ABCD的棱AB,CD的中点,求证:MN (AD • BC)
2 练习:课本81页练习A第3题;练习B第1,2,3题作业课时十七
(1)
(2)
(3)
四、
AD
五、
§ 3.1.2空间向量的基本定理
一、 共线向量定理
T T
4 4 两个空间向量a , b ( ), a//b 的充要条件是存在唯一的实数 x ,使 ______________
例1四边形ABCD,ABEF 都是平行四边形,
C E ,MN 是否共线
共面向量定理
1、 共面向量定理:平行于同一平面的向量,叫做共面向量。
2、 共面向量定理:如果 a ,b 不共线,则向量c 与向量a ,b
共面的充要条件是,存在唯一的
三、 空间向量分解定理 如果三个向量a,b,c 不共面,那么对空间任一向量
p ,存在一个唯一的有序实数组 x,y,z ,使 斗 4 H 4 4^4
p =xa yb zc ,其中{a,b,c }叫做空间的一个 ___________ ,a,b,c 叫做 _______________ 。
一 T 4 -+ H H 4
T ” 例3已知平行六面体ABCD 一 ABC D ,设AB =a,AD 二b,AA ” = c ,试用基底{a, b,c }表示 以下向量: AC ;BD,CA ,DB
一对实数x, y ,使
T T T 屮 T 4 例2已知斜三棱柱 ABC - A B C ,设AB = a, AC = b, AA = c ,在面对角线AC 上和棱BC 上 ―I
―IT T ― H 4 分别取点M ,N ,使AM =kAC ,BN =kBC (O Ek 乞1),求证:MN 和向量a,c 共面。
例4已知空间四边形OABC中,M,N分别是对边°A, BC的中点,点G在MN上,且MG = 2GN,设0A 二a,OB 二b,OC 二c,试用基底{a, b,c}表示向量
四、练习:课本85页练习A,练习B
五、作业:课时十八
§ 3.1.3两个向量的数量积
一 •两个向量的夹角
■I 4
已知两个非零向量a ,b ,在空间中任取一点 4
b 的夹角,记作 _____________ . 规定:::a,b _________________
注:找两向量的夹角必须同起点
二•异面直线
1、异面直线:不同在任何一个平面内的两条直线
2、异面直线所成的角:平移两条异面直线到同一个平面内,两条直线所成的 __________
叫做两条异面直线所成的角 •如果两条异面直线所成的角是直角,则称两条异面直线互相垂
直•
规定:异面直线所成角的取值范围是 _____________________
例1正方体ABCD - A B C D 中,求下列向量的夹角
(1)AB 与AC ;⑵ AB 与CA ;(3)AB 与AD ;
(4) A
B 与 BA]® A
C 与 BA ;( © AC 与 C
D 注:设直线AB 与CD 所成的角为",则cos 二 _______________ cos ”: AB, CD
三、两个向量的数量积
4 *
空间两个向量a , b 一定可以平移到同一平面内 1、定义:
TO OB = b 则N AOB 叫做向量a , (1)
(2)
(3)
b 方向相同时,:::a,b = b 方向相反时, a,b 匸 b 垂直时,
a・b=|a||b|cos:::a,b -叫做两个空间向量b的数量积(或内积),它是一个实数
2、性质:
(1)_____________________________________ (2) _______________________________________ (3)_____________________________________ (4) _______________________________________
3、运算律:
(1)___________________________________________________________________
(2)___________________________________________________________________
(3)___________________________________________________________________
例2长方体ABCD - AB C D ■中,AB 二AA =2,AD
中点,计算下列数量积:
(1)BC ・ED 华)BF * AB ;(3)EF «FC
例 3 已知l a l = 2'2,l b^-22,a*b= 2,求::a,b
四、练习:课本88页练习A练习B
四、作业:课时作业十九
§ 3.1.3空间向量的直角坐标运算
」、空间向量的直角坐标运算
=(耳,a 2,a 3),b = (b | , b 2,b 3)
2.
3.
注: i.P(x,y,z),则 OP 二
2. A(X i ,%忆),B =(X 2, y 2,Z 2),则 AB =
二、空间向量平行和垂直的条件
1. a//b(b^O) = 2 a 丄 b=
三、两个向量夹角与向量长度的坐标计算公式
a =(ai,a 2,a 3),
b fbd),则 l a F
IbF cos : a,b 二 注:_1. A(X i ,y i ,Z i ),B 二区以乙),则 | AB|=
四、例题 例 i 已知向量 a =(I,I,0), b= ( 0 , i, (I,0,I), p 二a — b, q=a2b —c
■4 4 -J 4
求 p ,q , p *q
例2已知向量a =(-2,2,0), b = (- 2 , 0 ,求一个向量n 使n —a 且n — b 1. a _b 二
例 3 已知A(1,1,0)>B =(0,3,0),C(2,2,3),
求(1)cos ::AB, AC - ;(2) AC在上正投影的数量积。